Difference between revisions of "Theoretical Aspects of Lexical Analysis/Exercise 5"

From Wiki**3

< Theoretical Aspects of Lexical Analysis
(NFA)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 +
<div class="section-container auto" data-section>
 +
  <div class="section">
 +
    <p class="title" data-section-title>Problem</p>
 +
    <div class="content" data-section-content>
 +
<!-- ====================== START OF PROBLEM ====================== -->
 +
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).<br/>The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.
 +
* <nowiki>G = { ab, ab*, a|b }</nowiki>, input string = abaabb
 +
<!-- ====================== END OF PROBLEM ====================== -->
 +
    </div>
 +
  </div>
 +
  <div class="section">
 +
    <p class="title" data-section-title>Solution</p>
 +
    <div class="content" data-section-content>
 +
<!-- ====================== START OF SOLUTION ====================== -->
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).<br/>The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.  
 
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).<br/>The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.  
 
* <nowiki>G = { ab, ab*, a|b }</nowiki>, input string = abaabb
 
* <nowiki>G = { ab, ab*, a|b }</nowiki>, input string = abaabb
 
== NFA ==
 
 
 
The following is the result of applying Thompson's algorithm. State '''3''' recognizes the first expression (token '''T1'''); state '''8''' recognizes token '''T2'''; and state '''14''' recognizes token '''T3'''.
 
The following is the result of applying Thompson's algorithm. State '''3''' recognizes the first expression (token '''T1'''); state '''8''' recognizes token '''T2'''; and state '''14''' recognizes token '''T3'''.
  
Line 11: Line 22:
 
</runphp>
 
</runphp>
  
== DFA ==
+
Applying the determination algorithm to the above NFA, the following determination table is obtained:
 
 
Determination table for the above NFA:
 
  
 
{| cellspacing="2"
 
{| cellspacing="2"
Line 161: Line 170:
  
 
The input string ''abaabb'' is, after 9 steps, split into three tokens: '''T1''' (corresponding to lexeme ''ab''), '''T2''' (''a''), and '''T2''' (''abb'').
 
The input string ''abaabb'' is, after 9 steps, split into three tokens: '''T1''' (corresponding to lexeme ''ab''), '''T2''' (''a''), and '''T2''' (''abb'').
 +
<!-- ====================== END OF SOLUTION ====================== -->
 +
    </div>
 +
  </div>
 +
</div>
  
 
[[category:Teaching]]
 
[[category:Teaching]]
 
[[category:Compilers]]
 
[[category:Compilers]]
 
[[en:Theoretical Aspects of Lexical Analysis]]
 
[[en:Theoretical Aspects of Lexical Analysis]]

Revision as of 20:46, 18 February 2015

Problem

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.

  • G = { ab, ab*, a|b }, input string = abaabb

Solution

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.

  • G = { ab, ab*, a|b }, input string = abaabb

The following is the result of applying Thompson's algorithm. State 3 recognizes the first expression (token T1); state 8 recognizes token T2; and state 14 recognizes token T3.

Applying the determination algorithm to the above NFA, the following determination table is obtained:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 4, 9, 10, 12 0
0 a 2, 5, 11 2, 5, 6, 8, 11, 14 1 (T2)
0 b 13 13, 14 2 (T3)
1 a - - -
1 b 3, 7 3, 6, 7, 8 3 (T1)
2 a - - -
2 b - - -
3 a - - -
3 b 7 6, 7, 8 4 (T2)
4 a - - -
4 b 7 6, 7, 8 4 (T2)

Graphically, the DFA is represented as follows:

The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.


The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for final states {1, 4}).

Given the minimization tree, the final minimal DFA is exactly the same as the original DFA (all leaf sets are singular).

Input Analysis

In Input In+1 / Token
0 abaabb$ 1
1 baabb$ 3
3 aabb$ T1
0 aabb$ 1
1 abb$ T2
0 abb$ 1
1 bb$ 3
3 b$ 4
4 $ T2

The input string abaabb is, after 9 steps, split into three tokens: T1 (corresponding to lexeme ab), T2 (a), and T2 (abb).