Universally Composable Oblivious Transfer from One-Round Key-Exchange

> Manuel Goulão manuel.goulao@tecnico.ulisboa.pt

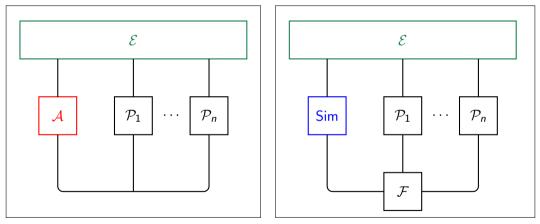
(work done with Pedro Branco, Jintai Ding, and Paulo Mateus)

11 February 2019

Oblivious Transfer

Oblivious transfer (OT) is an important primitive in cryptography as a building block to construct secure multiparty computation.

Universal Composability



Real world execution

Ideal world execution

One-Round Key-Exchange

A-B ORKE structure		
Alice		Bob
$r_{\mathcal{A}} \leftarrow_{\$} \{0,1\}^{\kappa}$		$r_B \leftarrow_{\$} \{0,1\}^\kappa$
$(\textit{pk}_{\textit{A}},\textit{sk}_{\textit{A}}) \leftarrow \textit{Gen}(1^{\kappa},\textit{r}_{\textit{A}})$		$(\mathit{pk}_B, \mathit{sk}_B) \leftarrow \mathit{Gen}(1^\kappa, \mathit{r}_B)$
$m_A \leftarrow Msg^A(r_A, sk_A, pk_B)$	$m_A \longrightarrow$	
	<i>m_B</i>	$m_B \leftarrow Msg^B(r_B, sk_B, pk_A, m_A)$
$k \leftarrow \textit{Key}(\textit{r}_{A},\textit{sk}_{A},\textit{pk}_{B},\textit{m}_{B})$		$k \leftarrow Key(r_B, sk_B, pk_A, m_A)$

One-Round Key-Exchange Properties (intuition)

- Non-redundant message: All parts of the message must be used to construct the key. I.e., change one part and the key changes completely
- Message indistinguishability: Given a group action on the space of the messages of the Alice, its codomain must be indistinguishable from the messages of Alice
- Key indistinguishability: The key obtained by Bob either using the message from Alice or a random value must be indistinguishable

Our framework

Sender(x_0, x_1)		$Receiver(b \in \{0,1\})$
$(\mathit{sk}_{S}, \mathit{pk}_{S}) \leftarrow \mathit{Gen}(1^{\kappa})$		$(sk_R, pk_R) \leftarrow Gen(1^\kappa)$ $h \leftarrow \mathbf{H}(t)$ $m_R^b \leftarrow Msg^R(r_R, sk_R, pk_S)$
$h' \leftarrow \mathbf{H}(t)$	(m_R^0, t)	If $b=1, m^0_R \leftarrow \psi(m^1_R, h^{-1})$
$ \begin{split} m_R^1 &\leftarrow \psi(m_R^0, h') \\ m_S^0 &\leftarrow Msg^S(r_S, sk_S, pk_R, m_R^0) \\ m_S^1 &\leftarrow Msg^S(r_S, sk_S, pk_R, m_R^1) \\ k^0 &\leftarrow Key(r_S, sk_S, pk_R, m_R^0) \\ k^1 &\leftarrow Key(r_S, sk_S, pk_R, m_R^1) \end{split} $		
$\textit{chall} \leftarrow \mathcal{C}(m_S^0, m_S^1, \textbf{H}(k^0), \textbf{H}(k^1))$	$(m_{S}^{0}, m_{S}^{1}, chall) \longrightarrow$	
		$k \leftarrow Key(r_R, sk_R, pk_S, m_S^1)$
	¢ resp	$\textit{resp} \gets \mathcal{R}()$
if <i>resp</i> is correct:	$\xrightarrow{Enc(k^0, x_0), Enc(k^1, x_1)}$	$x_b \leftarrow Dec(k, Enc(k^b, x_b))$

Our framework Extension to $\binom{n}{1}$ -OT

- Sample and send n-1 random values t_i
- Apply group action ψ to mⁱ_R and output of ROM by t_i. Leave m^b_R ← Msg^B()
 Are all indistinguishable by message indistinguishability property
- Set the challenge accordingly
- ▶ In the end, R will only have the key k^b

- First message: Message indistinguishability guarantees the Sender does not know which m⁰_R or m¹_R is the message and which is a random string. Thus, it does not know which message R uses to compute its key
- Second message: The receiver can compute the response to the challenge regardless of its input, there is no information about the input b

- First message: The security of the KE guarantees the Receiver is not able to derive a key from $m_{\rm S}^{1-b}$. And all information from the challenge is output by the ROM, i.e. not correlated with the (other) key
- Second message: Security of the SKE assures the impossibility to get the other message without the corresponding key

Universal Composability

Simulating a corrupted receiver

- 1. The simulator simulates the random oracles $\textbf{H}_1,\,\textbf{H}_2,\,\textbf{H}_3$ and \textbf{H}_4 as usual.
- 2. Upon receiving (sid, t, m_R^0) from the adversary $\mathcal{A}(R)$, the simulator Sim:
 - Follows the protocol and sends (sid, $m_S^0, m_S^1, a_0, a_1, u_0, u_1$) to \mathcal{A} ;
 - ▶ Sets $b \leftarrow \bot$. When $k_{S}^{\bar{b}}$ is asked to the random oracle H_{2} , it sets $b \leftarrow \bar{b}$;
 - Aborts, if w_{1-b} is asked to the random oracle H_3 before w_b or if k_s^{1-b} is asked to H_2 .
- 3. Upon receiving (sid, ch') from the adversary $\mathcal{A}(R)$, the simulator Sim:
 - Aborts, if $ch \neq ch'$;
 - If $b = \perp$, sets $b \leftarrow \$ \{0, 1\}$;
 - Sends (sid, b) to the ideal functionality \mathcal{F}_{OT} .
- 4. Upon receiving (sid, M_b) from \mathcal{F}_{OT} , the simulator Sim:
 - Encrypts $c_b \leftarrow \operatorname{Enc}(k_{\mathsf{S}}^b, M_b)$ and $c_{1-b} \leftarrow \operatorname{Enc}(k_{\mathsf{S}}^{1-b}, 0^{\lambda})$;
 - Sends (sid, c_0, c_1) to $\mathcal{A}(\mathsf{R})$;

Universal Composability

Simulating a corrupted sender

- $1. \ \mbox{Before activating the adversary, the simulator Sim:}$
 - Chooses $r_{\mathsf{R}}^{0} \leftarrow_{\$} \{0,1\}^{\kappa}$ and $r_{\mathsf{R}}^{1} \leftarrow_{\$} \{0,1\}^{\kappa}$;
 - ► Computes $m_{\mathsf{R}}^{0} \leftarrow Msg(r_{\mathsf{R}}^{0}, \mathsf{sk}_{\mathsf{R}}, \mathsf{pk}_{\mathsf{S}})$ and $m_{\mathsf{R}}^{1} \leftarrow Msg(r_{\mathsf{R}}^{1}, \mathsf{sk}_{\mathsf{R}}, \mathsf{pk}_{\mathsf{S}})$.
- 2. Upon activating the adversary, the simulator Sim sends (sid, t, m_R^0):
 - Simulates \mathbf{H}_2 , \mathbf{H}_3 and \mathbf{H}_4 as \mathcal{F}_{RO} ;
 - When the adversary queries H_1 with (sid, t), answers h such that $m_R^1 = \psi(m_R^0, h)$.
- 3. Upon receiving (sid, m_{S}^{0} , m_{S}^{1} , a_{0} , a_{1} , u_{0} , u_{1}) from A, the simulator Sim:
 - Computes $k_{\mathsf{R}}^0 \leftarrow Key(\mathsf{sk}_{\mathsf{R}},\mathsf{pk}_{\mathsf{S}},r_{\mathsf{R}}^0,m_{\mathsf{S}}^0)$ and $k_{\mathsf{R}}^1 \leftarrow Key(\mathsf{sk}_{\mathsf{R}},\mathsf{pk}_{\mathsf{S}},r_{\mathsf{R}}^1,m_{\mathsf{S}}^1)$;
 - Computes ch' as the honest receiver;
 - Sends (sid, ch') to A.
- 4. Upon receiving (sid, c_0, c_1) from A, the simulator Sim:
 - Computes $M_0 \leftarrow \mathbf{Dec}(k^0_{\mathsf{R}}, c_0)$ and $M_1 \leftarrow \mathbf{Dec}(k^1_{\mathsf{R}}, c_1)$;
 - Sends (sid, M_0, M_1) to the ideal functionality \mathcal{F}_{OT} .

Efficiency vs other frameworks

- Four communication rounds
- One iteration takes $\mathcal{O}(\alpha + \lambda + \kappa)$
 - κ: Security parameter
 - α : Size of messages of the KE
 - λ : Size of the ciphertexts of the SKE
- Only simple computations required
- ▶ Few and weak imposed conditions
- ▶ First UC framework to be instantiated with RLWE and SIDH

Examples Diffie-Hellman

Key exchange:

- $(sk = x \in \mathbb{Z}_p^*, pk = g \in \mathbb{Z}_p) \leftarrow Gen(1^{\kappa})$
- $g^{x} \leftarrow Msg(r, x, g)$
- $g^{xy} \leftarrow Key(r, g, x, g^y)$

Required properties:

- ▶ Group action: consider $\psi : \mathbb{Z}_p^* \times \mathbb{Z}_p^* \to \mathbb{Z}_p^*, \psi(y, h) = y * h \mod p$
- \blacktriangleright Message indistinguishability: g is a generator, so the output by Msg or ψ are both random
- Key indistinguishability: Keys are of the form g^{xy} , which is a random element in \mathbb{Z}_p^*

Examples

RLWE-KE

Key exchange:

- $\blacktriangleright (s, (a, as + e)) \leftarrow Gen(1^{\kappa}), \quad s \leftarrow_{\$} \chi_{\alpha}, e \leftarrow_{\$} \chi_{\alpha}, a \leftarrow_{\$} R_q = \mathbb{Z}_q[x]/\langle (x^n + 1) \rangle$
- $pk_A \leftarrow Msg^A(r, s, as + e)$
- $(pk_B, w) \leftarrow Msg^B(r, sk_B, pk_B, pk_A)$
- $\blacktriangleright k \leftarrow Key(r, sk_i, pk_j, m_j)$

Required properties:

- ▶ Group action: consider ψ : $R_q \times (R_q, +) \rightarrow R_q, \psi(y, h) = y + h$
- Message indistinguishability: message is an RLWE sample. distinguishing would break the RLWE assumption
- Key indistinguishability: From security of KE, to distinguish K from random reduces to deciding the RLWE assumption

Bibliography

For more info about:

- OT: Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31. STOC '88, ACM, New York, NY, USA (1988), http://doi.acm.org/10.1145/62212. 62215
- UC: Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings of the 42Nd IEEE Symposium on Foundations of Com- puter Science. pp. 136–. FOCS '01, IEEE Computer Society, Washington, DC, USA (2001)
- ORKE: Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security: An efficient and generic construction in the standard model. In: Katz, J. (ed.) Public-Key Cryptography – PKC 2015. pp. 477–494. Springer Berlin Heidelberg, Berlin, Heide