BASIC TRAINING ON CRYPTOGRAPHY FOR CTFs

16th October 2021
ENISA 2nd Bootcamp Team EU - Turin, Italy

Manuel Goulão and Filipe Casal
(manuel.goulao@tecnico.ulisboa.pt)

Introduction

Beginner to intermediate cryptography CTF challenges

Most common cryptosystems and hardness assumptions

Some typical attacks to each assumption/cryptosystem
~1h per topic, followed by a small break

Practical exercises with Python and SageMath

Brief overview of some other less predominant topics in CTFs

Contents

1. Basics
a. Encodings
b. Cryptography
c. Attack models
2. Stream and block ciphers
a. Length extension
b. Meet-in-the-middle (Birthday paradox)
c. Modes of operation (ECB, CBC, GCM...)
3. Diffie-Hellman
a. Man-in-the-middle
b. Quadratic residuosity
c. Pohlig-Hellman
4. RSA
a. Malleability
b. Padding
c. Overview of common attacks
5. Elliptic curve cryptography
a. Repeated k (DSA)
b. Invalid curve attack
c. Curves with easy DLog (Smart, MOV)
6. Further topics
a. Lattice reduction
b. Modern cryptography
c. Relevant tools

Basics - encodings

Encodings

- Raw bytes
- Hexadecimal integer
- Base64

Encoding π

Substitution ciphers

- \quad Shift each character to another (Caesar cipher)
- Swap each character according to some key (Vigenère cipher)
- Pseudo-random substitution (Enigma machine)
- One-time-pad (Secure but not practical...)

$$
\begin{array}{ll}
\text { Plaintext: } & \text { thequickbrownfoxjumpsoverthelazydog } \\
\text { Key: } & \text { LIONLIONLIONLIONLIONLIONLIONLIONLIO }
\end{array}
$$ Ciphertext: EPSDFQQXMZCJYNCKUCACDWJRCBVRWINLOWU

Basics - cryptography

One-way functions (candidates)

- Hash functions
- Discrete logarithm
- Factoring

Symmetric-key cryptography

- Stream ciphers
- Block ciphers

Trapdoor one-way function (Wikipedia)

AES round function (Wikipedia)

Basics — attack models (for encryption schemes)

Ciphertext-only (COA)

- Access only to the ciphertext, no access to the plaintext.

Known-plaintext (KPA)

- Access to a number of pairs of plaintext and the corresponding ciphertext.

Chosen-ciphertext (CPA)

- Choose the plaintext to be encrypted, and receive the resulting ciphertext.

Chosen-plaintext (CCA)

- Choose arbitrary ciphertext, and have access to the plaintexts decrypted from it.

Adaptive chosen-ciphertext (CCA2)

- Choose arbitrary ciphertext, and see the resulting plaintext. May use previous pairs to choose the next.

Other cryptographic schemes have different models, but follow the same setup:
"How much access to this cryptosystem do I have?"
And often, this kind of reasoning leads us to the right track to solve a challenge.

Stream and block ciphers - intro

Hash functions

- Preimage resistance

Given \boldsymbol{h}, hard to find \boldsymbol{m}, with $\boldsymbol{h}=\operatorname{HASH}(\boldsymbol{m})$

- Second pre-image resistance

Given m_{1}, hard to find m_{2}, with $\operatorname{HASH}\left(m_{1}\right)=\operatorname{HASH}\left(m_{2}\right)$

- Collision resistance

Hard to find m_{1} and m_{2}, with $\operatorname{HASH}\left(m_{1}\right)=\operatorname{HASH}\left(m_{2}\right)$

PRNGs

- Mersenne Twister - 2^{19937}-1, 32-bit word length. Recovering internal state requires 624 32-bit outputs.
- LFSR - Berlekamp-Massey gives LFSR of minimal size.
- LCG - Lattice reduction attacks.

Block ciphers

- Feistel networks
- Substitution-permutation network

Feistel network (Wikipedia)

Stream and block ciphers - length extension

Use $\boldsymbol{H}\left(\boldsymbol{m}_{1}\right)$ and the length of \boldsymbol{m}_{1} to calculate $\operatorname{Hash}\left(\boldsymbol{m}_{1} / \boldsymbol{m}_{\mathbf{2}}\right)$ for an attacker-controlled $\boldsymbol{m}_{\mathbf{2}}$, without needing to know the content of $\boldsymbol{m}_{\mathbf{1}}$

MD5, SHA-1 and SHA-2 are susceptible to this kind of attack
(Merkle-Damgård construction with a bad finalization function)

Merkle-Damgård construction (Wikipedia)
Original Data: count=10\&lat=37.351\&user_id=1\&1ong=-119.827\&waffle=eggo
Original Signature: $6 \mathrm{~d} 5 f 807 \mathrm{e} 23 \mathrm{db} 210 \mathrm{bc} 254 \mathrm{a} 28 \mathrm{be} 2 \mathrm{~d} 6759 \mathrm{a} 0$ f5f5d99
Desired New Data: count=10\&1at=37.3518user_id=1\&1ong=-119.827\&waffle=eggos
waffle=1iege
New Data: count $=10 \& 1$ at $=37.351$ suser_ id $=1 \& 1$ ong $=-119.827$ \&waffle=eggo $\times 80 \backslash \times 001 \times 00$
$\times 00 \backslash \times 00$
$\times 00 \backslash \times 00$
$\begin{aligned} & \backslash \times 0 \backslash \times 00 \backslash \times 001 \times 00 \backslash \times 00 \\ & \times 00 \backslash \times 00 \backslash \times 00 \backslash \times 02 \backslash \times 28 \& w a f f 1 e=1 \text { iege }\end{aligned}$
New Signature: 0e41270260895979317fff3898ab85668953aaa2

Stream and block ciphers - meet-in-the-middle

Known plaintext attack, generic space-time tradeoff
Find keys by using both the range (ciphertext) and domain (plaintext)
Naive attack needs $\mathbf{2}^{\mathbf{2 k}}$ encryptions and $\mathbf{O}(\mathbf{1})$ space
MitM for key-size \boldsymbol{k} uses only $\mathbf{2}^{\boldsymbol{k}+\boldsymbol{1}}$ encryptions/decryptions and $\mathbf{O (2 ^ { k })}$ memory
The attacker can compute $E N \boldsymbol{K}^{\mathbf{1}}(\boldsymbol{P})$ for all values of $\boldsymbol{k}_{\mathbf{1}}$ and $\boldsymbol{D E C}{ }^{\boldsymbol{k}}(\mathbf{C})$ for all possible values of $\boldsymbol{k}_{\mathbf{2}}$ (total of $\mathbf{2}^{\boldsymbol{k} \boldsymbol{1}}+\mathbf{2}^{\boldsymbol{k}^{\mathbf{2}}}$ operations)

If any of $E N \boldsymbol{C}^{\mathbf{k}}(P)$ matches a result from $\boldsymbol{D E C} \boldsymbol{K}^{\mathbf{2}}(C)$, the pair of $\boldsymbol{k}_{\mathbf{1}}$ and $\boldsymbol{k}_{\mathbf{2}}$ is possibly the correct key (can be checked with different plaintext-ciphertext pair)

$$
\begin{aligned}
& C=E N C_{k_{2}}\left(E N C_{k_{1}}(P)\right) \\
& P=D E C_{k_{1}}\left(D E C_{k_{2}}(C)\right)
\end{aligned}
$$

 (Wikipedia)

$$
\begin{aligned}
C & =E N C_{k_{2}}\left(E N C_{k_{1}}(P)\right) \\
D E C_{k_{2}}(C) & =D E C_{k_{2}}\left(E N C_{k_{2}}\left[E N C_{k_{1}}(P)\right]\right) \\
D E C_{k_{2}}(C) & =E N C_{k_{1}}(P)
\end{aligned}
$$

Stream and block ciphers - modes of operation

ECB - identical plaintext blocks into identical ciphertext blocks...
CBC (padding oracle) - allows decrypting but also encrypting

- Guess last byte of last block, use oracle to check padding
- Guess the one before that, and so on...
- $256 \cdot \mathbf{N}$ vs. $\mathbf{2 5 6}{ }^{N}$ bytes
- Need block \boldsymbol{C}_{i-1} to retrieve $\boldsymbol{C}_{\boldsymbol{i}}$ (\boldsymbol{C}_{1} requires knowing IV)

$$
\begin{aligned}
& P_{i}=D_{K}\left(C_{i}\right) \oplus C_{i-1}, \\
& C_{0}=I V .
\end{aligned}
$$

CBC decryption (Wikipedia)

GCM AEAD mode (Wikipedia)
$T_{1}=C_{1,1}{ }^{*} H^{2}+L_{1}{ }^{*} H+A E S\left(J_{0}\right)$
$T_{2}=C_{2,1}{ }^{*} H^{2}+L_{2}{ }^{*} H+A E S\left(J_{0}\right)$
$T_{1}-T_{2}=\left(C_{1,1}-C_{2,1}\right) * H^{2}$
$+\left(L_{1}-L_{2}\right){ }^{*} H$

Stream and block ciphers - exercises

Diffie-Hellman - intro

Key-exchange - the parties compute shared (secret) key from only public information

DLog - easy to compute $g^{a} \bmod p$, hard to recover a
Here in a multiplicative group of integers $\bmod p$, but also for other finite cyclic groups where the DLog is hard (e.g. ECDH)

Key generation: private \boldsymbol{a}; public $\left(\boldsymbol{g}^{\mathrm{a}} \bmod \boldsymbol{p}\right)$
No authentication (man-in-the-middle attack)
How to choose \boldsymbol{p} ?

Non-secret values in blue, and secret values in red.

1. Alice and Bob publicly agree to use a modulus $p=23$ and base $g=5$
2. Alice chooses a secret integer $a=4$, then sends $\operatorname{Bob} A=g^{a} \bmod p$

$$
\text { - } A=5^{4} \bmod 23=4
$$

3. Bob chooses a secret integer $b=3$, then sends Alice $B=g^{b} \bmod p$

- $B=5^{3} \bmod 23=10$

4. Alice computes $s=B^{a} \bmod p$

- $s=10^{4} \bmod 23=18$

5. Bob computes $s=A^{b} \bmod p$

- $s=4^{3} \bmod 23=18$

6. Alice and Bob now share a secret (the number 18).

Both Alice and Bob have arrived at the same values because under mod p,

$$
A^{b} \bmod p=g^{a b} \bmod p=g^{b a} \bmod p=B^{a} \bmod p
$$

More specifically,
$\left(g^{a} \bmod p\right)^{b} \bmod p=\left(g^{b} \bmod p\right)^{a} \bmod p$
Example of DH for a very small p (Wikipedia)

Diffie-Hellman - man-in-the-middle

DH does not guarantee authentication

Attacker impersonates each party, and communicates with the other on their behalf

Attacker shares one key with each party

Attacker relays all traffic, decrypting and re-encrypting with the respective keys

Attacker can now read EVERYTHING

Alice and Bob are unaware of the Attacker

Man-in-the-middle attack to DH

Diffie-Hellman - quadratic residuosity

Euler's criterion/Legendre symbol -

determine if an integer is a quadratic residue $\bmod p$

QR means congruent to a perfect square $\left(q=x^{2} \bmod p\right)$
Legendre symbol of g^{a} reveals the parity, breaks CPA

$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)$
Euler's criterion and Legendre symbol (Wikipedia)

Choose p with big subgroup of quadratic residues, $p=2 q+1, q$ prime

$$
\text { If } x=2 y, \quad g^{x^{(p-1) / 2}}=g^{(x / 2)(p-1)}=g^{(p-1) y}=g^{(p-1)^{y}}=1^{y}=1 \quad \bmod p
$$

Parity leaking from Legendre symbol
\boldsymbol{g} is then chosen to generate the order \boldsymbol{q} subgroup (usually $g=2$)

Diffie-Hellman — Pohlig-Hellman

Group order should have a large prime factor to prevent use of the Pohlig-Hellman algorithm

Choosing $p=2 q+1$ makes the order of the group only divisible by $\mathbf{2}$ and \boldsymbol{q}

Compute the DLog modulo each prime in the group order, use the CRT to combine them to the DLog in the full group

SageMath — sage.groups.generic.discrete_log

Pohlig-Hellman schematic (Wikipedia)


```
Input. A cyclic group G of order n with generator g, an element h\inG, and a prime factorization n=\mp@subsup{\prod}{i=1}{r}\mp@subsup{p}{i}{\mp@subsup{e}{i}{}}
Output. The unique integer }x\in{0,\ldots,n-1} such that g'x =h
    1. For each i\in{1,\ldots,r}, do
        1. Compute git := 吕/\mp@subsup{p}{i}{\mp@subsup{e}{i}{\prime}}}\mathrm{ . By Lagrange's theorem, this element has order p}\mp@subsup{p}{i}{\mp@subsup{e}{i}{}
        2. Compute }\mp@subsup{h}{i}{}:=\mp@subsup{h}{}{n/\mp@subsup{p}{i}{\mp@subsup{e}{i}{\prime}}}\mathrm{ . By construction, }\mp@subsup{h}{i}{}\in\langle\mp@subsup{g}{i}{}
        3. Using the algorithm above in the group }\langle\mp@subsup{g}{i}{}\rangle\mathrm{ ,compute }\mp@subsup{x}{i}{}\in{0,\ldots,\mp@subsup{p}{i}{\mp@subsup{e}{i}{}}-1}\mathrm{ such that }\mp@subsup{g}{i}{\mp@subsup{x}{i}{}}=\mp@subsup{h}{i}{}\mathrm{ .
    2. Solve the simultaneous congruence
        x\equiv\mp@subsup{x}{i}{}\quad(\operatorname{mod}\mp@subsup{p}{i}{\mp@subsup{e}{i}{}})\quad\foralli\in{1,\ldots,r}
    The Chinese remainder theorem guarantees there exists a unique solution }x\in{0,\ldots,n-1
    3. Return }
```


Diffie-Hellman - exercises

RSA - intro

Encryption and signature scheme
Hard to factor product of two large prime numbers
Finding the \boldsymbol{e}-th roots of an arbitrary number, $\bmod \boldsymbol{n}$
Given the private exponent \boldsymbol{d} one can efficiently factor \boldsymbol{n}
Given factorization of \boldsymbol{n}, one can obtain a private key

$$
m^{e} \equiv c \quad(\bmod n)
$$

Encryption of RSA

$$
c^{d} \equiv\left(m^{e}\right)^{d} \equiv m \quad(\bmod n)
$$

Decryption of RSA

$$
m^{e d}=m^{1+h \varphi(n)}=m\left(m^{\varphi(n)}\right)^{h} \equiv m(1)^{h} \equiv m \quad(\bmod n)
$$

Correctness of RSA

$$
\begin{aligned}
& h=\operatorname{hash}(m) \\
& \left(h^{e}\right)^{d}=h^{e d}=h^{d e}=\left(h^{d}\right)^{e} \equiv h \quad(\bmod n)
\end{aligned}
$$

RSA — malleability

$c_{1} \cdot c_{2}=m_{1} \mathrm{e} \cdot m_{2}{ }^{\mathrm{e}}=\left(m_{1} \cdot m_{2}\right)^{\mathrm{e}}(\bmod \mathrm{N})$
Blind signature - Alice obtains Bob's signature without Bob learning anything about the message

Decrypting a message by blind signing another message: never reuse key for encryption and signing

Last bit oracle (CCA) - decrypt an RSA ciphertext by having an oracle giving the parity of the plaintext

```
m
s'\equiv(\mp@subsup{m}{}{\prime}\mp@subsup{)}{}{d}(\operatorname{mod}N)
s\equiv\mp@subsup{s}{}{\prime}\cdot\mp@subsup{r}{}{-1}\equiv(\mp@subsup{m}{}{\prime}\mp@subsup{)}{}{d}\mp@subsup{r}{}{-1}\equiv\mp@subsup{m}{}{d}\mp@subsup{r}{}{ed}\mp@subsup{r}{}{-1}\equiv\mp@subsup{m}{}{d}r\mp@subsup{r}{}{-1}\equiv\mp@subsup{m}{}{d}\quad(\operatorname{mod}N)
```

RSA blind signing

RSA — padding

RSA without padding (textbook-RSA) is not CPA secure (deterministic)
Malleability and forgeability

Compute e-th root of a small message ($m^{e}<N$, or too few laps)

Håstad's broadcast attack

$$
c^{\prime}=c \cdot s^{e}
$$

Leak of Jacobi symbol

Padding must be random (Coppersmith - linear pad, short pad, ...)
Padding oracle attack - Bleichenbacher Attacks (CCA)

00	02	padding string	00	data block

RSA - overview of common attacks

Low private exponent (Wiener)

- Uses the continued fraction method to find d when d is small $\left(d<(1 / 3) N^{1 / 4}\right)$

Low public exponent (Coppersmith)

- Håstad's broadcast - recover message encrypted to $\geq e$ parties
- Franklin-Reiter related-message - recover two (known difference) related messages, encrypted for the same N
- Coppersmith's short-pad - recover a message sent twice with different (short) pad

Bad key generation

- ROCA (Coppersmith + Pohlig-Hellman):

$$
M=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \ldots \text { and } p=k \cdot M+(65537 a \bmod M)
$$

Partial key exposure attack
$F(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
Find x_{0} such that $F\left(x_{0}\right) \equiv 0 \quad(\bmod M)$ for $\left|x_{0}\right|<M^{1 / n}$

Coppersmith method

(sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots)

RSA - exercises

Compute MSBs of d :
$e d=1+k \phi$
$d^{\prime}=\frac{k N+1}{e}$
Bruteforce $k<e$.

Factoring given d :

1. Compute $e \cdot d$
2. $e d-1=k \phi \Longrightarrow k \approx \frac{e d-1}{N} \Longrightarrow \phi=\frac{e d-1}{k}$
3. $(p-1)(q-1)=\phi \Longrightarrow p+q=N+1-\phi$
4. Solve $x^{2}+(p+q) x+N=0$

Elliptic curve cryptography — intro

- Elliptic curves over finite fields $E(\mathbb{F p})$
- Set of points satisfying $y^{2}=x^{3}+a x+b$ (Weierstrass equation) with the group operation, and point at infinity as identity
- Must be non-singular $\Delta \neq 0, \Delta=-16\left(4 a^{3}+27 b^{2}\right)$
- Best attacks (in "well-chosen" curves) are generic attacks
- Point multiplication can be done using double-and-add

$P+Q+R=0$

$P+Q+Q=0$

Point at infinity
$\mathcal{O}+\mathcal{O}=\mathcal{O}$
$\mathcal{O}+P=P$

Point negation

$$
\begin{aligned}
& P+(-P)=\mathcal{O} \\
&(x, y)+(-(x, y))=\mathcal{O} \\
&(x, y)+(x,-y)=\mathcal{O} \\
&(x,-y)=-(x, y)
\end{aligned}
$$

Point addition

$$
\begin{aligned}
P+Q & =R \\
\left(x_{p}, y_{p}\right)+\left(x_{q}, y_{q}\right) & =\left(x_{r}, y_{r}\right)
\end{aligned}
$$

Assuming E, is given by $y^{2}=x^{3}+a x+b$:

$$
\begin{aligned}
\lambda & =\frac{y_{q}-y_{p}}{x_{q}-x_{p}} \\
x_{r} & =\lambda^{2}-x_{p}-x_{q} \\
y_{r} & =\lambda\left(x_{p}-x_{r}\right)-y_{p}
\end{aligned}
$$

Point doubling

$$
\lambda=\frac{3 x_{p}^{2}+a}{2 y_{p}}
$$

EC point operations (Wikipedia)

Elliptic curve cryptography - repeated k (DSA)

ECDSA

- Public parameters (curve, generator)
- Private key (d)
- Public key $(Q=d \times G)$
- Secret nonce (k):
if \boldsymbol{k} is repeated for different signatures, one can solve for \boldsymbol{d}

$$
\begin{aligned}
& \text { Solve for } d \text { given two signatures }(r, s),\left(r, s^{\prime}\right) \text { : } \\
& \text { Compute } k \text { from } \\
& \quad s-s^{\prime}=k^{-1}\left(z-z^{\prime}\right) \Longrightarrow k=\frac{z-z^{\prime}}{s-z^{\prime}}(\bmod n) \\
& \text { Since } s=k^{-1}(z-r d), \\
& \text { then } d=\frac{s k-z}{r} .
\end{aligned}
$$

```
1. Calculate e= HASH(m).
2. Let z}\mathrm{ be the }\mp@subsup{L}{n}{}\mathrm{ leftmost bits of e, where }\mp@subsup{L}{n}{}\mathrm{ is the bit length of the group order n}\mathrm{ .
3. Select a cryptographically secure random integer k from [1,n-1]
4. Calculate the curve point (}\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})=k\timesG
5. Calculate }r=\mp@subsup{x}{1}{}\operatorname{mod}n\mathrm{ . If }r=0\mathrm{ , go back to step 3.
6. Calculate }s=\mp@subsup{k}{}{-1}(z+r\mp@subsup{d}{A}{})\operatorname{mod}n\mathrm{ . If }s=0\mathrm{ , go back to step 3.
7. The signature is the pair (r,s). (And (r,-s mod n) is also a valid signature.)
```


ECDSA signing (Wikipedia

```
1. Verify that r}\mathrm{ and s}\mathrm{ are integers in [1,n-1]. If not, the signature is invalid.
2. Calculate e= HASH(m).
3. Let z be the }\mp@subsup{L}{n}{}\mathrm{ leftmost bits of e.
4. Calculate }\mp@subsup{u}{1}{}=z\mp@subsup{s}{}{-1}\operatorname{mod}n\mathrm{ and }\mp@subsup{u}{2}{}=r\mp@subsup{s}{}{-1}\operatorname{mod}n\mathrm{ .
5. Calculate the curve point ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})=\mp@subsup{u}{1}{}\timesG+\mp@subsup{u}{2}{}\times\mp@subsup{Q}{A}{}\mathrm{ . If
    ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})=O\mathrm{ then the signature is invalid.
6. The signature is valid if r\equiv\mp@subsup{x}{1}{}}(\operatorname{mod}n)\mathrm{ , invalid otherwise.
```

ECDSA verification (Wikipedia)

$$
\begin{aligned}
& C=u_{1} \times G+u_{2} \times Q_{A} \\
& C=u_{1} \times G+u_{2} d_{A} \times G \\
& C=\left(u_{1}+u_{2} d_{A}\right) \times G \\
& C=\left(z s^{-1}+r d_{A} s^{-1}\right) \times G \\
& C=\left(z+r d_{A}\right) s^{-1} \times G \\
& C=\left(z+r d_{A}\right)\left(z+r d_{A}\right)^{-1}\left(k^{-1}\right)^{-1} \times G \\
& C=k \times G
\end{aligned}
$$

ECDSA correctness (Wikipedia)

Elliptic curve cryptography - Invalid curve attack

$$
\begin{aligned}
\mathcal{O}+\mathcal{O} & =\mathcal{O} \\
\mathcal{O}+P & =P
\end{aligned}
$$

- Adding points on $E(\mathbb{F} p)$ do not consider coefficient \boldsymbol{b}
- ECs over $\mathbb{F p}$ whose Weierstrass equation differs only in \boldsymbol{b} have the same addition laws
- Attacker selects an invalid curve E^{\prime} such that E^{\prime} contains a point \boldsymbol{R} of small order
- Victim computes $K=d R$
- Attacker solves the DLog to recover \boldsymbol{d} from \boldsymbol{K} since the point \boldsymbol{R} has low order

Point negation

$$
\begin{aligned}
& P+(-P)=\mathcal{O} \\
&(x, y)+(-(x, y))=\mathcal{O} \\
&(x, y)+(x,-y)=\mathcal{O} \\
&(x,-y)=-(x, y)
\end{aligned}
$$

Point addition

$$
\begin{aligned}
P+Q & =R \\
\left(x_{p}, y_{p}\right)+\left(x_{q}, y_{q}\right) & =\left(x_{r}, y_{r}\right)
\end{aligned}
$$

Assuming E, is given by $y^{2}=x^{3}+a x+b$:

$$
\lambda=\frac{y_{q}-y_{p}}{x_{q}-x_{p}}
$$

$$
x_{r}=\lambda^{2}-x_{p}-x_{q}
$$

$$
y_{r}=\lambda\left(x_{p}-x_{r}\right)-y_{p}
$$

Point doubling

$$
\lambda=\frac{3 x_{p}^{2}+a}{2 y_{p}}
$$

EC point operations (Wikipedia)

Elliptic curve cryptography - Easy DLog (Smart, MOV)

Smart's attack:

- Compute DLog in linear time
- Curves with trace of Frobenius equal to one
- I.e. when \#E = \boldsymbol{p} (\boldsymbol{p} is the order of the field)
- In Sage simply check if:

```
sage: E = EllipticCurve(GF(p), [a, b])
sage: E.order() == p
True
```


MOV attack:

- Bilinear pairing: function e that maps two points in $E(\mathbb{F} p)$ to an element in $\mathbb{F} \boldsymbol{p}^{k}, \boldsymbol{k}$ is the embedding degree of \boldsymbol{E}
- DLog of $r P$ - compute $u=e(P, Q), v=e(r P, Q)$ for any Q. From bilinearity, $v=e(P, Q)^{r}=u^{r} \Rightarrow$ DLog in $\mathbb{F} p^{k}$
- Usually, the embedding degree k is large, but for some curves it is small (supersingular curves $\mathbb{k} \leq 6$)
- Embedding degree is the smallest $\boldsymbol{k} \geq \mathbf{2}$ such that the order of the curve divides $\boldsymbol{p}^{\boldsymbol{k}} \mathbf{- 1}$
sage: $E=$ EllipticCurve(GF(p), $[a, b]$)
sage: E.is_supersingular() \# if true, $k \leq 6$, or just compute it: sage: $k=1$
sage: $o=$ E.order()
sage: $p=$ E.base().order()
sage: while not o.divides($p^{\wedge} k-1$):
sage: $k+=1$

Elliptic curve cryptography - exercises

Further topics－Lattice reduction

Lattice：

Subgroup of the additive group 居n（isomorphic to the additive group \mathbb{Z}^{n} ）and which spans the real vector space 逸．
I．e．，for a basis of 屈n，the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice．

$$
\Lambda=\left\{\sum_{i=1}^{n} a_{i} v_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

Lattice \wedge（Wikipedia）
Write a problem with a solution as a＂short＂lattice vector，and use lattice reduction
LLL — use rounded Gram－Schmidt coefficients（only integer linear combinations）
BKZ — generalizes LLL，solves SVP for lower dimension（parameter）blocks

Given an integer lattice basis as input，find a basis with short，nearly orthogonal vectors
Algorithms are included in Sage
Challenges－Subset sum，linear system with error，linear congruential generator，．．．

Lattice reduction in two dimensions（Wikipedia）

Further topics - Modern cryptography

- Zero-knowledge
- Secret sharing
- Threshold signatures
- E-voting
- Cryptocurrency
- Secure multiparty computation
- Homomorphic encryption
- Indistinguishability obfuscation
- Post-quantum cryptography (Lattice, Code, Multivariate, Hash, Isogeny based cryptography)
- Quantum cryptography (QKD, teleportation, Superdense coding, quantum money, ...)

Further topics - Relevant tools

- PyCryptodome - https://pypi.org/project/pycryptodome
- SageMath - https://sagemath.org
- CyberChef - https://gchq.github.io/CyberChef
- Cryptogram solver - https://quipqiup.com
- Vigenère breaker - https://github.com/hellman/xortool
- Mersenne Twister PRNG cracker - https://github.com/icemonster/symbolic mersenne cracker
- Hash length extension attacks - https://github.com/bwall/HashPump
- Factors database - http://factordb.com
- Factorization calculator - https://www.alpertron.com.ar
- Bivariate Coppersmith - https://github.com/ubuntor/coppersmith-algorithm
- Multivariate Coppersmith - https://github.com/defund/coppersmith
- RSACtfTool - https://github.com/Ganapati/RsaCtfTool

