BASIC TRAINING
ON CRYPTOGRAPHY FOR CTFs

16th October 2021
ENISA 2nd Bootcamp Team EU — Turin, Italy

Manuel Gouldo and Filipe Casal
(manuel.goulao@tecnico.ulisboa.pt)



ENISA 2nd Bootcamp Team EU — Turin, Italy

Introduction

Beginner to intermediate cryptography CTF challenges
Most common cryptosystems and hardness assumptions
Some typical attacks to each assumption/cryptosystem
~1h per topic, followed by a small break

Practical exercises with Python and SageMath

Brief overview of some other less predominant topics in CTFs

16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Contents

1. Basics 4. RSA

a. Encodings a. Malleability

b. Cryptography b. Padding

c. Attack models c. Overview of common attacks
2. Stream and block ciphers 5. Elliptic curve cryptography

a. Length extension a. Repeated k (DSA)

b. Meet-in-the-middle (Birthday paradox) b. Invalid curve attack

c. Modes of operation (ECB, CBC, GCM...) c. Curves with easy DLog (Smart, MOV)
3. Diffie-Hellman 6. Further topics

a. Man-in-the-middle a. Lattice reduction

b.  Quadratic residuosity b. Modern cryptography

c. Pohlig-Hellman c. Relevant tools

16-10-2021 Outline of most topics: https://en.wikipedia.org/wiki/Outline_of cryptography



https://en.wikipedia.org/wiki/Outline_of_cryptography

Basics — encodings

Encodings

ENISA 2nd Bootcamp Team EU — Turin, ltaly

>>> from Crypto.Util.number import bytes_to_long,long_to_bytes
>>> from base64 import b64encode
>>> pi = 3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067

_ >>> long_to_bytes(pi)
Raw byte S b'\x05\xbe\xca\xc0\xca/\x1ar\xe7\xb7\x80\x1c\x1c\xdaY\xc5>x\x0f \xd8\xe5}\xe9[ d\x9e\xad~b\xbdL ; \x9aE\xdb\xa137\xde\xefd\xch'
. . >>> hex(pi)
- Hexadecimal integer ' 0x5becac@ca2f1a72e7b7801c 1cda59c53e780d8e57de95b649eadTeb2bddc 309ad5dbatda3Tdeefach’
>>> b64encode(long_to_bytes(pi))
- Baseb4 b Bb7KwMovGnLnt4AcHNpZxT54D91felbzI6kfmk9TDuaRduhS; fe72TL"
B Encoding 11
Substitution ciphers
- - Reflector pvor Rotor Rotor
- Shift each character to another (Caesar cipher) D
- Swap each character according to some key (Vigenére cipher) I
/
. . . . I /
- Pseudo-random substitution (Enigma machine) i \
- One-time-pad (Secure but not practical...) -— (o)
‘ - —— oy
[A[elc[ofel elo[H] ] [«Jew] Plaintext: thequickbrownfoxjumpsoverthelazydog | |
mmmww ~©
ol TR s [T V[V WX Y] 2] Key: LIONLIONLIONLIONLIONLIONLIONLIONLIO |
[+ o] Ciphertext: EPSDFQQXMZCJIYNCKUCACDWIRCBVRWINLOWU H <« Right rotor
ROT13 llll - - advanced
u vy iti
[LRI¥]v]e] Vigenére (Wikipedia) one poston 4

16-10-2021 ROT13 (Wikipedia)

Enigma (Wikipedia)



Basics — cryptography

One-way functions (candidates)
- Hash functions
- Discrete logarithm
- Factoring

Symmetric-key cryptography
- Stream ciphers
- Block ciphers

ENISA 2nd Bootcamp Team EU — Turin, Italy

(f,t)=Gen (1"
f:D—R

Byte Sub

Shift Row

Mix Column

Add
Round
Key

AES round function (Wikipedia)

Public-key cryptography
- Key exchange
- Encryption scheme
- Signature scheme

And so much more...

Bob's 751A696(
Public Key 24D97009
Alice and Bob'
” shared secref
Alice's

Private Key

Alice's 751A696(

Public Key 24D97009

Alice and Bob'
shared secret

Bob's

Private Key

Bob Alice
Hello ‘,H Hello m 0
Alice! Bob!
Alice's Alice's
public key private key
Alice L Bob
Hello ello :
- Decrypt Verify
Alice! Alice's e Alice's
private key public key

16-10-2021

Key exchange (Wikipedia)

Public-key encryption (Wikipedia)

Digital signature (Wikipedia)



ENISA 2nd Bootcamp Team EU — Turin, Italy

Basics — attack models (for encryption schemes)

Ciphertext-only (COA)
- Access only to the ciphertext, no access to the plaintext.

Known-plaintext (KPA)
- Access to a number of pairs of plaintext and the corresponding ciphertext.

Chosen-ciphertext (CPA)
- Choose the plaintext to be encrypted, and receive the resulting ciphertext.

Chosen-plaintext (CCA)
- Choose arbitrary ciphertext, and have access to the plaintexts decrypted from it.

Adaptive chosen-ciphertext (CCA2)
- Choose arbitrary ciphertext, and see the resulting plaintext. May use previous pairs to choose the next.

Other cryptographic schemes have different models, but follow the same setup:
“How much access to this cryptosystem do | have?”

And often, this kind of reasoning leads us to the right track to solve a challenge. .
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Stream and block ciphers — intro . R
P SN

.’Elﬁ +.’E14+:E13 +.’E11 +1
HaSh fu nctions 16-bit Fibonacci LFSR, circuit and feedback
- Preimage resistance polynomial (Wikipedia)
Given h, hard to find m, with h = HASH(m)

- Second pre-image resistance Xy oy = (X -+ ) 00 18
Given my, hard to find m,, with HASH(m;) = HASH(m) " "
_ Collision resistance LCG recurrence (Wikipedia)
Hard to find my and m,, with HASH(m,) = HASH(m,)
Encwption Depryption PLAIE\TEXT K, KX
PRNGS . . : L0P|au]1:exé o | R::ahe]nettw | . & -
- Mersenne Twister — 2°°*’—1, 32-bit word length. (5] [s] [s] [5]
Recovering internal state requires 624 32-bit outputs. » |
- LFSR — Berlekamp-Massey gives LFSR of minimal size. @ B
- LCG — Lattice reduction attacks. ts:j ﬁj Lﬁﬂj
BIOCk Ciphers ': E ‘\P\H [TTT [TTT HH‘
- Feistel networks & &> ¢ :
- Substitution—permutation network ¢ ¢
‘ Rn(;phlertl_xrtH1 ‘ ‘ Lcl’”lairlltextR 0 ‘ CIPH;\ETEXT :
Feistel network (Wikipedia) Substitution—permutation network 7

16-10-2021 (Wikipedia)



ENISA 2nd Bootcamp Team EU — Turin, Italy

Stream and block ciphers — length extension

Use H(my) and the length of m; to calculate Hash(m; [ m;) for an ek e
attacker-controlled m,, without needing to know the content of m; Y '
M ge M ge M g Length
block 1| block 2 . block n padgitng

MD5, SHA-1 and SHA-2 are susceptible to this kind of attack \ x J J
(Merkle—Damgard construction with a bad finalization function) @*--* :2:';'“»

Reconstruct internal state from hash digest, then process the new data Merkle—Damgard construction (Wikipedia)

The attack targets such hashes: HASH(key | message)

oOriginal Data: count=10&lat=37.35lsuser_id=1&long=-119.827swaffle=eggo
oOriginal Signature: 6d5£807e23db210bc254a28be2d6759a0£5£5d99

Cont|nue hash]ng to get the haSh Of (key I message l padding l more) Desired New Data: count=10&lat=37.35lsuser_id=lslong=-119.827&waffle=eggok

waffle=liege

one can choose more without any knowledge of the key

New Data: count=10&lat=37.351l&user_id=l&long=-119.827&waffle=eggo\x80\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x02\x28&waffle=liege

New Signature: 0e4127 979317f£ff 8953aaa2

Length extension example (Wikipedia)

16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Stream and block ciphers — meet-in-the-middle :
Known plaintext attack, generic space—time tradeoff 10 mjs\t/jkf;::dﬁ-a?idd'e

Find keys by using both the range (ciphertext) and domain (plaintext)

Naive attack needs 2%k encryptions and O(1) space

MitM for key-size k uses only 2k* encryptions/decryptions and O(2k) memory

010 20 30 40 50 60 70 80 90 100
The attacker can compute ENCK'(P) for all values of k; and DECK?(C) for all possible , Number of people
rob. at least two people share birthday
values of k; (total of 2k" + 2k2 pperations) (Wikipedia)
good (77) s (b5) evil
If any of ENCK'(P) matches a result from DECk?(C), the pair of k; and k; is possibly the e 5] s
goOD (15) - ) (c4) evIL
correct key (can be checked with different plaintext-ciphertext pair) s00a (2 (o) e
priint ) s
Good (c9) > (50) Evil
GooD (99) (£2) EviL
C = ENC,, (ENCy, (P)) C = ENG, (ENCy, (P)) gl ol i
P = DECy, (DECy,(C)) ~ PEG%(9) = DEG, (ENG, [ENCL, (P)]) ek .
DECkz (C) = ENCk1 (P) cood (la)/(ZZ) EVI1
GOOD (27) * ' (a4) EVIL

Vulnerable system (Wikipedia) Collisions between two sets (Wikipedia) 9

16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Stream and block ciphers — modes of operation

ECB — identical plaintext blocks into identical ciphertext blocks...

CBC (padding oracle) — allows decrypting but also encrypting
- Guess last byte of last block, use oracle to check padding

ECB encryption example (Wikipedia)

Plaintext Plaintext Plaintext
B Guess the One before that' and so On T R = DK (CZ) @ Ci_l’ block cipher block cipher b\ockt!pher
- 256N vs. 256N bytes Cy=1V. Bl | S|
_ Need blOCk Ci-1 to retrieve Ci (C1 req Uires knOWing IV) CBC decryption (Wikipedia) Ciphertext . Ciphertext .prherrex!
Electronic Codebook (ECB) mode encryption
M ‘?I Plaintext Plaintext Plaintext
GCM (fO rbldden attack) [countero |—.-—-( Counter 1 }—.—-{ cawluerz | Initialization wdﬁﬁtﬂm EEIIEDj\IEEED mmiﬂm
. . OO —— ¥
- Operations are done in F;"* 2 ED ED ]| |«
- Nonce/IV is reused in CTR (stream cipher)... [renl~¢ =il oo oommms
. . [CCiphertext1 ] [_Ciphertext2 ] ) B )
- Recover the authentication key H (depends on K) CioherBlck Chaining CB) mode encrypten
T,=C,,*HE+L, *H+AES (4) R = BB e S S e
T=(C,*H+L)*H +AES(Jy)| [l2=Car W +L"H+AES(J) (AT}~ I e el e e
o = " @D Plaintext %a Plaintext Plaintext
T=C"H+LTH+AESW) | 1,.1,=(C,i-C,0 "1 mmmm o agmom
1st block of GCM + (L1 = Lz) *H CAmTes ] Counter (CTR) mode encryption
(BZDSJ16, presentation) SCM nonce reuse 10
16-10-2021 (BZDSJ16, presentation) GCM AEAD mode (Wikipedia) ECB, CBC, CTR modes (Wikipedia)



Stream and block ciphers — exercises

11



ENISA 2nd Bootcamp Team EU — Turin, Italy

Diffie-Hellman — intro

Non-secret values in blue, and secret values in red.
Key-exchange — the parties com pute shared (secret) key 1. Alice and Bob publicly agree to use a modulus p = 23 and base g=5
2. Alice chooses a secret integer a = 4, then sends Bob A= g mod p
o A=5mod 23 =4
3. Bob chooses a secret integer b = 3, then sends Alice B = g? mod p

from only public information

DLog — easy to compute g@ mod p, hard to recover a « B=5%mod 23 = 10
4. Alice computes s = B mod p
Here in a multiplicative group of integers mod p, but also for * s=10"mod 23 = 18

5. Bob computes s = A? mod p
e s=43mod 23 =18
6. Alice and Bob now share a secret (the number 18).

other finite cyclic groups where the DLog is hard (e.g. ECDH)

Key generation: private a; public (g2 mod
Vg P P (g p) Both Alice and Bob have arrived at the same values because under mod p,

b _ ab — qba —_ Ro
No authentication (man-in-the-middle attack) #7 mod gp = g mad =y~ med g = Bl zod p
More specifically,

How to choose p? (9" mod p)” mod p = (¢” mod p)* mod p

Example of DH for a very small p (Wikipedia)

12
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Diffie-Hellman — man-in-the-middle

DH does not guarantee authentication

. Alice Attacker Bob
Attacker impersonates each party,
and communicates with the other on their behalf ; A=g° >

a’ A =ga'
Attacker shares one key with each party > b
Attacker relays all traffic, B=gt
decrypting and re-encrypting with the respective keys y i ga"
g2 |« B’ =g b
Attacker can now read EVERYTHING
gab' and ga’b
Alice and Bob are unaware of the Attacker , _
Man-in-the-middle attack to DH

13
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Diffie-Hellman — quadratic residuosity

Euler’s criterion/Legendre symbol —
determine if an integer is a quadratic residue mod p (Lt i e o)

—1 (mod p) if there is no such integer.

Il

QR means congruent to a perfect square (g = x? mod p) (%) a3 uod g

Euler's criterion and Legendre symbol (Wikipedia)

Legendre symbol of g@reveals the parity, breaks CPA

Choose p with big subgroup of quadratic residues,

Fao=2y ¢ " =g@E-1)_ge-Dy_ge-D"_19¥—-1 modp

p=2q+1, qgprime

Parity leaking from Legendre symbol

g is then chosen to generate the order g subgroup
(usually g = 2)

14
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Diffie-Hellman — Pohlig-Hellman

y=g" (mod p)
olp)=p—1=p1 X Xpg

Group order should have a large prime factor to prevent / Pohlig-Hellman \
use of the Pohlig—Hellman algorithm z  (mod p;) z  (mod py)

Choosing p = 2q + 1 makes the order of the group only \CRT/

divisible by 2 and g z  (mod ¢(p))

Pohlig-Hellman schematic (Wikipedia)

Compute the DLog modulo each prime in the group order,
use the CRT to Combine them to the DLOg in the fu” group Input. A cyclic group G of order n with generator g, anelementheG’,andaprimefamorizalionn:H:ﬁlpf’.

Output. The unique integer z € {0, ..., n — 1} such that g* = h.
1.Foreachi € {1,...,7},do:

1. Compute g; := g"/Pri . By Lagrange's theorem, this element has order pf' .

SageMath — sage.groups.generic.discrete_log 2 Conpate s o= N4, By oontruckon, € ()
3. Using the algorithm above in the group (g; ), compute z; € {0, ..., pi" — 1} suchthat gi' = h;.
2. Solve the simultaneous congruence
z=w (mod pj) Vie{l,..., r}.
The Chinese remainder theorem guarantees there exists a unique solution z € {0,. .., n—1}.
3. Return .

Pohlig-Hellman pseudocode (Wikipedia)

15
16-10-2021



Diffie-Hellman — exercises

16



ENISA 2nd Bootcamp Team EU — Turin, Italy

RSA — intro

m® =c (mod n)

Encryption and signature scheme

Hard to factor product of two large prime numbers Encryption of RSA

Finding the e-th roots of an arbitrary number, mod n

d — d _
Given the private exponent d one can efficiently factor n cC = (me =m (mod n)

Given factorization of n, one can obtain a private key Decryption of RSA

Key generation:

me? = mtheM) — mmfM) = (1) =m  (mod n)

- Pick 2 random primes, pandq,n=p-q

Correctness of RSA

- Compute Euler totient function ¢(n) = (p-1) -(g-1), may also
use Carmichael's totient function A(n) = Icm(A(p),A(q))

- Choose 1<e<¢(n)andgcd(e, ¢(n)) =1 (usually 3 or 65537) h = hash(m);
(h®)? = h*d = h% = (h?)* =h (mod n)

- d-e=1(mod ¢(n))

. . Signing with RSA
- Public (n, e); private d
17
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

RSA — malleability

m' = mr® (mod N)

C1 . Cz = m1e . m2e= (m1 ° mz)e (mOd N) SIE(m/)d (modN)

d, ed d 1 d

s=s-r = m)r ! =m¥rr =mirr !l =m?  (mod N)

Blind signature — Alice obtains Bob’s signature

RSA blind signing

without Bob learning anything about the message

Decrypting a message by blind signing another

. Intercept ¢ = m°.

. Send 2¢c to the parity oracle. 2°c deciphers to 2m.

message: never reuse key for encryption and signing

1
2
3. If 2m is even, then m € [0,n/2),
4. Now iterate sending (2%)®m, use bisection to find m in logarithmic steps.
5

Last bit oracle (CCA) — decrypt an RSA ciphertext by
having an oracle giving the parity of the plaintext

. Next step — send 4¢c to the parity oracle, if it returns even, then
m € [0,n/4) U [n/2,3n/4).

6. Next step — send 8°c to the parity oracle, if it returns even, then
m € [0,n/8) U [n/4,3n/8) U [n/2,5n/8) U [3n/4,Tn/8).

RSA last bit oracle

18
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy
RSA — padding

RSA without padding (textbook-RSA) is not CPA secure (deterministic)
Malleability and forgeability
Compute e-th root of a small message (me < N, or too few laps)

H3 ' t attack
astad's broadcast attac ¢ = c- s¢

Use padding oracle to find a valid s, for many s

Leak of Jacobi symbol
Padding must be random (Coppersmith — linear pad, short pad, ...)

Padding oracle attack — Bleichenbacher Attacks (CCA)

00 | 02 | padding string | 00 data block

PKCS #1 block format for encryption (Bleichenbacher)

19
16-10-2021



RSA — overview of common attacks

Low private exponent (Wiener)

Uses the continued fraction method to find d when d is small
(d<(¥%)N'*)

Low public exponent (Coppersmith)

Hastad's broadcast — recover message encrypted to 2e parties

Franklin-Reiter related-message — recover two (known
difference) related messages, encrypted for the same N

Coppersmith’s short-pad — recover a message sent twice with
different (short) pad

Bad key generation

ROCA (Coppersmith + Pohlig-Hellman):
M=2-3-5-7-11-13... and p=k-M+ (655378 mod M)

Partial key exposure attack

16-10-2021

ENISA 2nd Bootcamp Team EU — Turin, Italy

Fz)=z"4+ap, 12" ' + ...+ a1z +ag

Find 2 such that F'(zg) =0 (mod M) for || < MY/™

Coppersmith method
(sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots)

Scheme Secret information Bits known Technique Section

RSA p > 50% most significant f Coppersmith’s method 4.2.2
bits.

RSA p > 50% least significant [ . Coppersmith’s method 4.2.3
bits

RSA p middle bits C ] scuciveriate Coppersmith 14.2.4

RSA p multiple chunks of bits [N W vusvesiate Coppersmith 4.2.4

RSA >toglog N chunksorp  IIIIATAMIININ Open problem

RSA dmod (p— 1) MSBs [ I Ry R ——

RSA dmod (p—1) LSBs [ . Coppersmith’s method ~ §4.2.

RSA dmod (p— 1) middle bits || | Multivariate Coppersmith  §4.2.

RSA dmod (p— 1) chunks of bits [ HE W vusvesiate Coppersmith  §4.2.

RSA d most significant bits == Not possible

RSA 4> 2% loast significant | Bl Copporomith's method
bits

RSA > 50% random bits of pand  [[[ [N Branch and prune f1.3.1]
q

RSA > 50% of bits of d mod (p— lﬂ]ﬁmmm;lﬂllﬂm Branch and prune 13.2
i ) LTI

(EC)DSA MSBs of signaturenonces [l | Hidden Number Problem 5.2]

(EC)DSA LSBs of signature nonces I:- Hidden Number Problem 5]

(EC)DSA Middle bits of signature [~ g | Hidden Number Problem =
nonces ‘ =

(EC)DSA Chunks of bits of signature | | [ ] Extended HNP 2.4]
nonces I

EC(DSA)  Many bits of nonce (R Scales poorly

Diffie-Hellman Most _significant bits of [ | Hidden Number Problem 2]
shared secret g® ®

Diffie-Hellman ~ Secret exponent a B | Pollaxd kangaroo method l6.3]

Diffie-Hellman Chunks of bits of secret ex- ’—W Open problem —
ponent

Key recovery methods for public-key cryptosystems

(Gabrielle De Micheli, Nadia Heninger)

20




RSA — exercises

Compute MSBs of d:

ed =1+ ko

d/ — EN-+1

e

Bruteforce k < e.

Factoring given d:
1. Compute e - d

~ ed— _ ed—1

3. p—1)(¢g—1)=¢ = p+tg=N+1-¢

4. Solve 22+ (p+q)x+ N =0

21



ENISA 2nd Bootcamp Team EU — Turin, Italy

. . . Point at infinity
Elliptic curve cryptography — intro 00— 0
O+P=P
L. o . Point negation
- Elliptic curves over finite fields £{Fp) Pt (-P)=0
- Set of points satisfying y? = z* + ax + b.(Weierstrass equation) (m(j)y;rf(f_y;; zg
with the group operation, and point at infinity as identity T )= e
- Must be non-singular A # 0, A = —16(4a® + 27b%) FpEcliAn
P+Q=R
- Best attacks (in “well-chosen” curves) are generic attacks (@5, Yp) + (24, Yq) = (2r, 1)
Assuming E, is given by y2 = x> + ax + b:

- Point multiplication can be done using double-and-add Yo — Yp

A=
Lg — Tp

1 ﬁg/” \CJ el FJ e
\_

P

Point doublin
Q K/ 9
Q\—//\ /\ - 3:612, +a

2yp

P+Q+R=0 P+Q+Q=0 P+Q+0=0 P+P+0=0
" e ¢ EC point operations (Wikipedia)

EC group law (Wikipedia 29
16-10-2021 group law (Wikipedia)



ENISA 2nd Bootcamp Team EU — Turin, Italy

Elliptic curve cryptography — repeated k (DSA)

1. Calculate e = HASH(m).
2. Let z be the L,, leftmost bits of e, where L,, is the bit length of the group order n.

EC DSA 3. Select a cryptographically secure random integer k from [1, n-— 1}.
4. Calculate the curve point (z1,y1) = k X G.
- Pubhc pa rameters (CU rve’ generator) 5. Calculate » = 1 mod n. If » = 0, go back to step 3.
6. Calculate s = k™! (2 + rd4) mod n. If s = 0, go back to step 3.
- Pr|Vate key (d) 7. The signature is the pair (7‘, s). (And (r, —s mod n) is also a valid signature.)
- Public key (Q = de) ECDSA signing (Wikipedia)

1. Verify that  and s are integers in [1,n — 1]. If not, the signature is invalid.

- Secret nonce (k):
2. Calculate e = HASH(m).
if k is repeated for different signatures, one can solve for d 3. Let z be the L, leftmost bits of .

4. Calculate u; = zs~! mod nanduy = rs~! mod n.

- - : 5. Calculate the curve point (z1,y1) = u1 X G +ug X Q4. If
Solve for d given two signatures (r,s), (r,s'): o, ) = O e Hreislgrisiices 5 IRBIR

6. The signature is valid if r = z;  (mod n), invalid otherwise.

Compute k from
ECDSA verification (Wikipedia)

/
s—8 =k z-2) = k= Z_Z, (mod n) C=wm xGtuxQs
S—2Z C=u; X G+usdy xG
C=(u1 +udy) xG
C= (25" +rdss ) x G
C=(2+rdy)st xG
C=(z+rda)(z+rds) (k) x G

C=kxG
Repeated k attack
23

Since s = k~1(z — rd),

then d = k=2
<

16-10-2021 ECDSA correctness (Wikipedia)



ENISA 2nd Bootcamp Team EU — Turin, Italy

Point at infinity

Elliptic curve cryptography — Invalid curve attack O
O+P=P
Point negation
- Adding points on £{Fp) do not consider coefficient b P+(-P)=0
z, —(z, =0
- ECs over Fp whose Weierstrass equation differs only ( (f,)yJ)rJ(r (i,—y;; -0
in b have the same addition laws (& y) = ~=9)

Point addition
- Attacker selects an invalid curve £’ such that £’ B g =
) . (Zp, Yp) + (Zg,Yq) = (Tr, yr)
contains a point R of small order Assiriing E e ghonByst =2 Lot
. .. P
- Victim computes K =dR Tq — T,
z, =N —z, —a,
- Attacker solves the DLog to recover d from K Yyr = Azp —27) — 4
. . Point doublin
since the point R has low order =
_ 3zpta
.

EC point operations (Wikipedia)

24
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Elliptic curve cryptography — Easy DLog (Smart, MOV)

Smart’s attack:

16-10-2021

Compute DLog in linear time

Curves with trace of Frobenius equal to one
l.e. when #E = p (p is the order of the field)
In Sage simply check if:

sage: E = EllipticCurve(GF(p), [a, b])
sage: E.order() ==
True

MOV attack:

Bilinear pairing: function e that maps two points in Z{Fp)
to an element in Fpk, k is the embedding degree of £

DLog of 7P — compute w=e(P,Q), v=e(rP,Q) for any Q.
From bilinearity, v=e(P,0)'=u" => DLog in Fpk

Usually, the embedding degree k is large, but for some
curves it is small (supersingular curves £<6)

Embedding degree is the smallest £22 such that the order
of the curve divides pk=1

sage: E = EllipticCurve(GF(p), [a, b])

sage: E.is_supersingular() # if true, k<6, or just compute it:
sage: k=1

sage: o = E.order()

sage: p = E.base().order()

sage: while not o.divides(p”k-1): o5
sage: k+=1



Elliptic curve cryptography — exercises

26



ENISA 2nd Bootcamp Team EU — Turin, Italy

Further topics — Lattice reduction

Lattice:
Subgroup of the additive group [@ (isomorphic to the additive group Z") and which .
spans the real vector space [?". A= {Zai”i d; '€ Z}
l.e., for a basis of [?7, the subgroup of all linear combinations with integer coefficients i=1
of the basis vectors forms a lattice. Lattice A (Wikipedia)

Write a problem with a solution as a “short” lattice vector, and use lattice reduction

LLL — use rounded Gram-Schmidt coefficients (only integer linear combinations)
BKZ — generalizes LLL, solves SVP for lower dimension (parameter) blocks

Given an integer lattice basis as input, find a basis with short, nearly orthogonal vectors ) 5

Algorithms are included in Sage

Challenges — Subset sum, linear system with error, linear congruential generator, ...

Lattice reduction in two dimensions (Wikipedia)

27
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy
Further topics — Modern cryptography

- Zero-knowledge

- Secret sharing

- Threshold signatures

- E-voting

- Cryptocurrency

- Secure multiparty computation

- Homomorphic encryption

- Indistinguishability obfuscation

- Post-quantum cryptography (Lattice, Code, Multivariate, Hash, Isogeny based cryptography)

- Quantum cryptography (QKD, teleportation, Superdense coding, quantum money, ...)

28
16-10-2021



ENISA 2nd Bootcamp Team EU — Turin, Italy

Further topics — Relevant tools

- PyCryptodome — https://pypi.org/project/pycryptodome

- SageMath — https://sagemath.org

- CyberChef — https://gchg.github.io/CyberChef

- Cryptogram solver — https://quipgiup.com

- Vigenére breaker — https://github.com/hellman/xortool

- Mersenne Twister PRNG cracker — https://github.com/icemonster/symbolic_mersenne_cracker

- Hash length extension attacks — https://github.com/bwall/HashPump

- Factors database — http://factordb.com

- Factorization calculator — https://www.alpertron.com.ar

- Bivariate Coppersmith — https://github.com/ubuntor/coppersmith-algorithm

- Multivariate Coppersmith — https://github.com/defund/coppersmith

- RSACtfTool — https://github.com/Ganapati/RsaCtfTool

29
16-10-2021


https://pypi.org/project/pycryptodome/
https://sagemath.org
https://gchq.github.io/CyberChef/
https://quipqiup.com/
https://github.com/hellman/xortool
https://github.com/icemonster/symbolic_mersenne_cracker
https://github.com/bwall/HashPump
http://factordb.com/
https://www.alpertron.com.ar/
https://github.com/ubuntor/coppersmith-algorithm
https://github.com/defund/coppersmith/
https://github.com/Ganapati/RsaCtfTool

