
Exploiting Compute Caches for
Memory Bound Vector Operations
João Vieira∗, Paolo Ienne†, Nuno Roma∗, Gabriel Falcao‡, Pedro Tomás∗

∗INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
†École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
‡Instituto de Telecomunicações, Universidade de Coimbra, Portugal

Abstract—To reduce the average memory access time, most
current processors make use of a multilevel cache subsystem.
However, despite the proven benefits of such cache structures in
the resulting throughput, conventional operations such as copy,
simple maps and reductions still require moving large amounts of
data to the processing cores. This imposes significant energy and
performance overheads, with most of the execution time being
spent moving data across the memory hierarchy. To mitigate this
problem, a Cache Compute System (CCS) that targets memory-
bound kernels such as map and reduce operations is proposed.
The developed CCS takes advantage of long cache lines and data
locality to avoid data transfers to the processor and exploits the
intrinsic parallelism of vector compute units to accelerate a set of
48 operations commonly used in map and reduce patterns. The
CCS was validated by integrating it with an MB-Lite soft-core in
a Xilinx Virtex-7 VC709 Development Board. When compared
to the MB-Lite core, the proposed CCS presents performance
improvements in the execution of the commands ranging from
4x to 408x, and energy efficiency gains from 6x to 328x.

Index Terms—Compute caches, Memory bound operations,
Vectorization

I. INTRODUCTION

Memory-bound applications usually transfer large amounts
of data to the processing core just to apply rather simple
transformations such as map and reduce. This renders useless
the CPU resources as the memory subsystem cannot feed the
data at the desired rate.

Given the low complexity of such operations, Processing
in Memory (PIM) approaches, which move the computation
closer to the operands natural location have become increasingly
popular [2], [5]–[8]. Recently, some similar solutions based on
pushing the processing to the cache subsystem have also been
proposed [1], [3], [9], [10]. Both topics rely on performing some
modifications to the memory structures to enable near-data
computing, taking advantage of the high internal bandwidth
of the memory devices and enabling massive parallelism.
However, such solutions are often limited to a few elementary
bitwise logic operations, constraining its adoption for real-
world applications. Furthermore, this type of technology only
allows map-type operations.

In this paper, an ambitious acceleration infrastructure is
proposed by integrating a stream vector compute unit within a
conventional cache: the Cache Compute System (CCS). The
developed vector compute unit supports 48 arithmetic, shift and

logic operations that match most common parallel processing
patterns, namely, map and reduce.

In accordance, this manuscript presents the following novel
aspects and contributions:

• architecture of a cache compute unit that implements 48
arithmetic, shift and logic vector operations;

• feasible mechanism that takes advantage of long cache
lines and operands locality, exploiting massive parallelism
and avoiding moving data to the processing core;

• simple framework to program and control the CCS;
• independent operation (regarding the aggregated CPU),

allowing the CPU to concurrently operate over other data.
Each one of the previous features will be explained in detail

in the next section, followed by experimental results and some
conclusions.

II. CACHE COMPUTE SYSTEM ARCHITECTURE

The proposed CCS is depicted in Figure 1. It is defined as a
logical block that includes a conventional cache and the tightly
interconnected cache compute unit.

Cache Compute Unit 

C
O

M
M

A
N

D

ONE CACHE 
LINE PER CYCLE

RESULTS

FETCH DATA
FROM MEMORY

IF MISS AND
STORE RESULTS 

Cache Compute System (CCS)

MB-Lite
Core 

Cache

IN
TE

RC
O

N
N

EC
T

Main
Memory

Fig. 1. System overview integrating the processor, the CCS and the main
memory. The CCS is defined as the logic block that includes the cache and
the cache compute unit.

From the perspective of the CPU, the CCS behaves like
a memory device, while from the memory side it acts as
a conventional data requester. As such, standard memory
interfaces are used for both communication channels: the CPU
core has a single interface with the CCS, used for data transfers
and for the cache compute unit programming; the CCS has



two interfaces to the memory, one for the cache system and
another for the cache compute unit. Within the CCS, the cache
has two memory interfaces: one to the processor and another
to the cache compute unit. The processor and the CCS operate
independently, and while the cache compute unit reads the
operands or writes the results of a command, the processor is
free to operate over other data.

Since the processor has a single interface to the CCS, the
cache compute unit control registers are memory-mapped in the
processor’s addressing space. To program the cache compute
unit, the processor simply writes its control registers and signals
the unit to start. One of the cache compute unit control registers
indicates its readiness, making it possible to know when it is
idle and when the last issued command has finished. The other
programming registers provide the CCS with information about:
the command ID, the operands length, an optional constant,
the start addresses of the operands and the result, the stride
and the compute mask. Finally, there is also a programming
register responsible for starting the execution.

The devised CCS supports 48 arithmetic, shift and logic
vector operations that were chosen by taking into consideration
algorithms used in a wide range of application domains
including clustering, machine learning, cryptography, image
processing, biomedicine, and linear algebra.

A. Data processing structure

Figure 2 depicts the integration of the cache compute unit
within the CCS. To allow the implementation of both map and
reduce operations, the cache compute unit has two processing
parts: the first part corresponds to the two first levels of the
compute unit (L0 and L1), providing a parallel-input parallel-
output capability required to implement the map operations; the
remaining levels adopt a binary-tree shaped structure, required
to implement the reduce-type commands.

To satisfy all the commands supported by the proposed
architecture, the first two levels of the cache compute unit
have to support more operations (e.g., the second level of
the cache compute unit is the only one equipped with integer
multipliers, and the first level implements shift operations), as
shown in Figure 2. The levels responsible for the reduction-
type commands only implement subsets of the total arithmetic
and logic operations.

B. Operands fetch and result storage

The cache compute unit operands and result are described by
1-D descriptors composed of base address, stride, and length. To
execute a given operation, the operands are divided into groups
of N elements, where N corresponds to the vector unit length.
The cache compute unit loads each one of these partitions in
a sequential fashion: for VOP2 commands, it first loads one
operand, storing it in an input buffer, before proceeding to
the second operand; for VOP1 and VCOP, it skips the second
operand and iteratively fetches data from a single data input
stream. When fetching data, the cache compute unit uses the
existing cache structures. Hence, it first checks for a hit on the
cache, before issuing a cache line request to the main memory.

==

A A A A A AAAA

B B B B B BBBB

C C C C

C C C

C C

C

CCONTROL

M
U

X

L0

L1

L(LOG2N+2)

L(LOG2N+3)

A

SHIFTADD
SUB

RESULT

CONTROL

OVERFLOW

LOGIC

B

MULADD
SUB

RESULT

CONTROL

OVERFLOW

C

LOGICADD
SUB

RESULT

CONTROL

OVERFLOW

OUT1

OUT(LOG2N+2)

OUT(LOG2N+3)

OUT2

RESULT CCU

MISS CCU
MISS CPU

CPU CORE

MAIN MEMORY

C
C

S 
C

O
M

M
A

N
D

A
D

D
RE

SS
 +

 D
A

TA
 F

RO
M

 C
PU

A
N

SW
ER

 C
PU

CACHE

C
A

C
H

E 
C

O
M

PU
TE

 U
N

IT

Fig. 2. Datapath of the cache compute unit. The first two levels of the
binary structure are meant for maps and the remaining structure acts as a
reduction tree. Consequently, different levels are equipped with different units:
type-A unit–implements an adder/subtracter, a shift unit and a logic unit;
type-B unit–implements an adder/subtracter and an integer multiplier; type-C
unit–implements an adder/subtracter and a trimmed logic unit, capable of
performing a subset of the total logic instructions.

However, when loading data from memory, the operands are
forwarded to the cache compute unit and are not stored in
the cache. This avoids cache pollution, by reducing conflicts
between cache compute unit and processor data. To store the
command output, the CCS again relies on the cache existing
structures and policies for data allocation and write.

C. Mask generation and stride processing

When a command operates on vector operands, the stride
functionality is enabled. As long as the step is a power of two
smaller than the size of the cache line, a mask can be specified
in such a way that the only considered elements of the operands
will be the indexes that are multiples of the stride. However,
for all commands that involve multiple vectors (e.g., two vector
operands or one vector operand and a vector result), all the
elements need to have the same alignment in the cache for the



command to succeed. For striding and alignment correction
purposes, two masks are produced before the CCS command is
executed. The boundary mask, generated directly by the CCS,
is used to align the operands with the beginning and the end
of a cache line. The stride mask is generated by software and
each one of its bits is set to one when the index is multiple of
the stride. In the CCS, both masks are combined, generating
the execution mask, that determines which elements of the
operands will be considered when executing the command, and
which results are to be stored in memory. Map-type commands
only need the execution mask, but reduction-type commands
require a submask to be generated at each level of the reduction,
determining which elements are to be reduced to the next level.

D. CCS programming and operation

The implemented communication protocol allows the CPU
to interact with the CCS for three main purposes: (1) to
program a command, (2) to order the start of execution of
the previously programmed command, and (3) to check for
completion/readiness. The process of issuing a command to
the CCS consists of saving the configuration parameters in
the memory locations where the control registers of the cache
compute unit are mapped. To ease this procedure, a framework
was developed in order to release the programmer from the need
of understanding the low-level programming flow of the CCS.
This framework offers the following functions to program and
control the CCS, together with macros to define the commands:

• __ccs_setup(<args>): programs the CCS with the
required parameters;

• __ccs_start(): signals the CCS to start the execution
of the command previously programmed;

• __ccs_check(): (nonblocking) checks if the CCS is
ready to execute and returns a logic value;

• __ccs_wait(): blocks execution until the CCS is ready
to accept a new command.

Independently of the considered commands, the operand
length is not limited by the number of functional units of
the first level. Instead, larger operands can be specified and
hardware loops will process them in parts until they are all
consumed. For map-type commands, each partition of the
operands is fetched, processed and stored independently, while
for reduce-type commands, the partitioned operands are fetched
in sequence and the execution is pipelined.

III. EXPERIMENTAL RESULTS

The proposed CCS was prototyped in a Xilinx VC709
Development Board equipped with an XC7VX690T Virtex-7
FPGA, using Vivado 2018.1 software suite.

The base system considered an MB-Lite soft-core [4] with
a memory subsystem composed by: (1) the main memory,
implemented with Field-Programmable Gate Array (FPGA)
native Block RAMs (BRAMs), and (2) a single level cache.
The cache was designed to be direct-mapped with write-through
and write-not-allocate policies from the CPU point of view, and
write/read-not-allocate from the cache compute unit perspective.
The cache is composed of 16 lines, each with 2048-bits, plus

the tag and one validity bit per line. The size of the implemented
cache compute unit matches the size of the cache lines, and
the reduction tree (levels 3 to log2(N)+ 3) has 7 computation
levels (6 for reduction and 1 for accumulation).

Table I presents the required resources, frequency of op-
eration and power of the base system, the proposed CCS,
and the complete system. The presented values show that the
proposed CCS increases the hardware resources requirements,
which is justified by its greater amount of functional units.
Nevertheless, the system still uses less than 25% of the total
resources available in the considered device.

To measure the performance and energy efficiency improve-
ments relative to the base system, a set of microbenchmarks was
considered. For each microbenchmark, its sequential equivalent
was run in the MB-Lite and the execution time was measured.
All results were analyzed independently of the operating
frequency, being the latencies measured in clock cycles.

As shown in Figure 3, the use of the CCS provides consid-
erable speedups ranging from 4× (INITC) to 66× (ROLVV,
RORVV), and energy efficiency improvements between 6×
and 90×. This is mainly due to three factors explored by the
CCS: (1) intrinsic parallelism of the commands, (2) in-place
processing of data, and (3) mitigation of the loop control
required by the processor. Furthermore, both speedups and
energy efficiency improvements scale with the size of the
operands, as shown in Figure 4. In particular, for 32-bit vectors
of 1024 elements, the speedups scale up to 408×.

As shown in table I, the dynamic power requirements of the
CCS are significantly higher than the equivalent for the MB-
Lite. However, due to the order of magnitude of the achieved
speedups, there are still significant energy savings. For 1024
32-bit vector operands, the energy efficiency improvements can
be as high as 328×.

To complement this analysis, three different benchmarks
were adapted to use the proposed CCS: the k-Nearest Neigh-
bors, the integer Matrix Multiplication and the Linear Regres-
sion. The overall speedups obtained for these three algorithms
reach 68×, 54× and 3×, respectively, as shown in Figure 5.
While the parallelized phases of the Matrix Multiplication and

TABLE I
OCCUPIED HARDWARE RESOURCES, OPERATION FREQUENCIES AND POWER

REQUIREMENTS OF THE CONSIDERED SETUPS.

Base
System CCS Complete

System
Util. % Util. % Util. %

R
es

ou
rc

es

LUT 6351 2 87675 21 91596 22
LUTRAM 2053 2 7 1 7 1

FF 2483 1 13014 2 13368 2
BRAM 34 3 128 9 162 11

DSP 3 1 192 6 195 6
Frequency [MHz] 100 100 67*

P [W] Static 0.329 0.345 0.345
Dinamic 0.150 0.793 0.612

* The complete system maximum clock frequency decreases ∼ 30%
(regarding the individual systems) because of routing issues. Additional
CCS-to-MB-Lite pipeline stages were not introduced because it would
impact the performance of the MB-Lite.



Arith-VV

Arith-VC

COMP2

SQV

ABSV

Shift-VV

SRLVV

ROLVV, RORVV

Shift-VC

SRLVC

ROLVC, RORVC

Logic1-VV

Logic2-VV

Logic1-VC

Logic2-VC

NOTV

INITC

COPYV

ADDV

MAXV, MINV

Logic1-V

SSDVV

SADVV

IPVV

LESSVC

GRTRVC, EQUVC

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

V
O
P
2

V
C
O
P

V
O
P
1

COP

map

map

map

map

map

map

map

reduce

reduce

reduce

map

map

map

V
O
P
2

V
C
O
P

V
O
P
2

V
C
O
P

V
O
P
1

VOP1

Speedup

Energy efficiency improvement

A
ri
th
m
e
ti
c

S
h
if
t

Lo
g
ic

M
o
v
e

Fig. 3. Speedup and energy efficiency improvement provided by the CCS when
compared to equivalent sequential versions of the CCS commands running in
the MB-Lite. For comparison purposes, the execution latencies were measured
in clock cycles. The commands are classified accordingly to different criteria:
(1) Mathematical operation: arithmetic, logic, shift, or move; (2) Operands: two
vectors (VOP2), a vector and a constant (VCOP), a single vector (VOP1), or
only a constant (COP); (3) Functional operation: map or reduce. The designated
groups of commands include: Arith: ADD, SUB, MUL; Shift: SLL, SLA,
SRA; Logic1: AND, OR, XOR; Logic2: NAND, NOR, XNOR. The operations
SSDVV, SADVV and IPVV represent sum of square differences, sum of
absolute differences and dot product. The commands LESSVC, GRTRVC and
EQUVC produce a mask (same size of the vector operand) with the result of
the evaluated condition (less than, greater than or equal to).

the k-Nearest Neighbors consist of a single CCS command,
the Linear Regression sequentially takes 5 distinct commands,
which not only increases the programming overhead but also
does not allow to fully explore the CCS pipeline capabilities.

IV. CONCLUSIONS

A novel Cache Compute System (CCS) was introduced
to allow data processing and manipulation directly on-cache,
avoiding moving data from the memory hierarchy to the
processor core just to perform simple operations (such as
map and reduce). Furthermore, the developed CCS allows
the massive exploitation of parallelism and eliminates the
need for software-side loop control, which increases even
further its efficiency. It also provides support for hardware
loops, in case the vector operands are longer than cache
lines. The proposed CCS was integrated with an MB-Lite
soft-core using a memory subsystem consisting of a single
level cache and a main memory built with the FPGA native
BRAMs. For operations that directly map to CCS commands,

128 256 384 512 640 768 896 1024

Size of the vector operands

0

100

200

300

S
p
e
e
d
u
p

ADDVV

ADDV

SADVV

IPVV

128 256 384 512 640 768 896 1024

Size of the vector operands

0

50

100

150

200

250

300

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 i
m

p
ro

v
e
m

e
n
t

ADDVV

ADDV

SADVV

IPVV

Fig. 4. Obtained speedups and energy efficiency improvements with 4 CCS
commands when compared to their sequential versions executing in the MB-
Lite for different vector operands sizes.

0 10 20 30 40 50 60 70

Average speedup

Linear regression

Matrix Multiplication

k-Nearest Neighbors

Fig. 5. Obtained speedups when running three application benchmarks partially
executed in the CCS: the k-Nearest Neighbors (with 64 coordinates per sample,
k = 4, 64 control samples and 1 sample to classify), the integer Matrix
Multiplication (64× 64 matrices), and the Linear Regression (64 2D points).

the obtained results show a maximum speedup of 408× (for
1024 32-bit word vector operands). When executing real-
world application benchmarks (kNN, Matrix Multiplication,
and Linear Regression) the obtained speedups range from 3×
to 68×. The achieved energy efficiency improvements are also
remarkable and can be as high as 328× for operations that
directly map to CCS commands.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support
from Fundação para a Ciência e a Tecnologia (FCT) under
projects UID/CEC/50021/2013, UID/EEA/50008/2013, and
PTDC/EEI-HAC/30485/2017 (HAnDLE).

REFERENCES

[1] Shaizeen Aga et al. Compute caches. In HPCA, pages 481–492. IEEE
Computer Society, 2017.

[2] Junwhan Ahn et al. Pim-enabled instructions: a low-overhead, locality-
aware processing-in-memory architecture. In ISCA, pages 336–348. ACM,
2015.

[3] Reetuparna Das. Blurring the lines between memory and computation.
IEEE Micro, 37(6):13–15, 2017.

[4] Tamar Kranenburg et al. MB-LITE: A robust, light-weight soft-core
implementation of the microblaze architecture. In DATE, pages 997–1000.
IEEE Computer Society, 2010.

[5] Shuangchen Li et al. Pinatubo: a processing-in-memory architecture for
bulk bitwise operations in emerging non-volatile memories. In DAC,
pages 173:1–173:6. ACM, 2016.

[6] Shuangchen Li et al. DRISA: a dram-based reconfigurable in-situ
accelerator. In MICRO, pages 288–301. ACM, 2017.

[7] Vivek Seshadri et al. Fast bulk bitwise AND and OR in DRAM. Computer
Architecture Letters, 14(2):127–131, 2015.

[8] Vivek Seshadri et al. Ambit: in-memory accelerator for bulk bitwise
operations using commodity DRAM technology. In MICRO, pages
273–287. ACM, 2017.

[9] Arun Subramaniyan et al. Cache automaton. In MICRO, pages 259–272.
ACM, 2017.

[10] Arun Subramaniyan et al. Parallel automata processor. In ISCA, pages
600–612. ACM, 2017.


	Introduction
	Cache Compute system architecture
	Data processing structure
	Operands fetch and result storage
	Mask generation and stride processing
	CCS programming and operation

	Experimental results
	Conclusions
	References

