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Abstract—To reduce the average memory access time, most
current processors make use of a multilevel cache subsystem.
However, despite the proven benefits of such cache structures in
the resulting throughput, conventional operations such as copy,
simple maps and reductions still require moving large amounts of
data to the processing cores. This imposes significant energy and
performance overheads, with most of the execution time being
spent moving data across the memory hierarchy. To mitigate this
problem, a Cache Compute System (CCS) that targets memory-
bound kernels such as map and reduce operations is proposed.
The developed CCS takes advantage of long cache lines and data
locality to avoid data transfers to the processor, and exploits the
intrinsic parallelism of vector compute units to accelerate a set
of 48 operations commonly used in map and reduce patterns.
The CCS architecture was validated by simulation using gem5
and compared with a PULPino soft-core running on a Xilinx
ZYNQ-7 ZC706 Evaluation Board. Furthermore, the CCS was
integrated in a system featuring an MB-LITE soft-core and a
memory subsystem, and the system was implemented in a Xilinx
Virtex-7 VC709 Development Board. When compared to the MB-
Lite core, the proposed CCS presents performance improvements
in the execution of the commands ranging from 18× to 94×, and
energy efficiency gains from 11× to 67×. On the other hand, the
CCS can perform between 132× and 401× better than PULPino
for 1024 32-bit elements operands.

Index Terms—Near Data Processing, Near-cache processing,
Memory subsystem, Memory bound operations, Cache Compute
System, RTL implementation

I. INTRODUCTION

Memory-bound applications spend most of the time trans-
ferring data between the processor and the memory subsys-
tem, often rendering useless the CPU resources dedicated to
instruction level parallelism. Although cache systems aim to
mitigate this issue, a significant overhead is still imposed by
transferring data through the entire memory hierarchy.

In particular, many of those applications are often charac-
terized by low computational intensities, requiring data to be
moved to the processing core just to apply a rather limited set
of transformations (e.g., map and reduce). However, while the
processing workload of these operations is almost negligible,
the memory subsystem easily becomes saturated with the
amount of data that has to be moved, and cannot feed the
processor at the desired rate. In fact, given the low complexity
of these operations, Processing in Memory (PIM) approaches
based on moving the computation resources closer to where
the operands are stored have become increasingly popular [2]–
[8], [10]–[12], [14]–[16], [18]–[22], [31], [33]. Recently, some
rather similar solutions based on pushing the processing to
the cache subsystem have also been proposed [1], [9], [23],
[24]. Both topics rely on performing some modifications to

the memory structures to enable near-data computing, taking
advantage of the high internal bandwidth of the memory de-
vices and enabling massive parallelism by applying extensive
vector processing techniques. However, such solutions are
often limited in terms of what can be directly calculated in
memory, allowing only a few and rather elementary bitwise
logic operations, often of limited interest for the majority of
real-world applications. Furthermore, this type of technology
only allows map-type operations, meaning that reductions
cannot be implemented at this level.

On this thesis, a somewhat more ambitious acceleration
infrastructure is proposed by integrating a stream vector
compute unit within a conventional cache system. The vec-
tor compute unit supports 48 different arithmetic, shift and
logic operations that match most common parallel processing
patterns, namely, map and reduce. Furthermore, it does not
require any significant modifications to the base system other
than internal connections with a conventional cache system.
Differently from the most common solutions, the proposed
Cache Compute System (CCS) also implements a stride
functionality, which allows operating over stridden vectors
without the need of reallocating them in advance. It also offers
elementary hardware loop capabilities, which means that the
operands of the CCS are not limited in length by the physical
implementation of the architecture. When the operands are too
long to be operated at once, they are partitioned and the CCS
will operate one partition at a time, eliminating the overhead
of doing this by software.

In accordance, the following contributions are offered:
• architecture of a stream-based Compute Unit (CU) that

implements 48 arithmetic, shift and logic vector opera-
tions, particularly useful for a diversity of applications
that include map and reduce processing patterns;

• behavioral simulation and validation of the developed
architecture using gem5;

• Register Transfer Level (RTL) implementation of
the CCS in VHSIC Hardware Description Language
(VHDL);

• simple framework to program and control the CCS;
• comparison and integration of the devised architecture

with several processing systems;
• performance and energy efficiency improvements eval-

uation of the considered setups, each one featuring a
processing system and the proposed mechanism.

To validate its behaviour, the developed architecture was
simulated using gem5 and its performance was compared
to a PULPino soft-core [25], [26] running on a Xilinx



ZYNQ-7 ZC706 Evaluation Board. Furthermore, it was proto-
typed using fixed-point precision on a Xilinx Virtex-7 Field-
Programmable Gate Array (FPGA) based on a VC709 De-
velopment Board, alongside with an MB-Lite soft-core [13].
When compared with the PULPino standalone system, it
provides a processing speedup as high as 401× and energy
efficiency improvements of 328×.

II. CACHE COMPUTE SYSTEM ARCHITECTURE

The proposed Cache Compute System (CCS) is depicted
in Figure 1. It is defined as a logical block that includes a
conventional cache and the tightly interconnected CU.
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Fig. 1: System overview integrating the processor, the CCS
and the main memory. The CCS is defined as the logic block
that includes the cache and the CU.

From the perspective of the CPU, the CCS behaves just like
a memory device, while from the memory side it performs
simply as a conventional data requester. As such, standard
memory interfaces are used for both communication channels:
the CPU core has a single interface with the CCS, used for
data transfers and for the CU programming. The processor and
the CCS operate independently, and while the CU reads the
operands or writes the results of a command, the processor is
free to operate over other data. Within the CCS, the cache also
has two memory interfaces: one to the processor and another
to the CU—for the same reason stated above.

Since the processor has a single interface to the CCS, the
CU control registers are memory-mapped in the processor’s
addressing space. To program the CU, the processor simply
writes its control registers and signals the unit to start. One
of the CU control registers indicates its readiness, making it
possible to know when it is idle and when has the last issued
command finished. Table I details the control registers of the
CCS’s programming interface.

A. Supported operations

The 48 arithmetic, shift and logic vector operations sup-
ported by the devised CU are presented in Table II. These
operations were chosen by taking into consideration the algo-
rithms used in a wide range of application domains including
clustering, machine learning, cryptography, image processing,
biomedicine, and linear algebra. Table III lists some example
applications that can benefit from the proposed CCS, together

with some of the commands likely to be used to parallelize
parts of those algorithms.

These commands can be classified accordingly to different
criteria: (1) The mathematical operation: arithmetic, logic,
shift, or move; (2) The operands: two vectors (VOP2), a vector
and a constant (VCOP), a single vector (VOP1), or only a
constant (COP); (3) The functional operation: map or reduce.

B. Data processing structure

Figure 2 depicts the integration of the CU within the
CCS. To allow the implementation of both map and reduce
operations, the CU has two processing parts: the first part
corresponds to the two first levels of the compute unit (L0
and L1), providing a parallel-input parallel-output capability
required to implement the map operations (two levels are
needed for the map-reduction-type operations, such as the
sum of square differences, which needs two consecutive map
operations, difference and square, before the reduction); the
second part comprehends the remaining levels and adopts a
binary-tree shaped structure, required to implement the reduce-
type commands.

To satisfy all the commands supported by the proposed
architecture, the first two levels of the CU have to support
more operations (e.g., the second level of the CU is the
only one equipped with integer multipliers, and the first level
implements shift operations), as shown in Figure 2. The levels
responsible for the reduction-type commands only implement
subsets of the total arithmetic and logic operations.

C. Operand fetch and result store

The CCS operates as a stream processor with the operands
and result being described as a 1-D descriptor composed of
base address, stride, and length. To execute a given operation,
the CCS divides the operands into groups of N elements,
where N corresponds to the vector unit length, which should
be adjusted according to the size of the cache line. Naturally,
since the first and last elements may not be aligned in the
cache, specific masks are generated to guarantee a correct
operation over the described arrays (see subsection II-D).

When executing commands, the CCS loads the operands in
a sequential fashion (see also Fig. 3): for VOP2 commands, it
first loads one operand, storing it in an input buffer, before

TABLE I: Control registers offered by the CCS’ programming
interface mapped in the processor’s addressing space.

Relative
address Function Register

mode Required

0x00 Command ID Read/write Always
0x04 Operands length Read/write VOP2, VOP1, VCOP
0x08 Constant Read/write VCOP, COP
0x0c Op. A address Read/write VOP2, VOP1, VCOP
0x10 Op. B address Read/write VOP2
0x14 Result address Read/write Always
0x18 Op(s). stride Read/write Always
0x1c Exec. mask Read/write Always
0x20
0x24 Reserved
0x28 Exec. start Read/write Always
0x2c Readiness Read-only Does not apply



proceeding to the second operand; for VOP1 and VCOP,
where a single operand exists, it skips the second operand and
iteratively fetches data only from a single data input stream.
At each data fetch, the CCS makes use of the existing cache
structures. Hence, it first checks for a hit on the cache, before
issuing a cache line request to the main memory. However,
when loading data from memory, the operands are directly
forwarded to the CU and are not stored in the cache. This
avoids cache pollution, by reducing conflicts between CCS
operands and processor data.

To store the command output, the CCS again relies on
the cache existing structures and policies for data allocation

TABLE II: Supported commands by the proposed CCS, com-
prehending four classes of mathematical operations: integer
arithmetic, logic, shift, and move.

Instr Description
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P2

ADDVV r[i] = a[i] + b[i]

m
apSUBVV r[i] = a[i]− b[i]

MULVV r[i] = a[i]× b[i]
SSDVV r =

∑
i(a[i]− b[i])2

re
du

ce

SADVV r =
∑

i |a[i]− b[i]|
IPVV r =

∑
i a[i]× b[i]

V
C

O
P

ADDVC r[i] = a[i] + k

m
ap

SUBVC r[i] = a[i]− k
MULVC r[i] = a[i]× k

LESSVC r[i] =

{
1 , a[i] < k
0 , otherwise

GRTRVC r[i] =

{
1 , a[i] > k
0 , otherwise

EQUVC r[i] =

{
1 , a[i] = k
0 , otherwise

V
O

P1

COMP2 r[i] = −a[i]
SQV r[i] = a[i]2

ABSV r[i] = |a[i]|
ADDV r[i] =

∑
i a[i]

re
du

ce

MAXV r[i] = max(a)
MINV r[i] = min(a)

Sh
ift

V
O

P2

SLLVV r[i] = sll(a[i], b[i])

m
ap

SRLVV r[i] = srl(a[i], b[i])
SLAVV r[i] = sla(a[i], b[i])
SRAVV r[i] = sra(a[i], b[i])
ROLVV r[i] = rol(a[i], b[i])
RORVV r[i] = ror(a[i], b[i])

V
C

O
P

SLLVC r[i] = sll(a[i], k)
SRLVC r[i] = srl(a[i], k)
SLAVC r[i] = sla(a[i], k)
SRAVC r[i] = sra(a[i], k)
ROLVC r[i] = rol(a[i], k)
RORVC r[i] = ror(a[i], k)

L
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ic

V
O

P2

ANDVV r[i] = a[i] and b[i]
NANDVV r[i] = a[i] nand b[i]
ORVV r[i] = a[i] or b[i]
NORVV r[i] = a[i] nor b[i]
XORVV r[i] = a[i] xor b[i]
XNORVV r[i] = a[i] xnor b[i]

V
C

O
P

ANDVC r[i] = a[i] and k
NANDVC r[i] = a[i] nand k
ORVC r[i] = a[i] or k
NORVC r[i] = a[i] nor k
XORVC r[i] = a[i] xor k
XNORVC r[i] = a[i] xnor k

V
O

P1

NOTV r[i] = not a[i]
ANDV r[i] = a[0] and · · · and a[B − 1]

re
du

ce

ORV r[i] = a[0] or · · · or a[B − 1]
XORV r[i] = a[0] xor · · · xor a[B − 1]

Move COP INITC r[i] = k

m
ap

VOP1 COPYV r[i] = a[i]

TABLE III: Examples of applications likely to benefit from
the proposed CCS and the respective useful commands.

Area Algorithm CCS commands

Clustering

kNN

SSDVV
k-Means
Mean-Shift
DBSCAN

Machine
Learning

CNN IPVV
Linear Regression ADDV, MULVV, SUBVV
Linear Discriminant
Analysis ADDV, MULVV, SUBVV

Cryptography

Md5 Checksum ANDVV, ORVV, XORVV,
ROLVV

Serpent XORV, ROLVC

Twofish INITC, XORVC, SLLVV,
ANDVV, XORVV

Blowfish XORV, INITC
Cast-128/256 ADDVC, XORVV

Image/Video
Processing

Convolutional filters IPVV
Pixel matching SADVV

Biomedicine CAST [17] MAXV, INITC

Linear Algebra Intel BLAS COPYV, MULVC, ADDVV,
IPVV, SSDVV, SADVV

and write. Hence, for write-back write-allocate caches, data is
always written on the cache, whereas for write-through write-
not-allocate, the result is always stored on the memory, with
the cache being updated if the corresponding line(s) already
exist on the cache.

D. Mask generation and stride processing

When a command operates on vector operands, the stride
functionality is enabled. As long as the step is a power of
two smaller than the size of the cache line, a mask can be
specified in such a way that the only considered elements of
the operands will be the indexes that are multiples of the stride.
However, for all commands that involve multiple vectors (e.g.,
two vector operands or one vector operand and a vector result),
all the elements have to be aligned in the cache for the
command to succeed. For striding and alignment correction
purposes, two distinct masks are produced before the CCS
command is executed. The boundary mask, generated directly
by the CCS, is used to align the operands with the beginning
and the end of a cache line (all the words in the cache line
out of the operand’s range are discarded). The stride mask is
generated by software and each one of its bits is set to one
when its index is multiple of the stride. In the CCS, both masks
are combined, generating the execution mask. The execution
mask determines which elements of the operands will be
considered when executing the command, and which results
are to be stored in memory. For map commands, only the
execution mask is needed; however, for reduction commands, a
new submask has to be generated at each level of the reduction
three, determining which elements are to be reduced to the next
level. Each submask is generated by performing the logic OR
operation on the mask bits associated with the two operands of
a given unit. Additionally, the instruction performed by each
unit of the reduction tree is influenced by the bits of the mask
associated with its operands. When both operands are to be
considered, the instruction performed by the unit corresponds
to the one that is meant to be executed in that level, but in case
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Fig. 2: Datapath of the CU. The first two levels of the binary
structure are meant for maps and the remaining structure acts
as a reduction tree. Consequently, different levels are equipped
with different units: type-A unit–implements an adder/sub-
tracter, a shift unit and a logic unit; type-B unit–implements
an adder/subtracter and an integer multiplier; type-C unit–
implements an adder/subtracter and a trimmed logic unit,
capable of performing a subset of the total logic instructions.

only one of the operands is valid, the output of the unit will be
that same operand. Figure 4 illustrates an example of all the
elements of a vector being summed, and also the submasks of
each level being generated from the submask of the previous
reduction level, when the execution mask excludes the first 4
elements from the cache line in a reduction.

III. CCS PROGRAMMING AND OPERATION

The communication protocol between the CPU and the
CCS allows the CPU to interact with the CCS for three main
purposes: (1) to program a command, (2) to order the start of
the execution of the previously programmed command, and
(3) to check for completion/readiness. The process of issuing
a command to the CCS consists of saving the configuration
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Fig. 3: Execution flow graph of a command by the CCS,
showing the different states of operation by the CU.
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Fig. 4: Sum of all elements of a misaligned vector with 60
elements and generation of the intermediary execution masks
for the reduction three from the main execution mask.

parameters in the memory locations where the control registers
of the CU are mapped. To ease this procedure, a convenient
framework was developed requiring the programmer to know
the minimum about the low-level programming flow of the
CCS. This framework offers the following functions to pro-
gram and control the CCS, together with macros to define the
CCS commands:

• __ccs_setup(): takes as arguments the command
identifier, the length of the operands, an optional constant,
the addresses of the operands and of the result, and the
stride; it also calculates the software mask and programs
the CCS with the required parameters;

• __ccs_start(): signals the CCS to start the execution
of the command previously programmed;

• __ccs_check(): checks (nonblocking) if the CCS
is ready to execute, i.e., if it is not busy executing a
command, and returns a logic value;

• __ccs_wait(): blocks the execution until the CCS is



int opa[VEC_SIZE], opb[VEC_SIZE], res[VEC_SIZE];

// program the CCS
__ccs_setup(ADDVV, VEC_SIZE, 0, opa, opb, res, 1);

// start the execution
__ccs_start();

routine1();

// wait until previous command completes
__ccs_wait();

Listing 1: Example of command being issued to the CCS.
After programming the CCS, the processor executes some
other routine that does not require to access its results, and
before accessing the memory positions were the results are
stored, a blocking call is executed that checks if the CCS is
ready (if the previous command has finished).

ready to accept a new command.
Listing 1 illustrates a C code example used to program the
CCS to add two vector operands, execute a routine in the
processor simultaneously and independently of the CCS and
to wait for the CCS to complete.

The execution of a command by the CCS is independent of
the CPU. First, the CCS control unit checks the type of issued
command. If the command is type VOP2, VOP1 or VCOP,
the CCS will switch to a reading state, where it checks if the
operands are in cache. If one or more operand(s) are not in
cache, the CCS enters an idle state while they are fetched from
the main memory to an input buffer. However, if the command
type is COP, the CCS changes its state directly from idle to
execute, since the only operand is the constant passed by the
CPU. When it reaches the execution state, the CCS will keep
executing for the predetermined number of cycles that a given
command requires to complete. Finishing the execution of the
command, the CCS returns to the idle state and notifies the
processor about its readiness, by writing to the corresponding
interface register.

Independently of the considered commands, the operands’
length is not limited by the number of functional units of
the first level. Instead, larger operands can be specified and
hardware loops will take care of processing them in parts
until they are all consumed. Depending on the type of the
command, these loops are executed differently, as shown in
Figure 5. For map-type commands, each partition of the
operands is processed independently and the results are stored
while the next partition is fetched. However, the prototyped
architecture does not allow storing results in memory while
reading operands for the next iteration, as only one half duplex
memory channel is implemented. As such, the fetch of the
operands for the next iteration can only occur after the result
of the previous one is written. For reduces, the operands are
entirely fetched and the execution happens in pipeline.

IV. EXPERIMENTAL RESULTS

To validate the behavior of the proposed system, a com-
prehensive simulation framework was developed, using gem5.
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Fig. 5: Finite state machine that describes the control flow
of the CU. The examples below describe the flow of the
hardware loops. For map commands, the partitions of the
operands are fully processed and the results are stored for each
iteration. Differently, for reduce commands, the operands are
fully loaded and the execution happens in pipeline.

However, architectural simulators do not allow to evaluate, by
default, the hardware and energy requirements of a system.
Thus, to evaluate the performance and energy efficiency gains
that may be provided by the presented CCS, a comprehensive
experimental procedure was conducted based on an hardware
prototype of the proposed structures. In particular, this section
presents the obtained experimental results in what concerns
the resulting CCS operating frequency, occupied hardware
resources, throughput (performance) and power consumptions.
In accordance, two setups are considered: one which considers
a soft-core (PULPino) as reference [25], [26]; and another
where the CCS is tightly coupled with an MB-LITE soft-
core. Due to compatibility constraints, while the configuration
featuring PULPino was synthesized and implemented using
Xilinx Vivado 2016.4 and a Xilinx ZYNQ-7 ZC706 Eval-
uation Board, for the system integrating the CCS with the
MB-LITE [13], Xilinx Vivado 2018.1 and a Xilinx VC709
Development Board were used.

The setup featuring an MB-LITE soft-core and the CCS also
included a memory subsystem composed by the main memory
(made of FPGA native Block RAMs (BRAMs)) and a single
level cache. The cache was designed to be direct-mapped
with write-through and write-not-allocate policies from the
Central Processing Unit (CPU) point of view, and write/read-
not-allocate from the CU point of view. Although the cache
was designed to be fully reconfigurable, it was implemented
having 16 lines, each with 2048-bits, plus the tag and 1 validity
bit per line. Naturally, the size of the implemented CU matches
the size of the cache lines, and the reduction tree (levels 3 to
log2(N) + 3) has 7 computation levels (6 for reduction and 1



for accumulation).

A. Area and power requirements

The maximum operating frequency of PULPino and the
CCS implementations, together with the occupied hardware
resources and resulting power consumption, when considering
an implementation based on a ZYNQ-7 FPGA, are presented
in Table IV.

The presented results show that PULPino is capable of
working at a maximum frequency of 40 MHz on the target
ZYNQ-7 device, while the CCS is able to operate at a
much higher frequency (132 MHz). Consequently, the limited
operating frequency of PULPino represents an drawback of
using it as host processor, since it would slow down the
processes that require the CPU and the CCS to communicate
(e.g. the programming process, that, as it will be proven later,
represents a significant overhead).

The hardware resources used to implement the CCS are
significantly higher than the resources occupied by PULPino.
The CCS implements a massive quantity of functional units,
which justifies the area overhead. We consider it a fair price,
given the achieved speed-up and the energy gains only possible
when using the CCS. The total power consumption of the CCS
is lower than the base system, and given the smaller execution
time, the energy savings due to the CCS are even higher.

Table V presents the required resources, frequency of op-
eration and power of a base system featuring an MB-LITE
and a memory subsystem (composed by a single level cache
and a main memory), and a setup also featuring the CCS.
The presented values show that the proposed CCS exceeds
the area resources occupied by the base system by a factor of
10. Nevertheless, the complete system still uses less than 25%
of the total resources available in the considered device.

B. Microbenchmarks

To further assess the performance of the CCS, a battery
of microbenchmarks was developed to evaluate the perfor-
mance of each arithmetic, logic and shift command. Each
microbenchmark calls the respective command to be executed
in the CCS and implements the correspondent loop to be ex-
ecuted in the reference processor. Moreover, when comparing
against the PULPino soft-core, the size of the vector operands
was varied between 64 and 1024, by considering 32-bit data
elements.

The speedup of the CCS over PULPino for these differ-
ent microbenchmarks is depicted in Figure 6. The obtained
speedups range from 132× to 401× when comparing to
PULPino.

A similar set of microbenchmarks (the commands INITC
and COPYV were added) was used to assess the performance
of the CCS against MB-LITE. Similarly to what was done
for PULPino, all the results were analyzed independently of
the operating frequency, being the latencies measured in clock
cycles.

As shown in figure 7, the use of the CCS provides consid-
erable speedups ranging from 4× (INITC) to 66× (ROLVV,
RORVV), and energy efficiency improvements between 6×
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Fig. 6: Speedup of the proposed CCS when compared to
PULPino, when executing vector operations with 1024 data el-
ements (includes overheads for kernel launch). Both PULPino
and CCS operate at 40 MHz.

and 90×. This is mainly due to three factors explored by the
CCS: (1) intrinsic parallelism of the commands (SIMD-like
commands), (2) in-place processing of data (avoiding moving
it to the processing core), and (3) mitigation of the loop control
required by the processor. Furthermore, both the speedups and
energy efficiency improvements were shown to scale with the
size of the operands, as shown in Figure 8 for 4 different CCS
commands. In particular, for 32-bit vectors of 1024 elements,
the obtained speedups scale up to 408×.

While the static power is similar for both parts of the
complete system (the base system and the CCS), the dynamic
power of the CCS is about 5× higher than the equivalent for
the MB-LITE (see Table V). However, due to the order of
magnitude of the achieved speedups, there are still significant
energy savings. For 1024 32-bit vector operands, the theoret-
ical energy efficiency improvements can be as high as 328×.

C. Application benchmarks
To further assess the performance impact of the proposed

CCS, several application benchmarks were considered. For
comparing with PULPino, the K-Nearest Neighbors (KNN)
and KMeans applications were used, whereas KNN, Matrix



TABLE IV: Timing and hardware resources summary of the reference PULPino processor and of the proposed CCS, obtained
using Xilinx Vivado 2016.4 when using a ZYNQ-7 ZC706 Evaluation Board.

System Timing Resources Total Power
consumptionSlice LUTs Slice Registers Memory DSP

PULPino 40MHz 22193
(10.15%)

13472
(3.08%)

16
(2.94%)

10
(1.11%) 1.91W

CCS 132MHz 59749
(27.33%)

10464
(2.39%)

0
(0.00%)

192
(21.33%)

5.05W
40MHz 1.69W

TABLE V: Occupied hardware resources, operation frequen-
cies and power requirements of the considered setups.

Base
System CCS Complete

System
Util. % Util. % Util. %

R
es

ou
rc

es

LUT 6351 2 87675 21 91596 22
LUTRAM 2053 2 7 1 7 1

FF 2483 1 13014 2 13368 2
BRAM 34 3 128 9 162 11

DSP 3 1 192 6 195 6
Frequency [MHz] 100 100 67*

P [W] Static 0.329 0.345 0.345
Dinamic 0.150 0.793 0.612

* The complete system maximum clock frequency decreases ∼ 30%
(regarding the individual systems) because of routing issues. Addi-
tional CCS-to-MB-LITE pipeline stages were not introduced because
it would impact the performance of the MB-LITE.
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Fig. 7: Speedup and energy efficiency improvement provided
by the CCS versus the MB-LITE for 64 32-bit element vector
operands. For comparison purposes, the execution latencies
were measured in clock cycles.

Multiplication and Linear Regression were used to evaluate the
performance of the CCS over MB-LITE. In these applications,
the code segments that can be accelerated by the developed
CCS were firstly identified. For both the k-Nearest Neigh-
bors (kNN) and KMeans, the euclidean distance phase are
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Fig. 8: Speedups and energy efficiency improvements with 4
CCS commands when compared to their sequential versions
executing in the MB-LITE for several vector operands sizes.

performed in the CCS, while the Matrix Multiplication and
the Linear Regression are fully performed in the CCS.

KNN and KMeans were ran on PULPino by considering
four data-sets chosen from the University of California, Irvine,
Machine Learning Repository [27]–[30], with a different num-
ber of features. For each run, it was measured: (1) the number
of cycles of the run; (2) the number of cycles corresponding
to each section to be executed in the CCS; (3) the number of
times the code to be executed in the CCS was run.

By applying Amdahl’s law, and assuming that the PULPino
processor idles while the CCS operates (and ignoring the CCS
programming time), it is possible to calculate the theoretical
speed-up of the developed system integrating the PULPino
soft-core and the proposed CCS, depicted in Figure 9, along-
side with the corresponding energy savings. The obtained
speed-ups are related with the number of features of each data-
set. When the number of features approaches 64 (the width of
the top-level of the developed CCS), all resources are used
with the maximum parallelism that can be achieved. For the
kNN algorithm, the speed-ups range from 2× to 6.8×, and
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(b) PULPino featuring a 256-bit SIMD unit

Fig. 9: Speedup of the proposed CCS when implementing the
KMeans and KNN algorithms.

for the KMeans algorithm, the speed-ups range from 2.4× to
4.7×. The energy savings range from 54% to 76% for the
KMeans algorithm and from 46% to 83% for the kNN. When
considering the CCS performing at 132 MHz, the achieved
gains in terms of the energy savings are similar.

For the system featuring the MB-LITE, the following bench-
marks were adapted to use the proposed CCS (using the pro-
vided programming framework): KNN (with 64 coordinates
per sample, k = 4, 64 control samples and 1 sample to clas-
sify); the integer Matrix Multiplication (64×64 matrices); and
the Linear Regression (64 2D points). Differently from what
was done for PULPino, these results were not extrapolated,
but obtained directly by measuring the execution time of each
benchmark. According to the workload that is delegated to
the CCS (Amdahl’s law) the overall speedups obtained for
these three algorithms reach 68×, 54× and 3×, respectively,
as shown in Figure 10. The parallelized versions of the Matrix
Multiplication and the KNN show better performances than the
Linear Regression because their parallelized phases consist of
a single CCS command each. For the Linear Regression, the
parallelized phase takes 5 distinct commands, which not only
increases the programming overhead but also does not allow
to fully explore the CCS pipeline capabilities.

V. RELATED WORK

The Near Data Processing (NDP) paradigm was first intro-
duced in the 70’s, mainly to help mitigating the memory wall
problem [32]. The principle behind PIM architectures relies
on the main memory’s internal high bandwidth, which allows
massive parallelism. Moreover, by performing computation
directly in the memory, the data transfers between the memory
and the cores are avoided, reducing both execution time and
energy consumption. Recent changes to the common memory
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Average speedup

Linear regression

Matrix Multiplication

k-Nearest Neighbors

Fig. 10: Obtained speedups when running three application
benchmarks partially executed in the proposed CCS: the KNN
(with 64 coordinates per sample, k = 4, 64 control samples
and 1 sample to classify), the integer Matrix Multiplication
(64× 64 matrices), and the Linear Regression (64 2D points).

hierarchies made possible such solutions to become viable in
terms of implementation cost, such as the introduction of 3D-
stacking. Naturally, several new approaches in PIM were also
considered (e.g., [14], [15], [18], [19]). Seshadri et al. [19]
proposed a fast bulk bitwise AND and OR mechanism to be
implemented in the DRAM chip. This technology uses bit-
line computation, which consists of simultaneously activating
multiple lines of the memory. The several loads of each
memory cell are combined and the sensed value (in a given)
line is the result of a logic operation. Another approach
that relies on bit-line computation is Pinatubo [14], although
specifically targeting nonvolatile memories. It also supports
XOR and INV operations (in addition to AND and OR) and
attempts to solve conflicts such as the operands not being in
the same subarray, by performing computation near-memory.
However, no solutions are provided when the operands are in
different higher levels of the memory subsystem.

However, in-memory processing does not always pay off.
When the data is closer to the cores than to the main memory
(e.g., L1 cache), it is usually more efficient to use the core
than to move the data back to memory. This same principle
corresponds to the concept of PIM-enabled-instructions (PEI),
introduced by Ahn et al. [2]. Their work uses architectures
with PIM support and does not require any modifications to
the compiler. The main novelty of their work is a specialized
hardware unit that decides whether the operation is to be issued
to the memory processing unit or to dedicated accelerators near
the core based on the locality of the operands.

Meanwhile, processing in cache approaches started to be
adopted as an alternative to PIM solutions. Processing in
cache also relies on the memory’s internal bandwidth and
avoids transferring data between the cache and the cores by
performing the computation in-place. However, because the
computation is performed in cache rather than in the main
memory, it is not certain that the operands may be present, and
the performance of such architectures is tightly coupled with
the locality of the operands. Aga et al. [1] re-purpose the cache
resources to perform active computation. Their architecture
provides two independent computing mechanisms: (1) one in-
cache meant for when the operands are memory aligned, and
(2) another near-cache that is used when the operands are not
aligned. By supporting ten distinct operations, this solution
provides a programming mechanism to explicitly program
the computing mechanisms in the cache. Another in-cache
processing solution was proposed by Subramaniyan et al. [24]



to perform computation optimized for the Non-deterministic
Finite Automata (NFA): the Cache Automaton. This approach
relies on the SRAM cutting-edge cache technology, much
faster than the DRAM, which allows achieving speedups up to
3840× when compared with a conventional x86 CPU. Com-
piler support is also provided, which automates the process of
mapping real-world NFAs to Cache Automaton.

However, despite the important contributions of the pre-
vious proposals, these architectures mainly rely on bitwise
operations to perform computation in-memory/in-cache. This
reduces the scope of what can be achieved as they hardly
support the implementation of arithmetic, shift, and more
complex operations. In contrast, the proposed CCS offers an
ISA with 48 distinct instructions, it is not limited by the size
of the cache lines (as it implements hardware loops) and it
also supports a limited range of strides in the operands.

VI. CONCLUSIONS

A novel Cache Compute System (CCS) was introduced
to allow data processing and manipulation directly on-cache,
avoiding moving it from the memory hierarchy to the pro-
cessor core just to perform simple operations (such as map
and reduce). Furthermore, the developed CCS allows the
massive exploitation of parallelism and eliminates the need
for software-side loop control, which increases even further its
efficiency. It also provides support for hardware loops, in case
the vector operands are longer than cache lines. The proposed
CCS was validated by simulation using gem5, compared with
a PULPino soft-core, and integrated with an MB-Lite CPU
using a memory subsystem consisting of a single level cache
and a main memory built with the FPGA native BRAMs.
Considering the results obtained with MB-LITE, for operations
that directly map to CCS commands, a maximum speedup of
408× (for 1024 32-bit word vector operands) is shown. When
executing real-world application benchmarks (kNN, Matrix
Multiplication, and Linear Regression) the obtained speedups
range from 3× to 68×. The achieved energy efficiency im-
provements are also remarkable and can be as high as 328×
for operations that directly map to CCS.
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