
ROTed: Random Oblivious Transfer for embedded devices

Manuel Goulão1

(mgoulao@math.tecnico.ulisboa.pt)

with P. Branco1, L. Fiolhais2, P. Martins2, P. Mateus1, L. Sousa2

CHES 2021

14 September 2021

1Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa
2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

1 / 17

mgoulao@math.tecnico.ulisboa.pt

Introduction
Motivation

I We aim to design a highly efficient Random Oblivious Transfer (ROT) protocol.

I OT extensions use ROT as base OT (malicious setting).

I Most related art has focused on the design of 1-out-of-2 OTs.

I Directly using ROT improves efficiency without needing a black-box conversion.

I Applications in embedded systems, IoT, desktops, servers...

2 / 17

Introduction
Motivation

I We aim to design a highly efficient Random Oblivious Transfer (ROT) protocol.

I OT extensions use ROT as base OT (malicious setting).

I Most related art has focused on the design of 1-out-of-2 OTs.

I Directly using ROT improves efficiency without needing a black-box conversion.

I Applications in embedded systems, IoT, desktops, servers...

2 / 17

Introduction
Motivation

I We aim to design a highly efficient Random Oblivious Transfer (ROT) protocol.

I OT extensions use ROT as base OT (malicious setting).

I Most related art has focused on the design of 1-out-of-2 OTs.

I Directly using ROT improves efficiency without needing a black-box conversion.

I Applications in embedded systems, IoT, desktops, servers...

2 / 17

Introduction
Motivation

I We aim to design a highly efficient Random Oblivious Transfer (ROT) protocol.

I OT extensions use ROT as base OT (malicious setting).

I Most related art has focused on the design of 1-out-of-2 OTs.

I Directly using ROT improves efficiency without needing a black-box conversion.

I Applications in embedded systems, IoT, desktops, servers...

2 / 17

Introduction
Motivation

I We aim to design a highly efficient Random Oblivious Transfer (ROT) protocol.

I OT extensions use ROT as base OT (malicious setting).

I Most related art has focused on the design of 1-out-of-2 OTs.

I Directly using ROT improves efficiency without needing a black-box conversion.

I Applications in embedded systems, IoT, desktops, servers...

2 / 17

Introduction
Overview

I ROT protocol
I Novel 3-round protocol based on the RLWE assumption, proved secure in the UC

framework (in the ROM) in the presence of malicious adversaries.

I ROT Implementation
I Implemented in C++ and executed in an x86 server-class processor and in four ARM

application-class processors, benchmarked against the current state-of-the-art,
achieving speeds at least one order of magnitude faster.

I PSI use-case
I Evaluate the impact of the proposed protocol inside a real-world application: an

open-source PSI framework [PRTY, EUROCRYPT 2020], managing to get speedups
of up to 6.6 times in relation to the related art.

3 / 17

Introduction
Overview

I ROT protocol
I Novel 3-round protocol based on the RLWE assumption, proved secure in the UC

framework (in the ROM) in the presence of malicious adversaries.

I ROT Implementation
I Implemented in C++ and executed in an x86 server-class processor and in four ARM

application-class processors, benchmarked against the current state-of-the-art,
achieving speeds at least one order of magnitude faster.

I PSI use-case
I Evaluate the impact of the proposed protocol inside a real-world application: an

open-source PSI framework [PRTY, EUROCRYPT 2020], managing to get speedups
of up to 6.6 times in relation to the related art.

3 / 17

Introduction
Overview

I ROT protocol
I Novel 3-round protocol based on the RLWE assumption, proved secure in the UC

framework (in the ROM) in the presence of malicious adversaries.

I ROT Implementation
I Implemented in C++ and executed in an x86 server-class processor and in four ARM

application-class processors, benchmarked against the current state-of-the-art,
achieving speeds at least one order of magnitude faster.

I PSI use-case
I Evaluate the impact of the proposed protocol inside a real-world application: an

open-source PSI framework [PRTY, EUROCRYPT 2020], managing to get speedups
of up to 6.6 times in relation to the related art.

3 / 17

Protocol
Construction (1st round)

Sender S Receiver R

sR, eR, e
′
R←$χ

c ←$ {0, 1}
t0, t1←$ {0, 1}κ

pcR ← msR + 2eR mod q

r ←$ {0, 1}κ

sS, eS, e
′
S←$χ h← H1(r)

pS ← msS + 2eS mod q p0
R ← p1

R − h mod q (if c=1)

(sid, p0
R, r ,H1(t0),H1(t1))

4 / 17

Protocol
Construction (2nd round)

Sender S Receiver R

h′ ← H1(r)

p1
R ← p0

R + h′ mod q

for i ∈ {0, 1} :
k i
S ← sSp

i
R + 2e′S mod q

σi ← Sig(k i
S)

skiS ← Mod2(k
i
S, σi)

Ki ← H2(sk
i
S)

a←$ {0, 1}
u←$ {0, 1}κ

(sid, pS,Ka,K1−a, σ0, σ1, u)

5 / 17

Protocol
Construction (3rd round)

Sender S Receiver R

kR ← sRpS + 2e′R mod q

skR ← Mod2(kR, σc)

Kc ← H2(skR)

b = 0 if Ka = Kc

b = 1 if K1−a = Kc

b = c if K1−a 6= Kc ∧ Ka 6= Kc

(sid, t0, t1)

Abort if t0, t1 don’t match H1(t0),H1(t1)

output: output:
(M0 = H2(sk

a
S + ta + u), (b,Mb = H2(skR + tc + u))

M1 = H2(sk
1−a
S + t1−a + u))

6 / 17

Security
Against a corrupted Sender

I Cannot learn the bit b because while it holds two KE messages from the receiver
(p0

R and p1
R), only one of these was generated as an RLWE sample (pcR).

The “other message” (p1−c
R) is coerced to be a uniform random element by

summing or subtracting a random value obtained from the RO, and distinguishing
the two yields the bit b but means breaking the RLWE assumption.

pcR ← msR + 2eR mod q

p0
R ← p1

R − h mod q (if c=1)

I Cannot bias the distribution of the messages as the messages come from the
RO and their query must include random nonces sent by the honest Receiver
(t0, t1).

M0 ← H2(skaS + ta + u)

M1 ← H2(sk1−a
S + t1−a + u)

7 / 17

Security
Against a corrupted Sender

I Cannot learn the bit b because while it holds two KE messages from the receiver
(p0

R and p1
R), only one of these was generated as an RLWE sample (pcR).

The “other message” (p1−c
R) is coerced to be a uniform random element by

summing or subtracting a random value obtained from the RO, and distinguishing
the two yields the bit b but means breaking the RLWE assumption.

pcR ← msR + 2eR mod q

p0
R ← p1

R − h mod q (if c=1)

I Cannot bias the distribution of the messages as the messages come from the
RO and their query must include random nonces sent by the honest Receiver
(t0, t1).

M0 ← H2(skaS + ta + u)

M1 ← H2(sk1−a
S + t1−a + u)

7 / 17

Security
Against a corrupted Receiver

I Cannot learn both messages, as computing each message requires computing a
shared key with the sender for p0

R and p1
R.

Only pcR was generated as an RLWE sample, p1−c
R is uniform (as before). So only

the shared key corresponding to pcR may be computed and output, otherwise
the adversary needs to break the RLWE assumption and find the secrets for p1−c

R .

I Cannot bias the distribution of the output bit (b) as it includes a random bit
chosen by the honest Sender (a).

b ← 0 if Ka = Kc

b ← 1 if K1−a = Kc

I Cannot bias the distribution of the output message (Mb) as it comes from
the RO and its query must include a random nonce sent by the honest Sender (u).

Mb ← H2(skR + tc + u)
8 / 17

Security
Against a corrupted Receiver

I Cannot learn both messages, as computing each message requires computing a
shared key with the sender for p0

R and p1
R.

Only pcR was generated as an RLWE sample, p1−c
R is uniform (as before). So only

the shared key corresponding to pcR may be computed and output, otherwise
the adversary needs to break the RLWE assumption and find the secrets for p1−c

R .

I Cannot bias the distribution of the output bit (b) as it includes a random bit
chosen by the honest Sender (a).

b ← 0 if Ka = Kc

b ← 1 if K1−a = Kc

I Cannot bias the distribution of the output message (Mb) as it comes from
the RO and its query must include a random nonce sent by the honest Sender (u).

Mb ← H2(skR + tc + u)
8 / 17

Security
Against a corrupted Receiver

I Cannot learn both messages, as computing each message requires computing a
shared key with the sender for p0

R and p1
R.

Only pcR was generated as an RLWE sample, p1−c
R is uniform (as before). So only

the shared key corresponding to pcR may be computed and output, otherwise
the adversary needs to break the RLWE assumption and find the secrets for p1−c

R .

I Cannot bias the distribution of the output bit (b) as it includes a random bit
chosen by the honest Sender (a).

b ← 0 if Ka = Kc

b ← 1 if K1−a = Kc

I Cannot bias the distribution of the output message (Mb) as it comes from
the RO and its query must include a random nonce sent by the honest Sender (u).

Mb ← H2(skR + tc + u)
8 / 17

UC simulation
Corrupted Sender

I Program H1 such that it is able to recover both keys skiS obtained by the
Sender (this is indistinguishable from uniform output — RLWE assumption).

H1(r) = p1
R − p0

R

I With both keys, extract the value a from the malicious Sender
(if a is not found, 3rd condition safeguards indistinguishability).

H2(sk0
R) = Ka ∧ H2(sk1

R) = K1−a =⇒ a = 0

H2(sk1
R) = Ka ∧ H2(sk0

R) = K1−a =⇒ a = 1

I Program H2 to output the right messages which it received from the ideal
functionality to their respective queries, which it can now compute.

M0 ← H2(skaS + ta + u)

M1 ← H2(sk1−a
S + t1−a + u)

9 / 17

UC simulation
Corrupted Sender

I Program H1 such that it is able to recover both keys skiS obtained by the
Sender (this is indistinguishable from uniform output — RLWE assumption).

H1(r) = p1
R − p0

R

I With both keys, extract the value a from the malicious Sender
(if a is not found, 3rd condition safeguards indistinguishability).

H2(sk0
R) = Ka ∧ H2(sk1

R) = K1−a =⇒ a = 0

H2(sk1
R) = Ka ∧ H2(sk0

R) = K1−a =⇒ a = 1

I Program H2 to output the right messages which it received from the ideal
functionality to their respective queries, which it can now compute.

M0 ← H2(skaS + ta + u)

M1 ← H2(sk1−a
S + t1−a + u)

9 / 17

UC simulation
Corrupted Sender

I Program H1 such that it is able to recover both keys skiS obtained by the
Sender (this is indistinguishable from uniform output — RLWE assumption).

H1(r) = p1
R − p0

R

I With both keys, extract the value a from the malicious Sender
(if a is not found, 3rd condition safeguards indistinguishability).

H2(sk0
R) = Ka ∧ H2(sk1

R) = K1−a =⇒ a = 0

H2(sk1
R) = Ka ∧ H2(sk0

R) = K1−a =⇒ a = 1

I Program H2 to output the right messages which it received from the ideal
functionality to their respective queries, which it can now compute.

M0 ← H2(skaS + ta + u)

M1 ← H2(sk1−a
S + t1−a + u)

9 / 17

UC simulation
Corrupted Receiver

I Program the RO to set the bit a such that it specifies the bit b to be the
same bit from the ideal functionality.

b = 0 =⇒ reply H2(sk0
S) = Ka ∨ H2(sk1

S) = Ka (if queried on both, abort)

b = 1 =⇒ reply H2(sk0
S) = K1−a ∨ H2(sk1

S) = K1−a (if queried on both, abort)

I Program the oracle H2 to output M when queried on the shared key
(if queried on both aborts).

Mb ← H2(skR + tc + u)

10 / 17

UC simulation
Corrupted Receiver

I Program the RO to set the bit a such that it specifies the bit b to be the
same bit from the ideal functionality.

b = 0 =⇒ reply H2(sk0
S) = Ka ∨ H2(sk1

S) = Ka (if queried on both, abort)

b = 1 =⇒ reply H2(sk0
S) = K1−a ∨ H2(sk1

S) = K1−a (if queried on both, abort)

I Program the oracle H2 to output M when queried on the shared key
(if queried on both aborts).

Mb ← H2(skR + tc + u)

10 / 17

UC simulation
Remaining cases

I When no party is corrupted, the simulator has no input from the ideal
functionality. So, the simulator generates and honestly executes the protocol and
the adversary just observes the transcript. The transcript is indistinguishable which
can be proved using the definition of RO and the RLWE assumption.

I When both parties are corrupted, the simulator simply runs the adversary
internally which generates the messages for both parties.

11 / 17

UC simulation
Remaining cases

I When no party is corrupted, the simulator has no input from the ideal
functionality. So, the simulator generates and honestly executes the protocol and
the adversary just observes the transcript. The transcript is indistinguishable which
can be proved using the definition of RO and the RLWE assumption.

I When both parties are corrupted, the simulator simply runs the adversary
internally which generates the messages for both parties.

11 / 17

Implementation
ROT

I Gaussian sampling was implemented using NFLlib. We assume a shared region of
memory periodically populated with random data, so the protocol only needs to
read data off memory instead of generating random numbers.

I Random Oracles were implemented by hashing the inputs and using the output
of the hash as a seed to a pseudo-random generator (Hash-DRBG [BK12]). This
generator was then used to produce the output of the RO.

I In the case of sampling a polynomial, rejection sampling required extensive calls
to the underlying hash function (BLAKE3 chosen).

I NTT implemented using NFLlib, extended to support ARM with NEON SIMD.
We transmit polynomials, and consider the outputs of ROs in the NTT domain.

I Implementation uses 16% (23.9KiB) more memory than the state-of-the-art.
12 / 17

Implementation
ROT

I Gaussian sampling was implemented using NFLlib. We assume a shared region of
memory periodically populated with random data, so the protocol only needs to
read data off memory instead of generating random numbers.

I Random Oracles were implemented by hashing the inputs and using the output
of the hash as a seed to a pseudo-random generator (Hash-DRBG [BK12]). This
generator was then used to produce the output of the RO.

I In the case of sampling a polynomial, rejection sampling required extensive calls
to the underlying hash function (BLAKE3 chosen).

I NTT implemented using NFLlib, extended to support ARM with NEON SIMD.
We transmit polynomials, and consider the outputs of ROs in the NTT domain.

I Implementation uses 16% (23.9KiB) more memory than the state-of-the-art.
12 / 17

Implementation
ROT

I Gaussian sampling was implemented using NFLlib. We assume a shared region of
memory periodically populated with random data, so the protocol only needs to
read data off memory instead of generating random numbers.

I Random Oracles were implemented by hashing the inputs and using the output
of the hash as a seed to a pseudo-random generator (Hash-DRBG [BK12]). This
generator was then used to produce the output of the RO.

I In the case of sampling a polynomial, rejection sampling required extensive calls
to the underlying hash function (BLAKE3 chosen).

I NTT implemented using NFLlib, extended to support ARM with NEON SIMD.
We transmit polynomials, and consider the outputs of ROs in the NTT domain.

I Implementation uses 16% (23.9KiB) more memory than the state-of-the-art.
12 / 17

Implementation
ROT

I Gaussian sampling was implemented using NFLlib. We assume a shared region of
memory periodically populated with random data, so the protocol only needs to
read data off memory instead of generating random numbers.

I Random Oracles were implemented by hashing the inputs and using the output
of the hash as a seed to a pseudo-random generator (Hash-DRBG [BK12]). This
generator was then used to produce the output of the RO.

I In the case of sampling a polynomial, rejection sampling required extensive calls
to the underlying hash function (BLAKE3 chosen).

I NTT implemented using NFLlib, extended to support ARM with NEON SIMD.
We transmit polynomials, and consider the outputs of ROs in the NTT domain.

I Implementation uses 16% (23.9KiB) more memory than the state-of-the-art.
12 / 17

Implementation
ROT

I Gaussian sampling was implemented using NFLlib. We assume a shared region of
memory periodically populated with random data, so the protocol only needs to
read data off memory instead of generating random numbers.

I Random Oracles were implemented by hashing the inputs and using the output
of the hash as a seed to a pseudo-random generator (Hash-DRBG [BK12]). This
generator was then used to produce the output of the RO.

I In the case of sampling a polynomial, rejection sampling required extensive calls
to the underlying hash function (BLAKE3 chosen).

I NTT implemented using NFLlib, extended to support ARM with NEON SIMD.
We transmit polynomials, and consider the outputs of ROs in the NTT domain.

I Implementation uses 16% (23.9KiB) more memory than the state-of-the-art.
12 / 17

Implementation
ROT results

ARM Cortex-A7 @ 900MHz CLK (k) Time (µs) ROTs/s
[PVW08] ROTted 18258 20287 50

[BDGM19] ROTted (Serial) 843 936.6 1068
[BDGM19] ROTted (NEON) 666 739.7 1352

This work (Serial) 829.08 921.2 1086
This work (NEON) 644.94 716.6 1396

ARM Cortex-A53 @ 1.4GHz
[PVW08] ROTted 12864.6 9189 109

[BDGM19] ROTted (Serial) 589.3 420.9 2376
[BDGM19] ROTted (NEON) 450 321.4 3112

This work (Serial) 574.98 410.7 2435
This work (NEON) 429.52 306.8 3260

ARM Cortex-A72 @ 1.5GHz
[PVW08] ROTted 7378.5 4919 204

[BDGM19] ROTted (Serial) 374.6 249.7 4005
[BDGM19] ROTted (NEON) 299.4 199.6 5011

This work (Serial) 362.7 241.8 4136
This work (NEON) 286.5 191 5236

Apple M1 @ 3.2GHz
[PVW08] ROTted 1407.7 439.9 2274

[BDGM19] ROTted (Serial) 164.8 51.5 19418
[BDGM19] ROTted (NEON) 129.6 40.5 24692

This work (Serial) 154.6 48.3 20704
This work (NEON) 120 37.5 26667

Intel i9-10980XE @ 3GHz
[PVW08] ROTted 1310.7 436.9 2289

[BDGM19] ROTted (Serial) 151.5 50.5 19802
[BDGM19] ROTted (SSE4) 97.2 32.4 30865
[BDGM19] ROTted (AVX2) 96.3 32.1 31153

[BDGM19] ROTted (AVX512) 99.6 33.2 30121
This work (Serial) 147 49 20409
This work (SSE4) 91.2 30.4 32895
This work (AVX2) 81.6 27.2 36765

This work (AVX512) 90.3 30.1 33223

13 / 17

Implementation
PSI

I The proposed ROT integrated in the framework of [PRTY, EUROCRYPT2020].

I The framework is for x86, so the results are only provided for that platform.

I Achieve a 6.6x speedup against ROTted version of [PVW, CRYPTO2008], and a
2.1x speedup against the ROTted version of [BDGM, IMACC2019].

Intel @ i9-10980XE 3GHz Time (ms)
[PVW08] ROTted 932

[BDGM19] ROTted (Serial) 328
[BDGM19] ROTted (AVX2) 304

[BDGM19] ROTted (AVX512) 318
This work (Serial) 166
This work (AVX2) 142

This work (AVX512) 151

14 / 17

Implementation
PSI

I The proposed ROT integrated in the framework of [PRTY, EUROCRYPT2020].

I The framework is for x86, so the results are only provided for that platform.

I Achieve a 6.6x speedup against ROTted version of [PVW, CRYPTO2008], and a
2.1x speedup against the ROTted version of [BDGM, IMACC2019].

Intel @ i9-10980XE 3GHz Time (ms)
[PVW08] ROTted 932

[BDGM19] ROTted (Serial) 328
[BDGM19] ROTted (AVX2) 304

[BDGM19] ROTted (AVX512) 318
This work (Serial) 166
This work (AVX2) 142

This work (AVX512) 151

14 / 17

Comparison
ROT

I Profiling [PVW08] shows almost 50% of the execution performing point multiplications.
I RLWE benefits both from issuing multiple instructions and from SIMD.
I Speedups from vector instruction are around 30%; the change of the execution backend

provides speedups over 100%.
I The RLWE AVX512 implementations were not able to fill the vector. Therefore, length

checks had to be added in the NTT loop, leading to more missed branch predictions.
15 / 17

Comparison
ROT

I Profiling [PVW08] shows almost 50% of the execution performing point multiplications.
I RLWE benefits both from issuing multiple instructions and from SIMD.
I Speedups from vector instruction are around 30%; the change of the execution backend

provides speedups over 100%.
I The RLWE AVX512 implementations were not able to fill the vector. Therefore, length

checks had to be added in the NTT loop, leading to more missed branch predictions.
15 / 17

Comparison
PSI

I The proposed ROT use in a PSI provides a 6.6x speedup when compared with the
ROTted version of [PVW08] and a 2.1x speedup with the ROTted version [BDGM19].

I Again, AVX2 implementation is the fastest. The vector implementations show the same
speedup when compared to the serial implementation.

I The memory requirements by the PSI framework far exceed those of the proposed ROT.
16 / 17

Comparison
PSI

I The proposed ROT use in a PSI provides a 6.6x speedup when compared with the
ROTted version of [PVW08] and a 2.1x speedup with the ROTted version [BDGM19].

I Again, AVX2 implementation is the fastest. The vector implementations show the same
speedup when compared to the serial implementation.

I The memory requirements by the PSI framework far exceed those of the proposed ROT.
16 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

Conclusion
I Highly efficient UC-secure ROT from the RLWE assumption in the ROM.

I Up to 37k ROTs/s for the Intel server-class processor and up to 5k ROTs/s in
an ARM application-class processor.

I Usage of vector instructions provides on average a 40% speedup.

I One order of magnitude faster than state-of-the-art, and suitable for a wide
range of architectures in embedded systems, IoT, desktops and servers.

I Practical interest shown in a PSI framework with applications in contact
discovery, remote diagnosis, contact tracing, among others.

I Usage of our ROT in a PSI application is up to 6x faster than related art.

I Future work will address ultra-low power devices, e.g. ARM Cortex-M, RISC-V.
17 / 17

