Difference between revisions of "Theoretical Aspects of Lexical Analysis/Exercise 9"

From Wiki**3

< Theoretical Aspects of Lexical Analysis
Line 7: Line 7:
 
The following is the result of applying Thompson's algorithm. State '''4''' recognizes the first expression (token '''T1'''); state '''9''' recognizes token '''T2'''; and state '''17''' recognizes token '''T3'''.
 
The following is the result of applying Thompson's algorithm. State '''4''' recognizes the first expression (token '''T1'''); state '''9''' recognizes token '''T2'''; and state '''17''' recognizes token '''T3'''.
  
<graph>
+
<dot-hack>
 
digraph nfa {
 
digraph nfa {
 
     { node [shape=circle style=invis] s }
 
     { node [shape=circle style=invis] s }
Line 44: Line 44:
 
   fontsize=10
 
   fontsize=10
 
}
 
}
</graph>
+
</dot-hack>
  
 
== DFA ==
 
== DFA ==
Line 138: Line 138:
 
Graphically, the DFA is represented as follows:
 
Graphically, the DFA is represented as follows:
  
<graph>
+
<dot-hack>
 
digraph dfa {
 
digraph dfa {
 
     { node [shape=circle style=invis] s }
 
     { node [shape=circle style=invis] s }
Line 155: Line 155:
 
   fontsize=10
 
   fontsize=10
 
}
 
}
</graph>
+
</dot-hack>
  
 
The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.
 
The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.
  
<graph>
+
<dot-hack>
 
digraph mintree {  
 
digraph mintree {  
 
   node [shape=none,fixedsize=true,width=0.3,fontsize=10]
 
   node [shape=none,fixedsize=true,width=0.3,fontsize=10]
Line 167: Line 167:
 
   "{0, 1, 2, 3, 4, 5} " -> "{2, 4}" [label="  T2",fontsize=10]
 
   "{0, 1, 2, 3, 4, 5} " -> "{2, 4}" [label="  T2",fontsize=10]
 
   "{0, 1, 2, 3, 4, 5} " -> "{5}" [label="  T3",fontsize=10]
 
   "{0, 1, 2, 3, 4, 5} " -> "{5}" [label="  T3",fontsize=10]
   "{0, 1, 3}" -> "{0}" //[label="  b",fontsize=10]
+
   "{0, 1, 3}" -> "{0}"  
 
   "{0, 1, 3}" -> "{1,3}" [label="  b",fontsize=10]
 
   "{0, 1, 3}" -> "{1,3}" [label="  b",fontsize=10]
   "{2, 4}" -> "{2}" //[label="  b",fontsize=10]
+
   "{2, 4}" -> "{2}"  
 
   "{2, 4}" -> "{4}" [label="  b",fontsize=10]
 
   "{2, 4}" -> "{4}" [label="  b",fontsize=10]
 
   fontsize=10
 
   fontsize=10
  //label="Minimization tree"
 
 
}
 
}
</graph>
+
</dot-hack>
  
 
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transitions for super-state {0, 1, 3}, and "a" and "b" transitions for super-state {1,3}).
 
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transitions for super-state {0, 1, 3}, and "a" and "b" transitions for super-state {1,3}).
Line 180: Line 179:
 
Given the minimization tree, the final minimal DFA is as follows. Note that states 2 and 4 cannot be the same since they recognize different tokens.
 
Given the minimization tree, the final minimal DFA is as follows. Note that states 2 and 4 cannot be the same since they recognize different tokens.
  
<graph>
+
<dot-hack>
 
digraph mindfa {
 
digraph mindfa {
 
     { node [shape=circle style=invis] s }
 
     { node [shape=circle style=invis] s }
Line 196: Line 195:
 
   fontsize=10
 
   fontsize=10
 
}
 
}
</graph>
+
</dot-hack>
  
 
== Input Analysis ==
 
== Input Analysis ==

Revision as of 12:18, 12 February 2019

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.

  • G = { a*, ba*, a|b* }, input string = aababb

NFA

The following is the result of applying Thompson's algorithm. State 4 recognizes the first expression (token T1); state 9 recognizes token T2; and state 17 recognizes token T3.

DFA

Determination table for the above NFA:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 2, 4, 5, 10, 11, 13, 14, 16, 17 0 (T1)
0 a 3, 12 2, 3, 4, 12, 17 1 (T1)
0 b 6, 15 6, 7, 9, 14, 15, 16, 17 2 (T2)
1 a 3 2, 3, 4 3 (T1)
1 b - - -
2 a 8 7, 8, 9 4 (T2)
2 b 15 14, 15, 16, 17 5 (T3)
3 a 3 2, 3, 4 3 (T1)
3 b - - -
4 a 8 7, 8, 9 4 (T2)
4 b - - -
5 a - - -
5 b 15 14, 15, 16, 17 5 (T3)

Graphically, the DFA is represented as follows:

The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.

The tree expansion for non-splitting sets has been omitted for simplicity ("a" transitions for super-state {0, 1, 3}, and "a" and "b" transitions for super-state {1,3}).

Given the minimization tree, the final minimal DFA is as follows. Note that states 2 and 4 cannot be the same since they recognize different tokens.

Input Analysis

In Input In+1 / Token
0 aababb$ 13
13 ababb$ 13
13 babb$ T1 (aa)
0 babb$ 2
2 abb$ 4
4 bb$ T2 (ba)
0 bb$ 2
2 b$ 5
5 $ T3 (bb)

The input string aababb is, after 9 steps, split into three tokens: T1 (corresponding to lexeme aa), T2 (ba), and T3 (bb).