Difference between revisions of "Theoretical Aspects of Lexical Analysis/Exercise 4"

From Wiki**3

< Theoretical Aspects of Lexical Analysis
Line 213: Line 213:
 
The minimization tree is as follows:
 
The minimization tree is as follows:
  
<graph>
+
[[image:aula3p4mintree.jpg]]
digraph mintree {
 
  node [shape=none,fixedsize=true,width=0.7,fontsize=10]
 
  "{0, 1, 2, 3, 4, 5, 6, 7, 8} " -> "{0, 1, 2, 3}" [label="NF",fontsize=10]
 
  "{0, 1, 2, 3, 4, 5, 6, 7, 8} " -> "{4, 5, 6, 7, 8}" [label="  F",fontsize=10]
 
  "{0, 1, 2, 3}" ->  "{0, 1, 2}"
 
  "{0, 1, 2, 3}" -> "{3} " [label="  b",fontsize=10]
 
  "{0, 1, 2}" -> "{0, 2} "
 
  "{0, 1, 2}" -> "{1} " [label="  b",fontsize=10]
 
  fontsize=10
 
  //label="Minimization tree"
 
}
 
</graph>
 
  
 
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for non-final states and the {0, 2} "a" and "b" transitions. The final states are all indistinguishable, regarding both "a" or "b" transitions (remember that, at this stage, we assume that individual states -- i.e., the final states -- are all indistinguishable).  
 
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for non-final states and the {0, 2} "a" and "b" transitions. The final states are all indistinguishable, regarding both "a" or "b" transitions (remember that, at this stage, we assume that individual states -- i.e., the final states -- are all indistinguishable).  

Revision as of 09:43, 24 June 2016

Problem

Use Thompson's algorithm to build the NFA for the following regular expression. Build the corresponding DFA and minimize it.

  • (a|b)*abb(a|b)*

Solution

The non-deterministic finite automaton (NFA), built by applying Thompson's algorithm to the regular expression (a|b)*abb(a|b)* is the following:


Applying the determination algorithm to the above NFA, the following determination table is obtained:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 2, 4, 7 0
0 a 3, 8 1, 2, 3, 4, 6, 7, 8 1
0 b 5 1, 2, 4, 5, 6, 7 2
1 a 3, 8 1, 2, 3, 4, 6, 7, 8 1
1 b 5, 9 1, 2, 4, 5, 6, 7, 9 3
2 a 3, 8 1, 2, 3, 4, 6, 7, 8 1
2 b 5 1, 2, 4, 5, 6, 7 2
3 a 3, 8 1, 2, 3, 4, 6, 7, 8 1
3 b 5, 10 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 17 4
4 a 3, 8, 13 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 5
4 b 5, 15 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 6
5 a 3, 8, 13 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 5
5 b 5, 9, 15 1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17 7
6 a 3, 8, 13 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 5
6 b 5, 15 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 6
7 a 3, 8, 13 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 5
7 b 5, 10, 15 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17 8
8 a 3, 8, 13 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 5
8 b 5, 15 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 6

Graphically, the DFA is represented as follows:


The minimization tree is as follows:

Aula3p4mintree.jpg

The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for non-final states and the {0, 2} "a" and "b" transitions. The final states are all indistinguishable, regarding both "a" or "b" transitions (remember that, at this stage, we assume that individual states -- i.e., the final states -- are all indistinguishable).

Given the minimization tree above, the final minimal DFA is as follows: