Difference between revisions of "Theoretical Aspects of Lexical Analysis/Exercise 5"

From Wiki**3

< Theoretical Aspects of Lexical Analysis
Line 5: Line 5:
 
     <div class="content" data-section-content>
 
     <div class="content" data-section-content>
 
<!-- ====================== START OF PROBLEM ====================== -->
 
<!-- ====================== START OF PROBLEM ====================== -->
Consider the lexical analyzer '''<nowiki>G = { ab, ab*, a|b }</nowiki>''', defined for the alphabet is '''Σ = { a, b }'''.  
+
Consider the lexical analyzer '''<nowiki>G = { ab, ab*, a|b }</nowiki>''', defined for the alphabet '''Σ = { a, b }'''.  
  
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
Line 17: Line 17:
 
     <div class="content" data-section-content>
 
     <div class="content" data-section-content>
 
<!-- ====================== START OF SOLUTION ====================== -->
 
<!-- ====================== START OF SOLUTION ====================== -->
Consider the lexical analyzer '''<nowiki>G = { ab, ab*, a|b }</nowiki>''', defined for the alphabet is '''Σ = { a, b }'''.  
+
Consider the lexical analyzer '''<nowiki>G = { ab, ab*, a|b }</nowiki>''', defined for the alphabet '''Σ = { a, b }'''.  
  
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).

Revision as of 20:58, 18 February 2015

Problem

Consider the lexical analyzer G = { ab, ab*, a|b }, defined for the alphabet Σ = { a, b }.

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).

Indicate the number of processing steps for the abaabb input string.

Solution

Consider the lexical analyzer G = { ab, ab*, a|b }, defined for the alphabet Σ = { a, b }.

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).

Indicate the number of processing steps for the abaabb input string.

The following is the result of applying Thompson's algorithm. State 3 recognizes the first expression (token T1); state 8 recognizes token T2; and state 14 recognizes token T3.

Applying the determination algorithm to the above NFA, the following determination table is obtained:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 4, 9, 10, 12 0
0 a 2, 5, 11 2, 5, 6, 8, 11, 14 1 (T2)
0 b 13 13, 14 2 (T3)
1 a - - -
1 b 3, 7 3, 6, 7, 8 3 (T1)
2 a - - -
2 b - - -
3 a - - -
3 b 7 6, 7, 8 4 (T2)
4 a - - -
4 b 7 6, 7, 8 4 (T2)

Graphically, the DFA is represented as follows:

The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.


The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for final states {1, 4}).

Given the minimization tree, the final minimal DFA is exactly the same as the original DFA (all leaf sets are singular).

Input Analysis

In Input In+1 / Token
0 abaabb$ 1
1 baabb$ 3
3 aabb$ T1
0 aabb$ 1
1 abb$ T2
0 abb$ 1
1 bb$ 3
3 b$ 4
4 $ T2

The input string abaabb is, after 9 steps, split into three tokens: T1 (corresponding to lexeme ab), T2 (a), and T2 (abb).