Web Application on Monitoring the Potential of Sustainable Base Station Locations for Mobile Networks

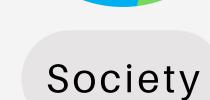
PIC1 - Group 7 Authors: Maria do Mar Vieira, Luna Ferreira, Maria Guilherme, Pedro Silva, Tomás Cláudio and Gonçalo Mendonça

PROBLEM

MOTIVATION

growth, high **OPEX**, rising **energy** costs, and pressure to meet **ESG** and **Net Zero** targets.

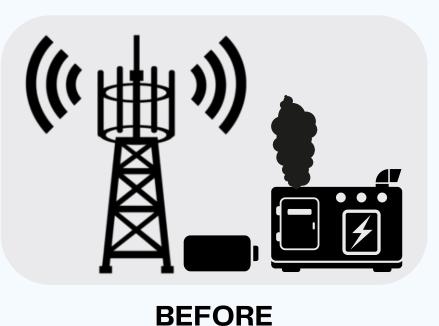
To develop more cost-effective and sustainable solutions for the mobile communications sector.

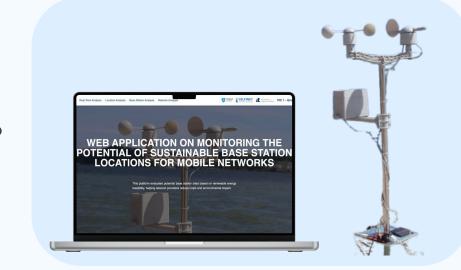

BENEFICIARIES

Mobile Network Operators

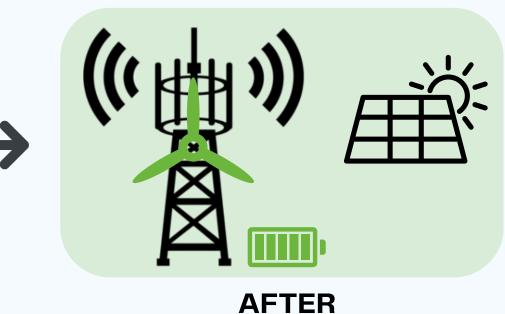
One solution, many gains: economic, environmental, social.

Network Users




Purpose: Evaluate the potential of integrating solar and wind energy in base stations power supply.

How it works: Development of an integrated hardware/software solution to measure **solar** and **wind** power and **estimate** the **energy performance** of a hybrid-powered base station (solar, wind and wireline).



- 1. **Identify** top solar/wind **locations** for future base stations.
- 2. **Quantify** hybrid power **gains** (new/existing base stations).
- 3. **Estimate** financial **savings** from hybrid adoption.
- 4. **Assess** feasibility of **integrating** solar/wind in operator networks.

SOLUTION: KEY FEATURES

REAL-TIME ANALYSIS

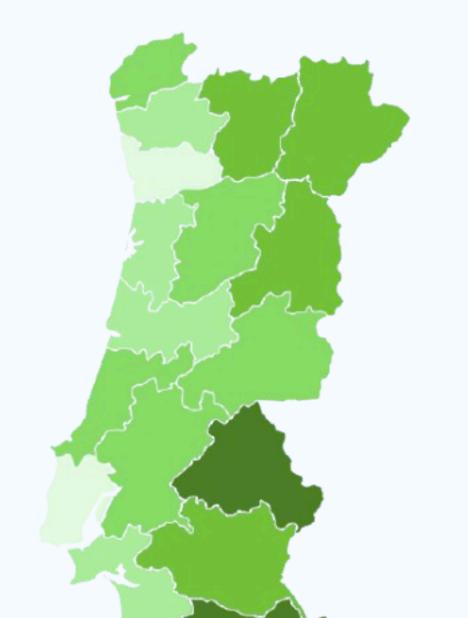
Visualize real-time data from solar and wind measurements.

LOCATION ANALYSIS

Evaluate locations for future base station deployment based on local renewable potential.

BASE STATION ANALYSIS

Estimate energy and sustainability potencial of hybrid-powered base stations.

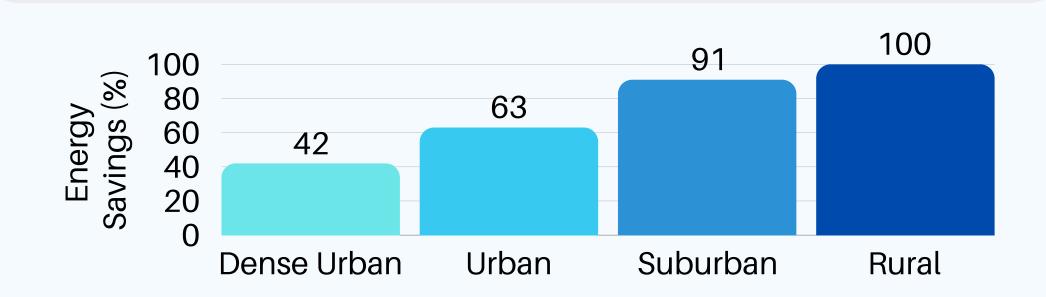


NETWORK ANALYSIS

Extrapolate results (district or national level) to support radio network planning.

<u>Total renewable</u> potential per district

Power Ratio Scale 70–90% 🣗 90–110% 📗 110–130%


130-150%
150-170%

IMPROVED ENERGY STABILITY

Solar and wind complement each other to ensure continuous power.

OPTIMIZED BS LOCATION SELECTION

Energy savings reach 100% in rural areas and 91% in suburban zones, as shown in the graph below.

SUSTAINABLE INFRASTRUCTURE

Implementing this solution cuts base station energy costs by up to 1 950 €/year.

PORTUGAL: DISTRICT ENERGY INSIGHTS

Our analysis reveals district-level renewable potential from solar and wind data.

CONCLUSIONS

Base stations stay operational during blackouts, ensuring service continuity.

Our solution reduces operational costs by 24% and increases annual profit by 3% across 4000 base stations.

CO₂ emissions avoided are **3.2 tons/base** station/year and 12 880 tons tons/year nationwide (based on 0.23 kg CO₂/kWh).

Aligned with **ESG** and **net zero** targets via CO₂ reduction and renewables.

