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Introduction

Beginner to intermediate cryptography CTF challenges
Most common cryptosystems and hardness assumptions
Some typical attacks to each assumption/cryptosystem
~1h per topic, followed by a small break

Practical exercises with Python and SageMath

Brief overview of some other less predominant topics in CTFs
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Basics — encodings

Encodings

ENISA 2nd Bootcamp Team EU — Turin, ltaly

>>> from Crypto.Util.number import bytes_to_long,long_to_bytes
>>> from base64 import b64encode
>>> pi = 3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067

_ >>> long_to_bytes(pi)
Raw byte S b'\x05\xbe\xca\xc0\xca/\x1ar\xe7\xb7\x80\x1c\x1c\xdaY\xc5>x\x0f \xd8\xe5}\xe9[ d\x9e\xad~b\xbdL ; \x9aE\xdb\xa137\xde\xefd\xch'
. . >>> hex(pi)
- Hexadecimal integer ' 0x5becac@ca2f1a72e7b7801c 1cda59c53e780d8e57de95b649eadTeb2bddc 309ad5dbatda3Tdeefach’
>>> b64encode(long_to_bytes(pi))
- Baseb4 b Bb7KwMovGnLnt4AcHNpZxT54D91felbzI6kfmk9TDuaRduhS; fe72TL"
B Encoding 11
Substitution ciphers
- - Reflector pvor Rotor Rotor
- Shift each character to another (Caesar cipher) D
- Swap each character according to some key (Vigenére cipher) I
/
. . . . I /
- Pseudo-random substitution (Enigma machine) i \
- One-time-pad (Secure but not practical...) -— (o)
‘ - —— oy
[A[elc[ofel elo[H] ] [«Jew] Plaintext: thequickbrownfoxjumpsoverthelazydog | |
mmmww ~©
ol TR s [T V[V WX Y] 2] Key: LIONLIONLIONLIONLIONLIONLIONLIONLIO |
[+ o] Ciphertext: EPSDFQQXMZCJIYNCKUCACDWIRCBVRWINLOWU H <« Right rotor
ROT13 llll - - advanced
u vy iti
[LRI¥]v]e] Vigenére (Wikipedia) one poston 4

16-10-2021 ROT13 (Wikipedia)

Enigma (Wikipedia)



Basics — cryptography

One-way functions (candidates)
- Hash functions
- Discrete logarithm
- Factoring

Symmetric-key cryptography
- Stream ciphers
- Block ciphers
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(f,t)=Gen (1"
f:D—R

Byte Sub

Shift Row

Mix Column

Add
Round
Key

AES round function (Wikipedia)

Public-key cryptography
- Key exchange
- Encryption scheme
- Signature scheme

And so much more...

Bob's 751A696(
Public Key 24D97009
Alice and Bob'
” shared secref
Alice's

Private Key

Alice's 751A696(

Public Key 24D97009

Alice and Bob'
shared secret

Bob's

Private Key

Bob Alice
Hello ‘,H Hello m 0
Alice! Bob!
Alice's Alice's
public key private key
Alice L Bob
Hello ello :
- Decrypt Verify
Alice! Alice's e Alice's
private key public key

16-10-2021

Key exchange (Wikipedia)

Public-key encryption (Wikipedia)

Digital signature (Wikipedia)
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Basics — attack models (for encryption schemes)

Ciphertext-only (COA)
- Access only to the ciphertext, no access to the plaintext.

Known-plaintext (KPA)
- Access to a number of pairs of plaintext and the corresponding ciphertext.

Chosen-ciphertext (CPA)
- Choose the plaintext to be encrypted, and receive the resulting ciphertext.

Chosen-plaintext (CCA)
- Choose arbitrary ciphertext, and have access to the plaintexts decrypted from it.

Adaptive chosen-ciphertext (CCA2)
- Choose arbitrary ciphertext, and see the resulting plaintext. May use previous pairs to choose the next.

Other cryptographic schemes have different models, but follow the same setup:
“How much access to this cryptosystem do | have?”

And often, this kind of reasoning leads us to the right track to solve a challenge. .
16-10-2021
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Stream and block ciphers — intro . R
P SN

.’Elﬁ +.’E14+:E13 +.’E11 +1
HaSh fu nctions 16-bit Fibonacci LFSR, circuit and feedback
- Preimage resistance polynomial (Wikipedia)
Given h, hard to find m, with h = HASH(m)

- Second pre-image resistance Xy oy = (X -+ ) 00 18
Given my, hard to find m,, with HASH(m;) = HASH(m) " "
_ Collision resistance LCG recurrence (Wikipedia)
Hard to find my and m,, with HASH(m,) = HASH(m,)
Encwption Depryption PLAIE\TEXT K, KX
PRNGS . . : L0P|au]1:exé o | R::ahe]nettw | . & -
- Mersenne Twister — 2°°*’—1, 32-bit word length. (5] [s] [s] [5]
Recovering internal state requires 624 32-bit outputs. » |
- LFSR — Berlekamp-Massey gives LFSR of minimal size. @ B
- LCG — Lattice reduction attacks. ts:j ﬁj Lﬁﬂj
BIOCk Ciphers ': E ‘\P\H [TTT [TTT HH‘
- Feistel networks & &> ¢ :
- Substitution—permutation network ¢ ¢
‘ Rn(;phlertl_xrtH1 ‘ ‘ Lcl’”lairlltextR 0 ‘ CIPH;\ETEXT :
Feistel network (Wikipedia) Substitution—permutation network 7

16-10-2021 (Wikipedia)
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Stream and block ciphers — length extension

Use H(my) and the length of m; to calculate Hash(m; [ m;) for an ek e
attacker-controlled m,, without needing to know the content of m; Y '
M ge M ge M g Length
block 1| block 2 . block n padgitng

MD5, SHA-1 and SHA-2 are susceptible to this kind of attack \ x J J
(Merkle—Damgard construction with a bad finalization function) @*--* :2:';'“»

Reconstruct internal state from hash digest, then process the new data Merkle—Damgard construction (Wikipedia)

The attack targets such hashes: HASH(key | message)

oOriginal Data: count=10&lat=37.35lsuser_id=1&long=-119.827swaffle=eggo
oOriginal Signature: 6d5£807e23db210bc254a28be2d6759a0£5£5d99

Cont|nue hash]ng to get the haSh Of (key I message l padding l more) Desired New Data: count=10&lat=37.35lsuser_id=lslong=-119.827&waffle=eggok

waffle=liege

one can choose more without any knowledge of the key

New Data: count=10&lat=37.351l&user_id=l&long=-119.827&waffle=eggo\x80\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x02\x28&waffle=liege

New Signature: 0e4127 979317f£ff 8953aaa2

Length extension example (Wikipedia)

16-10-2021
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Stream and block ciphers — meet-in-the-middle :
Known plaintext attack, generic space—time tradeoff 10 mjs\t/jkf;::dﬁ-a?idd'e

Find keys by using both the range (ciphertext) and domain (plaintext)

Naive attack needs 2%k encryptions and O(1) space

MitM for key-size k uses only 2k* encryptions/decryptions and O(2k) memory

010 20 30 40 50 60 70 80 90 100
The attacker can compute ENCK'(P) for all values of k; and DECK?(C) for all possible , Number of people
rob. at least two people share birthday
values of k; (total of 2k" + 2k2 pperations) (Wikipedia)
good (77) s (b5) evil
If any of ENCK'(P) matches a result from DECk?(C), the pair of k; and k; is possibly the e 5] s
goOD (15) - ) (c4) evIL
correct key (can be checked with different plaintext-ciphertext pair) s00a (2 (o) e
priint ) s
Good (c9) > (50) Evil
GooD (99) (£2) EviL
C = ENC,, (ENCy, (P)) C = ENG, (ENCy, (P)) gl ol i
P = DECy, (DECy,(C)) ~ PEG%(9) = DEG, (ENG, [ENCL, (P)]) ek .
DECkz (C) = ENCk1 (P) cood (la)/(ZZ) EVI1
GOOD (27) * ' (a4) EVIL

Vulnerable system (Wikipedia) Collisions between two sets (Wikipedia) 9

16-10-2021
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Stream and block ciphers — modes of operation

ECB — identical plaintext blocks into identical ciphertext blocks...

CBC (padding oracle) — allows decrypting but also encrypting
- Guess last byte of last block, use oracle to check padding

ECB encryption example (Wikipedia)

Plaintext Plaintext Plaintext
B Guess the One before that' and so On T R = DK (CZ) @ Ci_l’ block cipher block cipher b\ockt!pher
- 256N vs. 256N bytes Cy=1V. Bl | S|
_ Need blOCk Ci-1 to retrieve Ci (C1 req Uires knOWing IV) CBC decryption (Wikipedia) Ciphertext . Ciphertext .prherrex!
Electronic Codebook (ECB) mode encryption
M ‘?I Plaintext Plaintext Plaintext
GCM (fO rbldden attack) [countero |—.-—-( Counter 1 }—.—-{ cawluerz | Initialization wdﬁﬁtﬂm EEIIEDj\IEEED mmiﬂm
. . OO —— ¥
- Operations are done in F;"* 2 ED ED ]| |«
- Nonce/IV is reused in CTR (stream cipher)... [renl~¢ =il oo oommms
. . [CCiphertext1 ] [_Ciphertext2 ] ) B )
- Recover the authentication key H (depends on K) CioherBlck Chaining CB) mode encrypten
T,=C,,*HE+L, *H+AES (4) R = BB e S S e
T=(C,*H+L)*H +AES(Jy)| [l2=Car W +L"H+AES(J) (AT}~ I e el e e
o = " @D Plaintext %a Plaintext Plaintext
T=C"H+LTH+AESW) | 1,.1,=(C,i-C,0 "1 mmmm o agmom
1st block of GCM + (L1 = Lz) *H CAmTes ] Counter (CTR) mode encryption
(BZDSJ16, presentation) SCM nonce reuse 10
16-10-2021 (BZDSJ16, presentation) GCM AEAD mode (Wikipedia) ECB, CBC, CTR modes (Wikipedia)



Stream and block ciphers — exercises
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Diffie-Hellman — intro

Non-secret values in blue, and secret values in red.
Key-exchange — the parties com pute shared (secret) key 1. Alice and Bob publicly agree to use a modulus p = 23 and base g=5
2. Alice chooses a secret integer a = 4, then sends Bob A= g mod p
o A=5mod 23 =4
3. Bob chooses a secret integer b = 3, then sends Alice B = g? mod p

from only public information

DLog — easy to compute g@ mod p, hard to recover a « B=5%mod 23 = 10
4. Alice computes s = B mod p
Here in a multiplicative group of integers mod p, but also for * s=10"mod 23 = 18

5. Bob computes s = A? mod p
e s=43mod 23 =18
6. Alice and Bob now share a secret (the number 18).

other finite cyclic groups where the DLog is hard (e.g. ECDH)

Key generation: private a; public (g2 mod
Vg P P (g p) Both Alice and Bob have arrived at the same values because under mod p,

b _ ab — qba —_ Ro
No authentication (man-in-the-middle attack) #7 mod gp = g mad =y~ med g = Bl zod p
More specifically,

How to choose p? (9" mod p)” mod p = (¢” mod p)* mod p

Example of DH for a very small p (Wikipedia)

12
16-10-2021
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Diffie-Hellman — man-in-the-middle

DH does not guarantee authentication

. Alice Attacker Bob
Attacker impersonates each party,
and communicates with the other on their behalf ; A=g° >

a’ A =ga'
Attacker shares one key with each party > b
Attacker relays all traffic, B=gt
decrypting and re-encrypting with the respective keys y i ga"
g2 |« B’ =g b
Attacker can now read EVERYTHING
gab' and ga’b
Alice and Bob are unaware of the Attacker , _
Man-in-the-middle attack to DH

13
16-10-2021
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Diffie-Hellman — quadratic residuosity

Euler’s criterion/Legendre symbol —
determine if an integer is a quadratic residue mod p (Lt i e o)

—1 (mod p) if there is no such integer.

Il

QR means congruent to a perfect square (g = x? mod p) (%) a3 uod g

Euler's criterion and Legendre symbol (Wikipedia)

Legendre symbol of g@reveals the parity, breaks CPA

Choose p with big subgroup of quadratic residues,

Fao=2y ¢ " =g@E-1)_ge-Dy_ge-D"_19¥—-1 modp

p=2q+1, qgprime

Parity leaking from Legendre symbol

g is then chosen to generate the order g subgroup
(usually g = 2)

14
16-10-2021
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Diffie-Hellman — Pohlig-Hellman

y=g" (mod p)
olp)=p—1=p1 X Xpg

Group order should have a large prime factor to prevent / Pohlig-Hellman \
use of the Pohlig—Hellman algorithm z  (mod p;) z  (mod py)

Choosing p = 2q + 1 makes the order of the group only \CRT/

divisible by 2 and g z  (mod ¢(p))

Pohlig-Hellman schematic (Wikipedia)

Compute the DLog modulo each prime in the group order,
use the CRT to Combine them to the DLOg in the fu” group Input. A cyclic group G of order n with generator g, anelementheG’,andaprimefamorizalionn:H:ﬁlpf’.

Output. The unique integer z € {0, ..., n — 1} such that g* = h.
1.Foreachi € {1,...,7},do:

1. Compute g; := g"/Pri . By Lagrange's theorem, this element has order pf' .

SageMath — sage.groups.generic.discrete_log 2 Conpate s o= N4, By oontruckon, € ()
3. Using the algorithm above in the group (g; ), compute z; € {0, ..., pi" — 1} suchthat gi' = h;.
2. Solve the simultaneous congruence
z=w (mod pj) Vie{l,..., r}.
The Chinese remainder theorem guarantees there exists a unique solution z € {0,. .., n—1}.
3. Return .

Pohlig-Hellman pseudocode (Wikipedia)

15
16-10-2021



Diffie-Hellman — exercises
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RSA — intro

m® =c (mod n)

Encryption and signature scheme

Hard to factor product of two large prime numbers Encryption of RSA

Finding the e-th roots of an arbitrary number, mod n

d — d _
Given the private exponent d one can efficiently factor n cC = (me =m (mod n)

Given factorization of n, one can obtain a private key Decryption of RSA

Key generation:

me? = mtheM) — mmfM) = (1) =m  (mod n)

- Pick 2 random primes, pandq,n=p-q

Correctness of RSA

- Compute Euler totient function ¢(n) = (p-1) -(g-1), may also
use Carmichael's totient function A(n) = Icm(A(p),A(q))

- Choose 1<e<¢(n)andgcd(e, ¢(n)) =1 (usually 3 or 65537) h = hash(m);
(h®)? = h*d = h% = (h?)* =h (mod n)

- d-e=1(mod ¢(n))

. . Signing with RSA
- Public (n, e); private d
17
16-10-2021
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RSA — malleability

m' = mr® (mod N)

C1 . Cz = m1e . m2e= (m1 ° mz)e (mOd N) SIE(m/)d (modN)

d, ed d 1 d

s=s-r = m)r ! =m¥rr =mirr !l =m?  (mod N)

Blind signature — Alice obtains Bob’s signature

RSA blind signing

without Bob learning anything about the message

Decrypting a message by blind signing another

. Intercept ¢ = m°.

. Send 2¢c to the parity oracle. 2°c deciphers to 2m.

message: never reuse key for encryption and signing

1
2
3. If 2m is even, then m € [0,n/2),
4. Now iterate sending (2%)®m, use bisection to find m in logarithmic steps.
5

Last bit oracle (CCA) — decrypt an RSA ciphertext by
having an oracle giving the parity of the plaintext

. Next step — send 4¢c to the parity oracle, if it returns even, then
m € [0,n/4) U [n/2,3n/4).

6. Next step — send 8°c to the parity oracle, if it returns even, then
m € [0,n/8) U [n/4,3n/8) U [n/2,5n/8) U [3n/4,Tn/8).

RSA last bit oracle

18
16-10-2021
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RSA — padding

RSA without padding (textbook-RSA) is not CPA secure (deterministic)
Malleability and forgeability
Compute e-th root of a small message (me < N, or too few laps)

H3 ' t attack
astad's broadcast attac ¢ = c- s¢

Use padding oracle to find a valid s, for many s

Leak of Jacobi symbol
Padding must be random (Coppersmith — linear pad, short pad, ...)

Padding oracle attack — Bleichenbacher Attacks (CCA)

00 | 02 | padding string | 00 data block

PKCS #1 block format for encryption (Bleichenbacher)

19
16-10-2021



RSA — overview of common attacks

Low private exponent (Wiener)

Uses the continued fraction method to find d when d is small
(d<(¥%)N'*)

Low public exponent (Coppersmith)

Hastad's broadcast — recover message encrypted to 2e parties

Franklin-Reiter related-message — recover two (known
difference) related messages, encrypted for the same N

Coppersmith’s short-pad — recover a message sent twice with
different (short) pad

Bad key generation

ROCA (Coppersmith + Pohlig-Hellman):
M=2-3-5-7-11-13... and p=k-M+ (655378 mod M)

Partial key exposure attack

16-10-2021
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Fz)=z"4+ap, 12" ' + ...+ a1z +ag

Find 2 such that F'(zg) =0 (mod M) for || < MY/™

Coppersmith method
(sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots)

Scheme Secret information Bits known Technique Section

RSA p > 50% most significant f Coppersmith’s method 4.2.2
bits.

RSA p > 50% least significant [ . Coppersmith’s method 4.2.3
bits

RSA p middle bits C ] scuciveriate Coppersmith 14.2.4

RSA p multiple chunks of bits [N W vusvesiate Coppersmith 4.2.4

RSA >toglog N chunksorp  IIIIATAMIININ Open problem

RSA dmod (p— 1) MSBs [ I Ry R ——

RSA dmod (p—1) LSBs [ . Coppersmith’s method ~ §4.2.

RSA dmod (p— 1) middle bits || | Multivariate Coppersmith  §4.2.

RSA dmod (p— 1) chunks of bits [ HE W vusvesiate Coppersmith  §4.2.

RSA d most significant bits == Not possible

RSA 4> 2% loast significant | Bl Copporomith's method
bits

RSA > 50% random bits of pand  [[[ [N Branch and prune f1.3.1]
q

RSA > 50% of bits of d mod (p— lﬂ]ﬁmmm;lﬂllﬂm Branch and prune 13.2
i ) LTI

(EC)DSA MSBs of signaturenonces [l | Hidden Number Problem 5.2]

(EC)DSA LSBs of signature nonces I:- Hidden Number Problem 5]

(EC)DSA Middle bits of signature [~ g | Hidden Number Problem =
nonces ‘ =

(EC)DSA Chunks of bits of signature | | [ ] Extended HNP 2.4]
nonces I

EC(DSA)  Many bits of nonce (R Scales poorly

Diffie-Hellman Most _significant bits of [ | Hidden Number Problem 2]
shared secret g® ®

Diffie-Hellman ~ Secret exponent a B | Pollaxd kangaroo method l6.3]

Diffie-Hellman Chunks of bits of secret ex- ’—W Open problem —
ponent

Key recovery methods for public-key cryptosystems

(Gabrielle De Micheli, Nadia Heninger)

20




RSA — exercises

Compute MSBs of d:

ed =1+ ko

d/ — EN-+1

e

Bruteforce k < e.

Factoring given d:
1. Compute e - d

~ ed— _ ed—1

3. p—1)(¢g—1)=¢ = p+tg=N+1-¢

4. Solve 22+ (p+q)x+ N =0

21
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. . . Point at infinity
Elliptic curve cryptography — intro 00— 0
O+P=P
L. o . Point negation
- Elliptic curves over finite fields £{Fp) Pt (-P)=0
- Set of points satisfying y? = z* + ax + b.(Weierstrass equation) (m(j)y;rf(f_y;; zg
with the group operation, and point at infinity as identity T )= e
- Must be non-singular A # 0, A = —16(4a® + 27b%) FpEcliAn
P+Q=R
- Best attacks (in “well-chosen” curves) are generic attacks (@5, Yp) + (24, Yq) = (2r, 1)
Assuming E, is given by y2 = x> + ax + b:

- Point multiplication can be done using double-and-add Yo — Yp

A=
Lg — Tp

1 ﬁg/” \CJ el FJ e
\_

P

Point doublin
Q K/ 9
Q\—//\ /\ - 3:612, +a

2yp

P+Q+R=0 P+Q+Q=0 P+Q+0=0 P+P+0=0
" e ¢ EC point operations (Wikipedia)

EC group law (Wikipedia 29
16-10-2021 group law (Wikipedia)
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Elliptic curve cryptography — repeated k (DSA)

1. Calculate e = HASH(m).
2. Let z be the L,, leftmost bits of e, where L,, is the bit length of the group order n.

EC DSA 3. Select a cryptographically secure random integer k from [1, n-— 1}.
4. Calculate the curve point (z1,y1) = k X G.
- Pubhc pa rameters (CU rve’ generator) 5. Calculate » = 1 mod n. If » = 0, go back to step 3.
6. Calculate s = k™! (2 + rd4) mod n. If s = 0, go back to step 3.
- Pr|Vate key (d) 7. The signature is the pair (7‘, s). (And (r, —s mod n) is also a valid signature.)
- Public key (Q = de) ECDSA signing (Wikipedia)

1. Verify that  and s are integers in [1,n — 1]. If not, the signature is invalid.

- Secret nonce (k):
2. Calculate e = HASH(m).
if k is repeated for different signatures, one can solve for d 3. Let z be the L, leftmost bits of .

4. Calculate u; = zs~! mod nanduy = rs~! mod n.

- - : 5. Calculate the curve point (z1,y1) = u1 X G +ug X Q4. If
Solve for d given two signatures (r,s), (r,s'): o, ) = O e Hreislgrisiices 5 IRBIR

6. The signature is valid if r = z;  (mod n), invalid otherwise.

Compute k from
ECDSA verification (Wikipedia)

/
s—8 =k z-2) = k= Z_Z, (mod n) C=wm xGtuxQs
S—2Z C=u; X G+usdy xG
C=(u1 +udy) xG
C= (25" +rdss ) x G
C=(2+rdy)st xG
C=(z+rda)(z+rds) (k) x G

C=kxG
Repeated k attack
23

Since s = k~1(z — rd),

then d = k=2
<

16-10-2021 ECDSA correctness (Wikipedia)
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Point at infinity

Elliptic curve cryptography — Invalid curve attack O
O+P=P
Point negation
- Adding points on £{Fp) do not consider coefficient b P+(-P)=0
z, —(z, =0
- ECs over Fp whose Weierstrass equation differs only ( (f,)yJ)rJ(r (i,—y;; -0
in b have the same addition laws (& y) = ~=9)

Point addition
- Attacker selects an invalid curve £’ such that £’ B g =
) . (Zp, Yp) + (Zg,Yq) = (Tr, yr)
contains a point R of small order Assiriing E e ghonByst =2 Lot
. .. P
- Victim computes K =dR Tq — T,
z, =N —z, —a,
- Attacker solves the DLog to recover d from K Yyr = Azp —27) — 4
. . Point doublin
since the point R has low order =
_ 3zpta
.

EC point operations (Wikipedia)

24
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Elliptic curve cryptography — Easy DLog (Smart, MOV)

Smart’s attack:

16-10-2021

Compute DLog in linear time

Curves with trace of Frobenius equal to one
l.e. when #E = p (p is the order of the field)
In Sage simply check if:

sage: E = EllipticCurve(GF(p), [a, b])
sage: E.order() ==
True

MOV attack:

Bilinear pairing: function e that maps two points in Z{Fp)
to an element in Fpk, k is the embedding degree of £

DLog of 7P — compute w=e(P,Q), v=e(rP,Q) for any Q.
From bilinearity, v=e(P,0)'=u" => DLog in Fpk

Usually, the embedding degree k is large, but for some
curves it is small (supersingular curves £<6)

Embedding degree is the smallest £22 such that the order
of the curve divides pk=1

sage: E = EllipticCurve(GF(p), [a, b])

sage: E.is_supersingular() # if true, k<6, or just compute it:
sage: k=1

sage: o = E.order()

sage: p = E.base().order()

sage: while not o.divides(p”k-1): o5
sage: k+=1



Elliptic curve cryptography — exercises
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Further topics — Lattice reduction

Lattice:
Subgroup of the additive group [@ (isomorphic to the additive group Z") and which .
spans the real vector space [?". A= {Zai”i d; '€ Z}
l.e., for a basis of [?7, the subgroup of all linear combinations with integer coefficients i=1
of the basis vectors forms a lattice. Lattice A (Wikipedia)

Write a problem with a solution as a “short” lattice vector, and use lattice reduction

LLL — use rounded Gram-Schmidt coefficients (only integer linear combinations)
BKZ — generalizes LLL, solves SVP for lower dimension (parameter) blocks

Given an integer lattice basis as input, find a basis with short, nearly orthogonal vectors ) 5

Algorithms are included in Sage

Challenges — Subset sum, linear system with error, linear congruential generator, ...

Lattice reduction in two dimensions (Wikipedia)
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Further topics — Modern cryptography

- Zero-knowledge

- Secret sharing

- Threshold signatures

- E-voting

- Cryptocurrency

- Secure multiparty computation

- Homomorphic encryption

- Indistinguishability obfuscation

- Post-quantum cryptography (Lattice, Code, Multivariate, Hash, Isogeny based cryptography)

- Quantum cryptography (QKD, teleportation, Superdense coding, quantum money, ...)
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Further topics — Relevant tools

- PyCryptodome — https://pypi.org/project/pycryptodome

- SageMath — https://sagemath.org

- CyberChef — https://gchg.github.io/CyberChef

- Cryptogram solver — https://quipgiup.com

- Vigenére breaker — https://github.com/hellman/xortool

- Mersenne Twister PRNG cracker — https://github.com/icemonster/symbolic_mersenne_cracker

- Hash length extension attacks — https://github.com/bwall/HashPump

- Factors database — http://factordb.com

- Factorization calculator — https://www.alpertron.com.ar

- Bivariate Coppersmith — https://github.com/ubuntor/coppersmith-algorithm

- Multivariate Coppersmith — https://github.com/defund/coppersmith

- RSACtfTool — https://github.com/Ganapati/RsaCtfTool
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