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ABSTRACT

Exploiting model sparsity to reduce ineffectual computation is a

commonly used approach to achieve energy efficiency for DNN

inference accelerators. However, due to the tightly coupled cross-

bar structure, exploiting sparsity for ReRAM-based NN accelerator

is a less explored area. Existing architectural studies on ReRAM-

based NN accelerators assume that an entire crossbar array can

be activated in a single cycle. However, due to inference accuracy

considerations, matrix-vector computation must be conducted in

a smaller granularity in practice, called Operation Unit (OU). An

OU-based architecture creates a new opportunity to exploit DNN

sparsity. In this paper, we propose the first practical Sparse ReRAM

Engine that exploits both weight and activation sparsity. Our eval-

uation shows that the proposed method is effective in eliminating

ineffectual computation, and delivers significant performance im-

provement and energy savings.

CCS CONCEPTS

• Computer systems organization → Neural networks; Spe-

cial purpose systems; • Hardware→ Memory and dense storage.

KEYWORDS

Neural network, sparsity, ReRAM, accelerator architecture

1 INTRODUCTION

Deep neural networks (DNNs) have recently emerged as a highly

effective solution for many classification and regression tasks, in-

cluding image classification [26], object detection [39], and speech

recognition [4]. Modern DNN models [26, 39, 41] are significantly

larger than those used in the 1990s [10], requiring 138MB [41] for

filter weight storage, 77MB [2, 41] memory accesses, and thousands

to millions of computation operations per input activation. As the

size of DNN models continues to grow, along with increasing accu-

racy and the ability to solve more complex problems, their intensive
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computing and memory demands introduce performance and en-

ergy efficiency challenges to the underlying processing hardware.

Memristor-based neural network accelerators have been shown

to be a promising solution to meet the performance and energy effi-

ciency challenges for DNN inference. In contrast to the conventional

von Neumann architecture, where computation and data storage

are separate, emerging memristor devices such as resistive random

access memory (ReRAM) [22] are able to perform arithmetic opera-

tions beyond data storage. Recent works have demonstrated that

ReRAM crossbar arrays can be used to efficiently perform matrix-

vector multiplication in convolution and fully-connected layers of

DNNs [9, 23, 40]. By storing filter weights as the conductance of

ReRAM cells and converting input feature maps into input volt-

age signals, we have the dot-product results (output feature maps)

at the end of the bitlines in ReRAM crossbar arrays. With such

computing-in-memory capability, memristor-based DNN acceler-

ators can reduce data movement and provide significant energy

savings compared to CPU and GPU based DNN acceleration plat-

forms [9, 40].

Despite this promising potential, the development of ReRAM-

based DNN accelerators is still in its early stage and there remain

challenges to overcome. One primary concern is how to efficiently

exploit sparsity, which is commonly done in digital CMOS-based

accelerators to improve energy efficiency [1, 8, 16, 36, 49]. Many

studies have shown that common neural networks have signifi-

cant redundancy in filter weights and can be pruned dramatically

during training without substantially affecting accuracy [18]. In

addition to weight sparsity, a massive amount of input activations

are zeros in typical neural network models [15, 32], as many neural

networks employ the ReLU function which clamps all negative

activation values to zero as their nonlinear operator. Furthermore,

in ReRAM-based DNN accelerators, there exists a finer-level of

sparsity granularity to be exploited, bit-level sparsity, due to the

cell bit-density and limited wordline driver resolution. Eliminating

zero values in filter weights and input activations are important for

both performance and energy. However, due to the tightly coupled

crossbar structure, it is difficult to exploit sparsity efficiently in

ReRAM-based DNN accelerators.

In a ReRAM crossbar architecture, weights stored in the same

wordline need to multiply to the same input, and accumulated

currents flowing through the same bitline contribute to the same

output. Sparsity can only be exploited when the entire wordline or

bitline cells contain zeros. Similarly, the sparsity of feature maps
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can be leveraged when the input bits to the crossbar array are all

zeros in the same cycle. A structural pruning algorithm [45] has

been proposed to regularize the distribution of zero weights, so that

more all-zero rows and columns can be found. SNrram [44] seeks to

enable fine-grained column compression at the cost of high output

indexing overhead.

Existing sparsity solutions [24, 44] are based on an over-idealized

ReRAM crossbar architecture [9, 40]. Most existing ReRAM-based

DNN accelerators published in the architectural community over-

look the accumulated effect of per-cell current deviation on infer-

ence accuracy, as well as the overhead fromADC. Thus they assume

that an entire 128×128 or 256×256 crossbar array can be activated

in a single cycle. However, in practice, to achieve satisfactory in-

ference accuracy, matrix-vector multiplication in ReRAM-based

DNN accelerators must proceed at a smaller granularity, called an

Operation Unit (OU) [31]. For example, only nine wordlines and

eight bitlines are turned on concurrently within a 512×256 cross-

bar array in a state-of-the-art ReRAM macro designed for DNN

acceleration [6]. Therefore, a practical OU-based ReRAM acceler-

ator is very likely to deliver lower performance compared to an

over-idealized design like ISAAC [40] or PRIME [9] since less com-

putation is done in one cycle. However, unlike the over-idealized

design, in which the entire crossbar array operates in one cycle,

each OU in a crossbar is activated independently. This opens up a

new design opportunity for sparsity exploration in a ReRAM-based

DNN accelerator.

In this paper, we propose the first practical Sparse ReRAMEngine

(SRE) that takes advantage of fine-grained OU-based computations

to jointly exploit weight and activation sparsity. Weight compres-

sion can be done at the OU level in either the row or column di-

mension. Row-based compression requires input indexing to fetch

the correct inputs for compressed weights, while column-based

compression requires output indexing. For activation compression,

a naive approach for OU-based ReRAM architecture is to skip an

OU computation when inputs to all the wordlines of the OU are

zeros. We exploit activation sparsity further with Dynamic OU For-

mation, a novel method which activates non-contiguous wordlines

with non-zero input values in the same cycle to form an OU unit

at run-time. This method works perfectly with row-wise weight

compression to allow for joint exploration of weight and activation

sparsity for ReRAM-based DNN accelerators. Evaluation results

show that, for neural networks that use the structural pruning

algorithm [45] to regularize weight sparsity during training, SRE

provides up to 42.3x performance speedups (average 13.1x) and up

to 95.4% energy savings (average 85.3%) over a baseline that does

not exploit sparsity.

In summary, this paper offers the following contributions:

• We study the design challenges of sparsity exploration on

ReRAM-based DNN accelerators, and show that a practical OU-

based design enables new opportunities to effectively exploit DNN

sparsity. To our best knowledge, this is the first sparsity exploration

work that targets a practical hardware design for ReRAM-based

accelerators instead of an over-idealized architecture.

•We propose a sparse ReRAM engine (SRE) to jointly exploit

weight and activation sparsity, with only minimal indexing over-

head. Our design takes advantage of fine-grained OU-based compu-

tations and combines row-wise weight compression with dynamic

wordline activation to provide significant performance speedup

and energy savings.

•We also compare SRE with the over-idealized ReRAM archi-

tecture, which overlooks the inference accuracy loss caused by the

accumulated effect of per-cell current deviation. We show that SRE

successfully enables a practical ReRAM-based DNN accelerator

design , which achieves satisfactory inference accuracy considering

the limitation of ReRAM cell reliability while delivering comparable

performance and energy efficiency with the over-idealized ReRAM

DNN accelerator.

The rest of the paper is organized as follows. Section 2 provides

background on the architecture of ReRAM-based DNN accelerator

and its challenges in exploiting DNN sparsity. The practical OU-

based ReRAM accelerator design is introduced in Section 3, and the

new opportunities to exploit weight and activation sparsity in such

OU-based design is discussed in Section 4. The proposed Sparse

ReRAM Engine is explained in details in Section 5. Section 6 and

Section 7 describe evaluation methodologies and results, followed

by a summary of related work in Section 8. Finally, we conclude

the paper in Section 9.

2 BACKGROUND

2.1 ReRAM-based DNN Accelerator
Architecture

Figure 1 shows the generic ReRAM-based DNN accelerator archi-

tecture assumed in a few works [24, 40]. The ReRAM-based deep

learning accelerator is composed of multiple processing engines

(PEs) connected with on-chip interconnects. Each PE consists of

multiple computation units (CUs), each of which has multiple cross-

bar arrays, which are responsible for the acceleration of matrix-

vector multiplications in convolution and fully-connected layers.

By storing filter weights as the conductance of ReRAM cells and

converting input feature maps into input voltage signals, we can

obtain the dot-product results (output feature maps) by reading out

the accumulated currents on the bitlines. A wordline driver (WLD)

such as a digital-to-analog converter (DAC) or an inverter [40] is

connected to each wordline of the ReRAM crossbar array to con-

vert the input feature map data to input voltages. The accumulated

currents on the bitlines (sum-of-products results) are read out by

sample-and-hold (S&H) circuits and fed to the shared analog-to-

digital converters (ADCs). In addition to the crossbar arrays, there is

one on-chip eDRAM buffer in each PE for temporarily storing input

and output feature maps. A non-linear function unit and a pooling

unit are also included in the PE to support the implementation of

the non-linear function and pooling layer in the neural network.

Figure 2 shows a high-level view of how to map filter weights

to a crossbar array for a convolution layer with a 4×4×2 feature

map and four 2×2×2 filters. The weights of one filter are mapped to

the cells of one bit line. In an ideal ReRAM-based DNN accelerator

design [24, 40], all the wordlines in the crossbar array can be acti-

vated concurrently in a single cycle. At every cycle, a 2×2×2 input

vector of the input feature map is converted to the input voltages

of the crossbar array via the WLD. The input sliding window (the

red rectangular box in the figure) then shifts right (or down) and

the corresponding input vector is fed into the crossbar array in

the next cycle. Due to the limited WLD resolution and ReRAM cell
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Figure 1: ReRAM-based DNN accelerator architecture.

Figure 2: Mapping of filter weights and feqture maps to a

crossbar array.

density, in practice, the input vector is decomposed and fed into

wordlines using multiple clock cycles, and each data in the original

filter weight is also decomposed and mapped onto different bitlines

as illustrated in Figure 3. For simplicity, we show the mapping re-

sult of the weights only in the first channel of the filters. In this

example, suppose that four filters are mapped to the 4×8 crossbar

array: the WLD resolution is one-bit, each cell can store two bits,

the precision of each feature map data is 2-bit, and the precision of

each filter weight is 4-bit. So each 4-bit filter weight is decomposed

into two concatenated 2-bit values and thus the weights of each

filter span two bit-lines. Similarly, due to limited WLD resolution,

the 2-bit input feature map is separated into LSB and MSB groups

and fed into wordlines sequentially. In this example, to compute

the output neuron for the first input sliding window [1, 2, 3, 1], the

data we feed into the input register after decomposition are [1, 0, 1,

1] and [0, 1, 1, 0]; it costs two cycles to get the LSB and MSB part

of the output neuron.

Figure 3: Mapping of filter weights and feature maps to a

crossbar array after value decomposition.

2.2 Challenges in Exploiting DNN Sparsity in
ReRAM-based DNN Accelerator

Recent studies show that most neural network models have signifi-

cant amounts of zeros in filter weights and input activations [3];

pruning zero weights and skipping zero activations can help to

reduce resource consumption without accuracy loss. In typical

deep learning models, about 50% to 70% of input activations are ze-

ros [36], as many neural networks employ the ReLU function, which

clamps all negative activation values to zero as their non-linear

operator. To further create weight sparsity, algorithmic techniques

such as quantization [17], low-rank matrix factorization [12], and

�1-norm regularization [28] have been proposed to prune the net-

work during training. Such high-degree sparsity in input activations

and filter weights provides great potential for the underlying deep

learning hardware platforms to achieve better performance and en-

ergy efficiency. In addition to the sparsity presented in NN models,

there exists a finer-level of sparsity granularity to be exploited in

ReRAM-based DNN accelerators, bit-level sparsity. As explained in

Section 2.1, since a ReRAM cell can store only a limited number of

bits, filter weights are decomposed and mapped to multiple bitlines.

Similarly, the input vector is decomposed and fed into wordlines

using multiple clock cycles, as the WLD has limited resolution. This

introduces more opportunities to exploit sparsity for ReRAM-based

DNN accelerators. Figure 4(a)(b) shows how the weight (input)

sparsity increases as the bits-per-cell (DAC resolution) decreases.

Figure 4: (a) Weight density (fraction of non-zero ReRAM

cells) and (b) input density (fraction of non-zero input volt-

ages) of VGG-16 after decomposition.

However, even though there are inherently more ineffectual

computations for ReRAM-based DNN accelerators to exploit than

digital DNN accelerator designs, the coupled crossbar structure

makes it difficult to efficiently exploit sparsity in ReRAM-based

DNN accelerators. As we observe from the example in Figure 3, the

cell at the 1st wordline and 2nd bitline is zero, but we cannot shift

up the rest of the cells of the corresponding bitline (2nd bitline),

since the shifted weights would then be multiplied by a wrong input

value. Hence for ReRAM-based accelerators, we must find all-zero

rows/columns of a crossbar array for compression. To increase the

possibility of all-zero rows/columns, Ji et al. [24] propose ReCom,

which uses SSL [45] to regularize the distribution of zero weights, so

that more all-zero rows and columns can be found. However, with

ReCom, there are still many zero weights left in the compressed

model. SNrram [44] compresses the model at a finer level, i.e., all-

zero filters in structurally compressed neural networks. As the size

of a filter is usually smaller than a column, SNrram better exploits

sparsity than ReCom [24]. However, this finer granularity comes at

the expense of an output indexing module which incurs significant

storage overhead.
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To exploit activation sparsity, ReRAM-based accelerators also

face a new challenge. In contrast to digital accelerators in which the

arithmetic unit sequentially computes each individual input value,

ReRAM’s crossbar array handles the computation of multiple inputs

in parallel, as shown in Figure 3. Even though a zero-valued word-

line such as the 2nd wordline at the first cycle in Figure 3 does not

consume power, a single zero-valued wordline cannot be exploited

to reduce execution time. Activation sparsity can be exploited for

performance improvement only when all the decomposed input

bits fed into the crossbar array in a single cycle are all zeros.

3 A PRACTICAL ReRAM ACCELERATOR
ARCHITECTURE

In a practical ReRAM-based DNN accelerator, only a limited number

of wordlines and bitlines in a crossbar array can be activated in a

single cycle [6, 42, 47]. The maximum number of wordlines that

can be turned on concurrently depends on accuracy limitations,

while the number of bitlines that can be concurrently activated

is constrained by the number of ADCs connected to a crossbar

array and the throughput of each ADC. For example, only nine

wordlines and eight bitlines are turned on concurrently within a

512×256 crossbar array in a state-of-the-art ReRAMmacro designed

for DNN acceleration [6].

Turning on a massive number of wordlines concurrently makes

it difficult for the ADC to accurately read out the sum-of-product

values accumulated on the bitline [31]. As ReRAM cells are non-

ideal [5, 31], the per-cell current deviation accumulates on the

bitline and leads to overlap with neighboring states (i.e., sum-of-

product values) in the accumulated current distribution. The over-

lap with neighboring states makes it difficult for the ADC with its

limited sensing margin to differentiate between different states [6].

Thus, if all of the wordlines in a crossbar array are turned on simulta-

neously, an incorrect sum-of-products result can be produced, even

though none of the cell stores an error value [6, 13, 31]. When too

many wordlines are activated concurrently, the sum-of-products er-

rors per bitline degrade the inference accuracy of neural networks.

We use DL-RSIM [31] to analyze the inference accuracy of dif-

ferent neural networks when various numbers of wordlines are

activated concurrently1, as shown in Figure 5. Since oxide-based

ReRAM has good electronic properties (high density, low switching

energy, and high endurance) [14, 46] and thus is commonly de-

ployed in latest ReRAM-based DNN accelerator studies [6, 42, 47],

we use one of the oxide-based ReRAM, WOx ReRAM [22], for our

evaluation. We choose the R-ratio and resistance-deviation (σ ) of
WOx ReRAM [22] as the baseline setting (Rb and σb ), and analyze
the inference accuracy for three different ReRAM cells: the cells

with (R-ratio, σ ) = (Rb , σb ), (2 × Rb , σb/2), and (3 × Rb , σb/3). As
shown in the figure, the inference accuracy decreases when the

number of concurrently activated wordlines increases. Turning

on all of the wordlines in a 128×128 crossbar array degrades the

inference accuracy to an unacceptable level. Increasing R-ratio and

reducing σ can help to improve the inference accuracy by shrink-

ing the overlap with neighboring states in the accumulated current

distribution to reduce ADC sensing errors. Nevertheless, even if

advances in technology enable the R-ratio/σ to increase/shrink by

1The evaluated NN models are described in Section 6.

Figure 5: Inference accuracy of (a) MNIST, (b) CIFAR-10,

and (c) CaffeNet when various number of wordlines are ac-

tivated concurrently, with three different types of ReRAM

cells. Rb and σb are the R-ratio and resistance-deviation of

WOx ReRAM [22].

3x of the WOx ReRAM [22], the inference accuracy drops consid-

erably, especially at CaffeNet, when more than 16 wordlines are

activated concurrently.

In addition to the limitation on the number of concurrently ac-

tivated wordlines, the number of bitlines that can be turned on

simultaneously is constrained by the number of ADCs connected

to a crossbar array and ADC’s throughput. Since an ADC consumes

a significant amount of power and chip area [40], in practical de-

signs multiple bitlines share an ADC [6, 42]. In addition, when

considering the area and power constraints of an accelerator chip,

it is impractical to deploy higher-frequency ADCs. Thus, in the

state-of-the-art ReRAM macro designed for DNN acceleration [6],

only a limited number of bitlines can be operated in a single cycle.

Considering the constraints on the number of concurrently ac-

tivated wordlines and bitlines, a practical ReRAM accelerator can

only perform a portion of dot-product computation in a convolution

or fully-connected layer within a cycle. We define the maximum

amount of dot-product computations that can be performed within

a single cycle in a crossbar array as an Operation Unit (OU), with

at most SWL wordlines and SBL bitlines activated concurrently.

Note that an OU-based architecture does not physically split a large

crossbar into smaller ones. It activates a smaller section (OU) of

a crossbar array within a single cycle. As shown in Figure 6, an

additional wordline activation vector is used to indicate which

wordlines should be turned on. Assuming the OU size is 2×2, then

only two entries in the wordline activation vector are set to 1. A

2-to-1 multiplexer is connected to each DAC to determine the on/off

state of the wordline. When operating the crossbar array in normal

memory mode to store synaptic weights in ReRAM cells after of-

fline training, the NN_mode signal is set to 0 and the on/off state of

each wordline is specified by the row decoder. During the inference

process, the NN_mode signal is set to 1 and the on/off state of each

wordline is specified by the wordline activation vector. The mul-

tiplexers and the wordline activation vector induce only minimal

peripheral overhead.

Figure 7 shows an example of the OU-based dot-product com-

putation for a crossbar array with a 2×2 OU size. Assuming we

perform the dot-product computation in the order OU1, OU2, OU3,

and OU4, the corresponding wordlines are activated in eight differ-

ent cycles, as marked by C1 to C8 in the figure. The dot-product

results of different OUs that share the same set of bitlines, such as

OU1 and OU2, are added together before the shift-and-add circuit

assembles the final result based on the bit position of the input and
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Figure 6: Wordline driver in OU-based ReRAM accelerator.

Figure 7: OU-based dot-product computation.

synaptic weight. For example, at the first cycle, the matrix-vector

multiplication of OU1 and the LSB of the first two values in the

input sliding window [1, 0] is performed to obtain the output [1, 0].

The matrix-vector multiplication of OU2 and the LSB of the rest of

values in the input sliding window [1, 1] is then performed at the

second cycle to yield the output [3, 4]. The output of OU1 and OU2

are added together, resulting in the summed output [4, 4] before

being assembled by the shift-and-add circuit.

For the example shown in Figure 7, it takes two cycles for an

over-idealized design described in Section 2.1 to complete the dot-

product computation, while the OU-based design requires eight

cycles. However, since fewer wordlines are activated in one cycle,

lower-resolution ADCs can be deployed in the OU-based design.

Thus, as the sensing speed of an ADC is proportional to the ADC’s

bit-resolution [38], the ADC sensing time in an OU-based archi-

tecture is shorter. Compared to the trivial RC delay (around 10ps

for a 100×100 crossbar array [35]), ADC sensing time brings a

much larger impact on the operating speed of a ReRAM crossbar

array [47]. Hence, the cycle time of a ReRAM-based DNN accelera-

tor is dictated by the slowest ADC sensing stage and the OU-based

architecture could achieve shorter cycle time compared with the

over-idealized counterpart.

4 NEW OPPORTUNITY FOR EXPLOITING
SPARSITY IN OU-BASED ReRAM
ACCELERATOR

The OU-based ReRAM accelerator creates new opportunities to

exploit DNN sparsity. Unlike the over-idealized design where an

entire crossbar array operates in a single cycle, eachOU in a crossbar

is activated independently. This naturally enables us to exploit a

finer granularity of weight and activation compression.

4.1 Weight Compression

There are two ways to exploit weight sparsity: OU-row compression

and OU-col compression. In Figure 8, we use an example with a 4×4

crossbar size and a 2×2 OU size to illustrate these two different

types of weight compression, assuming 1-bit WLD resolution and

two bits of storage for each ReRAM cell. Figure 8(a) shows the

original weight mapping and computation sequence before row

compression. The first four weights (marked in green) of Filters 1

and 2 are mapped into the crossbar. The decomposed value of the

first four feature map elements (marked in green) in the first input

sliding window of the convolution are fetched to the Input Register

and sequentially fed into wordlines. It takes four cycles to complete

the LSB part of inputs and another four cycles to complete the MSB

part, in order to get the dot-product results of the first four output

channels (O1 to O4) in this window of convolution.

OU-Row Compression

Row-based compression at the OU level eliminates zero row vec-

tors and shifts the remaining row vectors up. In Figure 8(a), we

observe that all the weights of the 2nd row vector in OU1, the 1st

row vector in OU2, the 1st row vector in OU3, and the 2nd row vec-

tor in OU4 are zeros. As no crossbar rows are completely composed

of zeros, the dot-product computation of these zero weights cannot

be skipped in an over-idealized design where the entire crossbar

array operates concurrently. With OU-row compression, we can

remove these zero rows within each OU and shift the remaining

rows up, as shown in Figure 8(b). From this illustration, we see

that the input order is different from the original, as some rows

of weights are skipped. For OU1 and OU2, the 1st , 4th , 5th , and

6th element (with indexes 0, 3, 4, and 5) of the feature map’s input

sliding window are to be fetched to the Input Register, while for

OU3 and OU4, the 2nd , 3rd , 5th , and 6th element (with indexes 1, 2,

4, and 5) of the feature map’s input sliding window are to be fetched.

Hence, to support OU-row compression, we need an input index

buffer to store input indexes and an input indexing unit to fetch

the correct inputs for compressed weights. For every column-wise

OU group (e.g., OU1 and OU2 belong to the same column-wise OU

group), an eDRAM access is required to fetch correct inputs to the

Input Register based on the input indexes. Thus, for this example,

two eDRAM accesses are required to support OU-row compression,

as there are two column-wise OU groups and every column-wise

OU group has its own input indexes. Note that as OU-row compres-

sion does not change the output channel mapped to each bitline,

no output indexing is needed. In this example, the convolution of

more feature map elements (6 elements) can be done in 8 cycles

when OU-row compression is applied; the skipped computations

with zero weights reduce energy consumption.

OU-Col Compression

In a similar fashion, OU-level column-based compression elimi-

nates zero column vectors and shifts the remaining column vectors

left. In Figure 8(a), we see that all the weights of the 2nd column

vector in OU1 and the 2nd column vector in OU4 are zeros. As

no crossbar columns are completely composed of zeros, the dot-

product computation of these zero weights cannot be skipped in an
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Figure 8: Example of weight compression. (a) Original OU-

based computation without zero reduction, (b) OU-row com-

pression, and (c) OU-col compression.

over-idealized design. With OU-col compression, we can remove

these zero columns and shift the remaining columns left, as shown

in Figure 8(c). From this illustration, we see that the output order is

different from the original, as some of the columns of the weights

within an OU are skipped. In the original scheme, the mapping

between the output current of each bitline and the output chan-

nel (Oi) is fixed. When OU-col compression is applied, for OU1,

the output current of the 2nd bitline should be mapped to the 3rd

output channel. For OU3, the output current of the 1st /2nd bitline

should be mapped to the 4th /5th output channel, while for OU4,

the output current of the 2nd bitline should be mapped to the 5th

output channel. Note that OU-col compression does not change

the input order. In this example, in addition to Filters 1 and 2, the

convolution with the MSB part of the first four elements of Filter

3 can also be done within 8 cycles when OU-col compression is

applied; the skipped computations with zero weights reduce energy

consumption.

4.2 Activation Compression

One naive way to exploit activation sparsity for the OU-based

ReRAM architecture is to skip an OU computation when the inputs

concurrently feed into all the wordlines of the OU are zeros. To

exploit activation sparsity further, we propose a method called Dy-

namic OU Formation (DOF). In the example shown in Figure 8(a),

we observe that the input bits feed into the 2nd and 3rd wordlines

are zeros when we first compute the LSB part of inputs. The com-

putation associated with these two wordlines cannot be skipped in

the aforementioned naive method, as these two wordlines belong

to different OUs. The idea of DOF is to activate the 1st and 4th

wordlines together in the same cycle for computing the LSB part of

inputs, as shown in Figure 9. That is, a virtual OU execution unit

is formed dynamically. With DOF, we can skip the 2nd and 3rd

wordlines for the computation of LSB part of inputs, and also the

1st and 4th wordlines for the MSB part of inputs. As a result, we

need only 4 cycles instead of 8 cycles to complete the convolution

in this example; the skipped computations save on energy use. Note

that DOF does not change the output channel associated with each

bitline; every activated wordline within a dynamically formed OU

must follow the same output indexing to guarantee correctness.

Figure 9: Dynamic OU Formation.

To jointly exploit DOF and weight compression, we must adopt

row-wise compression for weights, as row-wise compression does

not change the bitline-to-output-channel mapping. With column

compression, the same bitline shared by different OU blocks may

be mapped to different output channels. For the example shown in

Figure 8(c), after column compression, the output current of the 2nd
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Figure 10: Wrong output when combining DOF with OU-col

compression.

Figure 11: Sparse ReRAM Engine.

bitline inOU1 andOU2 is mapped to the 3rd and 2nd output channel

respectively, and the output current of the 1st bitline in OU3 and

OU4 is mapped to the 4th and 3rd output channel respectively. If we

attempt to apply DOF, as shown in Figure 10, the partial sum of the

dynamically formed OU may accumulate the currents associated

with the convolution of different filters and thus the value of the

output channel may be wrong. For example, in Figure 10, the 2nd

bitline of the dynamically formed OU1 wrongly accumulates the

output currents that should be mapped to the 2nd and 3rd output

channels.

5 SPARSE ReRAM ENGINE

In this section, we present the Sparse ReRAM Engine (SRE), in

which we use the techniques described in Section 4 (OU-Row Com-

pression + Dynamic OU Formation) for exploiting both weight and

activation sparsity. Figure 11 shows the architecture and dataflow

of the proposed Sparse ReRAM Engine inside a PE. The weight ma-

trices are first compressed offline using OU-based row compression

(ORC) and the corresponding input indexing information is also

generated. In each CU, the Input Index Buffer is used to store the

input indexing information for the filter weights mapped to this

CU. To reduce the storage overhead for input indexes, we store

the index difference instead of the absolute values, similar to the

approach in [49]. The Wordline Vector Generator produces the

wordline activation vector at each cycle to support Dynamic OU

Formation. Below we describe the Index Decoder, the Wordline

Vector Generator, and the SRE pipeline in details.

Figure 12: Input index encoding.

5.1 Index Decoder

To reduce the index storage overhead, we store index differences

instead of absolute values. Figure 12 shows an example: in (a), we

see that the non-zero row vectors correspond to index values 1,

3 and 9, and so on. Thus, instead of storing 1, 3, and 9 in the In-

put Index Buffer, we store the index differences: 1, 2 and 6. Hence

one encoded index of an input address requires log2 max_dist bits,

where max_dist is the maximal difference between two non-zero

row vectors in the target model. Thus the index storage overhead

varies for different models. To bound the storage overhead, we

adopt zero-padding [17], in which filler zeros are added if the in-

dex difference exceeds the largest unsigned number that can be

represented with the target number of index bits. In the example

shown in Figure 12, if we limit the number of index bits to 2, the

third encoded index value is 6, which exceeds the bound. In this

case, as shown in Figure 12(b), we insert a zero row at index 7 in the

compressed weight matrices. As doing so reduces the index storage

overhead but also affects the weight compression ratio, the index

length (target number of index bits) should be chosen carefully,

considering this tradeoff for each model.

The decoding procedure for encoded index values uses prefix

sum operations, as illustrated in Figure 13. The Index Decoder is

an implementation of Hillis and Steele’s algorithm [21] for parallel

prefix sum, as shown in Figure 14. The decoder width depends on

the required decoding throughput. In Section 5.3, we discuss this

issue further.

Figure 13: Input index decoding.

5.2 Dynamic OU Formation

Figure 15 shows the required hardware support for Dynamic OU

Formation. The Wordline Vector Generator module decides which

wordlines should be activated within a cycle to dynamically form

a virtual OU execution unit. The example illustrated in Figure 15

assumes 1-bit DAC resolution, 8 wordlines in a crossbar, and a 2×2

OU size. The decomposed input values (1-bit values in this example)

are passed to the mask vector to mark non-zero inputs2. Then a

2If DAC resolution is larger than 1 bit, the decomposed input values are passed through

logic circuits that are able to mark non-zero inputs to form the mask vector.
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Figure 14: Circuit implementation of parallel prefix sum.

prefix sum operation is performed on this mask vector. Thus the

value in the i-th element of the prefix-sum vector indicates the

number of non-zero inputs between wordline 0 and wordline i . In
this example, we need to find two wordlines with non-zero inputs

at every cycle and mark the entries of these two wordlines in the

wordline activation vector. To achieve this goal, we use the prefix-

sum vector, the mask vector, and a set of comparators to perform a

condition check. At cycle c , the wordlines that need to be activated
are wordline j, which satisfies

(1 + (c − 1)SWL ≤ Prefix_sum[j] < 1 + c · SWL) & mask_vector[j],

where SWL is the number of wordlines in an OU (SWL=2 in this

example). To implement this condition check, counters L and H are

set initially to 1 and 1+SWL , and incremented by SWL every cycle.

Figure 15: Wordline Vector Generator.

5.3 SRE Pipeline

Figure 16 shows the pipeline diagram of the SRE engine. Each OU

computation is completed in one cycle and the outputs of the OU

computation are latched in the S&H circuit. In the next cycle, these

outputs are fed to the ADC unit. The result of the ADC is then fed

to the shift-and-add unit (S+A), where the result is assembled with

the data stored in the output register (OR) based on the bit position

of the inputs and synaptic weights. These three stages (OU, ADC,

and S+A OR Wr) are executed in a pipelined manner to produce

the convolution result of each output neuron.

Before each OU computation, we must fetch the associated in-

puts and activate the corresponding wordlines. To support ORC

and DOF, for a crossbar array with n wordlines, we must fetch n
inputs (termed a batch) at a time from the on-chip eDRAM buffer to

the input register (IR), based on the indexes decoded by the Index

Decoder. The Wordline Vector Generator (WL Vec Gen) then gen-

erates one wordline activation vector from the batch at each cycle

to specify which wordlines should be concurrently activated in the

Figure 16: Pipelined execution in SRE.

next cycle to perform the OU computation. Except for the first batch

of input data, index decoding (Index Decod) and input data fetching

(On-chip Buffer Rd + IR) can be performed concurrently with the

OU computation, as shown in Figure 16. The number of cycles

required to process a batch of inputs depends on the results of the

Dynamic OU Formation. In the extreme case, no OU computation

is required for one input batch if all of the input values in the batch

are zeros. Thus, to minimize pipeline stalls, index decoding must

be completed within one cycle; likewise for input data fetching.

The cycle time of the SRE pipeline is dictated by the slowest

stage, which is the sensing of the OU computation result (ADC

stage). In the 65nm ReRAM macro [6] with 3-bit sensing resolution,

the clock cycle time is 15.6 ns. Assume a 128×128 crossbar with a

16×16 OU, 2-bit ReRAM cells, and 16-bit feature map values: we

need a 6-bit ADC to read out the OU computation result, with

a cycle time of approximately 30 ns, as the sensing speed of an

ADC is proportional to the ADC’s bit-resolution [38]. To minimize

pipeline stalls, the Index Decoder must decode 128 inputs in 30 ns.

Similarly, the Wordline Vector Generator must also generate one

wordline activation vector every 30 ns. We implement the Index

Decoder and the Wordline Vector Generator in Verilog and use

Synopsys Design Compiler to synthesize latency, area, and power.

Based on our synthesis results, the width (parallelism degree) of

the Index Decoder and the Wordline Vector Generator are both set

to eight, to meet throughput requirements while minimizing the

area and power consumption. Note that it is also possible to design

the eDRAM buffer (8 banks and 512 bits bus width) based on the

access latency modeled by CACTI [34] to ensure that fetching 128

16-bit inputs for each crossbar array can be completed in one cycle.

6 EVALUATION METHODOLOGY

We implement a custom cycle-accurate simulator written in Python

to evaluate the performance and energy consumption of the Sparse

ReRAM Engine. Our simulator models the mapping and execution

flow of sparse neural networks on ReRAM crossbar arrays. Table 1

shows the hardware configuration of each PE for our simulation.

Except for the OU-related components (ADC and eDRAM buffer),

we use the hardware configuration from ISAAC [40], a state-of-

the-art over-idealized design. The power consumption of all the

memories, including the eDRAM buffer, IR, and OR, is modeled

using CACTI [34] at 32nm process assumed in ISAAC [40]. Each PE

has a 64KB on-chip eDRAM buffer to store intermediate input and

output feature maps. The eDRAM buffer is configured to ensure

that fetching a batch of input data could be completed in one cycle.

There are 12 CUs within each PE; each CU has 8 crossbar arrays.
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Table 1: Hardware configuration.
PE configuration (1.2 GHz, 32nm process, 168 PEs per chip)

Component Spec Power

eDRAM Buffer
size: 64KB; banks: 2

29 mW (leakage: 0.38 mW)
bus width: 512 bits

eDRAM-to-CU bus number of wires: 384 7 mW

Router
flit size: 32; number of ports: 8

42 mW
(shared by 4 PEs)

Sigmoid number: 2 0.52 mW

S+A number: 1 0.05 mW

MaxPool number: 1 0.4 mW

OR size: 3KB 1.68 mW (leakage: 0.21 mW)

CU configuration (12 CUs per PE)

Component Spec Power

ADC
number: 8; resolution: 6 bits

5.14 mW
frequency: 1.2GSps

DAC number: 8 x 128; resolution: 1 bit 4 mW

S+H number: 8 x 128 10 μW

Memristor Array
number: 8; size: 128 × 128

2.4 mW (4.7 μW per OU)
bits-per-cell: 2; OU size: 16 × 16

S+A number: 4 0.2 mW

IR size: 2KB 1.24 mW (leakage: 0.42 mW)

OR size: 256B 0.23 mW (leakage: 0.05 mW)

The crossbar array size is set to 128×128, and each ReRAM cell can

store two bits. Anticipating future improvements in cell reliability,

we set the OU size to 16×163. Since a 6-bit ADC is sufficient for

a 16×16 OU, we use the same style of ADC as in ISAAC [40] but

follow the equation in [38] to scale the ADC power consumption

for the lower bit resolution. For the analysis of indexing overhead,

we implement the Index Decoder andWordline Vector Generator in

Verilog and synthesize using the Synopsys Design Compiler under

TSMC 28nm process4. The obtained power and area are scaled up

to 32nm process.

Workloads

We evaluate the proposed Sparse ReRAM Engine on three

datasets: MNIST [27], CIFAR-10 [25], and ImageNet [11]. MNIST

and CIFAR-10 are small-scale datasets, whereas ImageNet is a large-

scale dataset. In our evaluation, we use the ILSVRC 2012, a subset

of ImageNet with approximately 1000 categories, each of which

includes 1000 images. The neural networks used in our evaluation

are LeNet [27] on MNIST, a CNN with three convolution layers

and two fully-connected layers on CIFAR-10, and four large-scale

CNNs (CaffeNet [26], VGG-16 [41], GoogLeNet [43], and ResNet-

50 [19]) on ImageNet. Table 2 lists the network topology of these

evaluated NN models. These models are all trained with the SSL

pruning algorithm [45]. CaffeNet and VGG-16 are released by [45]

and thereby were well trained for structural sparsity. Thus, in the

results shown in Section 7, CaffeNet and VGG-16 show higher gains

from OU-based row compression than the other models, which are

trained by ourselves and are not well tuned for structural sparsity as

CaffeNet and VGG-16. These NN models cover the test cases with a

broad range of weight and activation sparsity. Note that the weight

sparsity and activation sparsity listed in Table 2 only represents the

fraction of zero values in the synaptic weights and feature maps of

the target NN model before bit-level decomposition. The amount of

sparsity that can be exploited to improve performance and energy

efficiency depends on ReRAM bits-per-cell, DAC resolution, and

the applied sparsity exploration techniques.

3Ourmotivation experiment in Figure 5 shows that for large-scale NNmodels, inference

accuracy drops if more than 16 wordlines are activated concurrently, even when

technology improvements enable the R-ratio/resistance-deviation to increase/shrink

by 3x of the WOx ReRAM [22].
4We synthesize the circuits under 28nm process as we are only authorized to access

TSMC 28nm standard cell library.

Table 2: NN topology of evaluated benchmarks.

Name
Weight Activation

Structure of networks
Sparsity Sparsity

MNIST 42% 28% conv5x20-pool-conv5x50-pool-500-10

CIFAR-10 34% 22%
conv5x32-pool-conv5x32-pool-conv5x64-pool

-64-10

CaffeNet 91% 21%
conv11x96-conv5x256-conv3x384-conv3x384

-conv3x256-4096-4096-1000

VGG-16 95% 41%

conv3x64-conv3x64-pool-conv3x128-conv3x128

-pool-conv3x256-conv3x256-conv3x256-pool

-conv3x512-conv3x512-conv3x512-pool-conv3x512

-conv3x512-conv3x512-pool-4096-4096-1000

GoogLeNet 79% 37%

conv7x64-pool-conv3x192-pool-inception(3a)

-inception(3b)-pool-inception(4a)-inception(4b)

-inception(4c)-inception(4d)-inception(4e)

-pool-inception(5a)-inception(5b)-pool-1000

ResNet-50 81% 46%

conv7x64-pool-[conv1x64-conv3x64-conv1x256]x3

-[conv1x128-conv3x128-conv1x512]x4-[conv1x256

-conv3x256-conv1x1024]x6-[conv1x512-conv3x512

-conv1x2048]x3-pool-1000

Comparison Baselines

As the baseline, we use an OU-based ReRAM accelerator that

does not exploit any sparsity. In addition, we compare the perfor-

mance and energy efficiency of the proposed SRE with naive cross-

bar row-based compression. We also compare it with ReCom [24],

a weight matrix row-based compression method designed for neu-

ral networks pruned by SSL [45]. When ReCom is applied, if the

same pixel of each filter in the same convolution/fully-connected

layer is all zeros, the corresponding OU rows are removed to re-

duce unnecessary computations. Note that we does not compare

with SNrram [44], as SNrram uses model-based compression and

its crossbar architecture is highly model-dependent. A quantitative

performance comparison with SNrram would be difficult because

we use a different baseline design from SNrram, and the SNrram

paper provides no cycle time information.

For our SRE, we evaluate three different modes: ORC, DOF, and

ORC+DOF. ORC adopts only OU-based row compression to exploit

weight sparsity. DOF exploits only activation sparsity by dynami-

cally skipping the activation of wordlines with zero input signals.

ORC+DOF combines ORC and DOF to jointly exploit both weight

and activation sparsity. To bound the storage overhead of input

indexing, we adopt zero-padding [17] and choose the minimum

number of index bits that ensured less than 10% loss in weight com-

pression ratio compared to when zero-padding is not used. Based

on this principle, the length of index bits for MNIST, CIFAR-10,

CaffeNet, VGG-16, GoogLeNet, and ResNet-50 is set to 5, 5, 5, 5, 3,

and 3 bits, respectively.

7 EXPERIMENTAL RESULTS

In this section, we first evaluate the performance and energy effi-

ciency of the proposed Sparse ReRAM Engine (SRE for short). We

then analyze the indexing overhead of the scheme, followed by

sensitivity studies on the OU size and ReRAM bits-per-cell. We also

evaluate the performance of SRE when running non-SSL sparse

neural networks. Finally, we compare SREwith an over-idealized de-

sign [40] to show that jointly exploiting weight and activation spar-

sity enables a practical ReRAM-based DNN accelerator to achieve

comparable performance with substantial energy savings.

7.1 Performance and Energy

Figure 17 shows the performance speedup of different designs

against the baseline OU-based ReRAM accelerator that does not

244



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Yang, et al.

Figure 17: Performance speedup of different sparsity-

exploration approaches over the baseline.

exploit any sparsity. With ORC, the performance speedup ranges

from 1.3× to 6.8×. As mentioned earlier, CaffeNet and VGG-16 are

well tuned for structural sparsity, so they obtain higher benefit from

ORC than the other models, 2.6× and 6.8×, respectively. We expect

to see similar benefits for the other models if they could be trained

well for structural sparsity as CaffeNet and VGG-16. On the other

hand, DOF delivers significant performance gains, ranging from

4.1 × to 16.0×, for all the models. ResNet-50 obtains the largest gain

from DOF as there are many batch norm layers in this model. The

joint use of ORC and DOF provides accumulated benefit (average

13.1×). Since zero bits are usually randomly distributed in feature

maps, applying ORC rarely degrades the fraction of activation spar-

sity that can be explored. For example, VGG-16 sees 6.8×, 7.5×

and 42.3× speedup with ORC, DOF and ORC+DOF, respectively.

Compared to SRE, both ReCom and naive provide only small per-

formance speedups over the baseline, as ReCom and naive explore

weight sparsity only in coarser-grained weight-matrix-row and

crossbar-row granularity. The speedup for naive is slightly higher

than that for ReCom, since a weight-matrix-row can span multiple

crossbar arrays and ReCom cannot remove an all-zero crossbar-row

if the row is just part of a non-all-zero weight-matrix-row.

Figure 18 shows the energy consumption of different sparsity-

exploration designs normalized to the baseline. ReCom and naive

help to conserve a small amount of energy (average 12.5% and 21.3%)

by skipping computations with all-zero crossbar-rows. Compared

to ReCom and naive, ORC saves more energy by exploiting a finer

granularity of weight sparsity to skip computations with all-zero

OU rows (50.6% on average). The energy savings come from the

reduced number of accesses to peripheral circuits/buffers (ADC, IR,

and OR) associated with each OU computation. DOF shows high

effectiveness for energy reduction across all NN models (between

70% to 90%). Combining ORC and DOF reduces energy further for

CaffeNet and VGG-16 but not for the other four models. We can see

from Figure 18, ORC+DOF consumes significantly higher eDRAM

energy than DOF, which outweighs the additional computation-

related energy savings from ORC. As we discuss in Section 4, since

row-wise compression changes the input order, each column-wise

OU group must fetch correct inputs from the eDRAM buffer based

on its own input indexes. Hence, compared to DOF that does not

change the input order, additional eDRAM accesses are required

when row-wise compression is applied. As mentioned earlier, Caf-

feNet and VGG-16 are well trained for structural sparsity so the

additional reduction on computation-related energy from ORC can

compensate the loss due to extra eDRAM accesses. We expect that

ORC+DOF in general should achieve the largest energy savings if

NN models could be fine-tuned for structural pruning.

7.2 Indexing Overhead Analysis

To support OU-based row compression in SRE, we must store the

input indexes of each column-wise OU group. To bound the stor-

age overhead, we store the index difference between non-zero OU

rows instead of the absolute values and adopt zero-padding [17].

Figure 19 shows the storage overhead for input indexing. The over-

head varies for different NN models, depending on the size of the

model. For large-scale NN models with many convolution layers

such as ResNet-50, the storage overhead is larger. The OU size also

affects the amount of storage overhead. With a smaller OU size, we

can remove more all-zero OU rows. Thus, for each column-wise OU

group, fewer input indexes need to be stored. Nevertheless, as the

OU size decreases, the number of column-wise OU groups increases.

As a result, more sets of input indexes must be stored for smaller

OUs, leading to greater storage overhead. From our evaluation, we

find that the storage overhead increases only slightly when the OU

size decreases for most of the evaluated neural networks, except

for ResNet-50. Even though the storage overhead of ResNet-50 is

higher (778KB) than other NN models, storing the index difference

between non-zero OU rows still leads to far lower storage overhead

than directly storing the absolute index of each non-zero OU row

(about 4MB).

In SRE, to support ORC and DOF, we add the Index Decoder and

Wordline Vector Generator components. As the crossbar array has

128 wordlines, the Index Decoder must decode 128 input indexes

in one cycle to minimize pipeline stalls. Based on our synthesis,

an Index Decoder that can decode 8 indexes at a time in a parallel

fashion (width = 8) is required to provide sufficient throughput. The

Index Decoder is composed of seven 5-bit adders, six 6-bit adders,

four 7-bit adders, eight 13-bit adders, eight 6-bit latches, eight 7-bit

latches, eight 8-bit latches, and one 13-bit latch, inducing only a

small area (0.001mm2) and power (1.24mW) overhead. Note that the

overhead is independent of the OU size, as the Index Decoder must

decode the input indexes for all the wordlines in the crossbar array

at a time. To support DOF without seriously stalling the pipeline,

the Wordline Vector Generator must be able to generate a wordline

activation vector within one cycle. Our synthesis result shows that

a Wordline Vector Generator that can generate 8 elements of the

wordline activation vector at a time in a parallel fashion (width = 8)

can provide sufficient throughput. The Wordline Vector Generator

is composed of a circuit implementation of parallel prefix sum (with

four 1-bit adders, four 2-bit adders, four 3-bit adders, and eight 8-bit

adders) and thirty-two 4-bit comparators. The circuit is simple and

induces only a 0.001mm2 area and 0.86 mW power overhead.

7.3 Sensitivity Studies

We evaluate SRE with different configurations of crossbar architec-

ture, including the OU size and ReRAM bits-per-cell, to analyze the

impact of these architectural parameters on the weight compression

ratio, performance, and energy consumption.

OU Size

In SRE, the OU size impacts the weight compression ratio and the

amount of computation reduction opportunities. Figure 20 shows

that as the OU size decreases, the weight compression ratio in-

creases, since it is easier to find all-zero OU rows when the OU is

smaller. With a smaller OU, the weight compression ratio is com-

parable to the ideal case which assumes that all ReRAM cells with
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Figure 18: Energy consumption of different sparsity-exploration approaches normalized to the baseline.

Figure 19: Storage overhead of input indexes for SRE with

different OU sizes (from 128×128 to 16×16).

Figure 20: Weight compression ratio of SRE with different

OU sizes (from 128×128 to 2×2).

zero weights can be removed. In Figure 20, we also use arrows to

indicate the weight compression ratio that can be obtained from

SNrram [44]. As SNrram uses model-based compression (i.e., fine-

grained column-based compression that removes all-zero column

vectors with size equals to filter height × filter width) to exploit

weight sparsity, its weight compression ratio varies across different

neural network models. Although SNrram yields a high compres-

sion ratio for neural network models with small filter sizes such as

GoogLeNet and ResNet-50, it is not a practical design as the output

indexing overhead is large and it requires different sizes of crossbar

arrays for layers with different filter sizes. With proper OU size

settings, the proposed SRE achieves a weight compression ratio

similar to that of SNrram.

The energy consumption of SRE also varies for different OU

sizes. In the baseline OU-based ReRAM accelerator that does not

exploit any sparsity, lower-resolution ADCs with less energy con-

sumption can be utilized when the OU is small. Nevertheless, with

a smaller OU, more OU computations are needed to complete the

same amount of matrix-vector multiplication, resulting in a higher

number of peripheral circuit/buffer (ADC, IR, and OR) accesses.

Thus, energy consumption dramatically increases when the OU

size decreases in the baseline, as shown in Figure 21(a). After apply-

ing ORC+DOF to exploit sparsity, smaller OUs do not necessarily

result in higher energy consumption, as shown in Figure 21(b).

With a smaller OU size, it is easier to find all-zero OU rows and save

unnecessary computations. As a result, for most of the evaluated

neural networks, the energy consumption decreases when the OU

Figure 21: Energy consumption of (a) baseline and (b) SRE

for different OU sizes, normalized to 128×128 OU size.

size decreases from 128×128 to 32×32. In this paper, we set the OU

size to 16×16 considering the impact on inference accuracy. Results

in Figure 21(b) indicates that even if advances in technology make it

possible to achieve sustainable accuracy when operating the entire

crossbar array in a single cycle, it is more energy-efficient to jointly

exploit weight and activation sparsity on OU-based architecture

with appropriate OU sizes.

ReRAM Bits-per-cell

In the practical ReRAM crossbar array, filter weights are de-

composed and mapped to multiple bitlines, as each ReRAM cell

stores only a limited number of bits. When the ReRAM bits-per-cell

decreases, more cycles are needed to complete the same amount

of matrix-vector multiplication if weight sparsity is not explored.

Nevertheless, due to the the weight decomposition process, when

ReRAM bits-per-cell decreases, bit-level weight sparsity increases,

and it is easier to find all-zero OU rows. As a result, the SRE per-

formance speedup is greater when each ReRAM cell stores a fewer

number of bits, as shown in Figure 22. Although advances in tech-

nology may enable a ReRAM cell to store higher number of bits

with sustainable reliability in the next few years, SRE still provides

11.4× performance speedups on average if the storage capacity of

each ReRAM cell is 8 bits.

7.4 Non-SSL Sparse Neural Networks

Even though the structural pruning algorithm (SSL) [45] helps

to regularize the distribution of zero weights, the proposed SRE

provides performance speedup not only for SSL-trained neural net-

works but also for non-SSL sparse neural network models, as shown

in Figure 23(a). For such non-SSL sparse neural network models, we

use the NN models released by SkimCaffe [37]. SkimCaffe adopts
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Figure 22: Performance speedupof SREover baseline for var-

ious ReRAM bits-per-cell settings.

Figure 23: (a) Performance speedup and (b) energy consump-

tion of SRE normalized to the baseline for non-SSL sparse

neural networks.

Guided Sparsity Learning (GSL), a generic algorithm that supports

different regularization methods and prunes neural networks by

adjusting sparsity targets precisely at different layers. When SSL is

not applied during training, weight sparsity may decrease and it

can be harder to find all-zero OU rows. Thus, ORC yields only small

performance speedups. For example, for VGG-16, ORC provides

a 6.8× performance speedup when SSL is applied (Figure 17) but

only a 1.1× speedup when a non-SSL pruning algorithm is applied

(Figure 23(a)). In contrast, activation sparsity is less relevant to the

weight pruning algorithm. Therefore, DOF still provides significant

performance speedups for non-SSL sparse neural network models.

By jointly exploiting weight and activation sparsity, the proposed

SRE provides a 9.7× performance speedup on average for non-SSL

sparse neural networks.

SRE can also provide significant energy savings for non-SSL

sparse neural networks, as shown in Figure 23(b). Although ORC

provides fewer energy savings for non-SSL sparse neural networks

(average 26.7%) compared to SSL neural networks (average 50.6%

as shown in Figure 18), DOF still helps to greatly reduce the energy

consumption. As fewer weight sparsity could be explored by the

non-SSL pruning algorithm, the energy consumption of ORC+DOF

is slightly higher than that of DOF for neural networks such as VGG-

16. For VGG-16 trained by non-SSL pruning algorithm, ORC+DOF

consumes significantly higher eDRAM energy than DOF, outweigh-

ing the additional computation-related energy savings from ORC.

On average, for non-SLL sparse neural networks, ORC+DOF still

yields 78.7% energy savings over the baseline.

7.5 Comparison with Over-Idealized Design

ISAAC [40] is a state-of-the-art but over-idealized design, which

overlooks the inference accuracy loss caused by the accumulated

effect of per-cell current deviation and assumes that 128 wordlines

in a crossbar array can be activated concurrently. As discussed in

Section 3, a practical OU-based deign completes less computation

in a cycle but has the advantage of shorter cycle time. For the

first-order comparison of a 16×16 OU-based design (15-ns cycle

Figure 24: (a) Execution time and (b) energy consumption of

SRE normalized to ISAAC.

time 5) with ISAAC assuming 128×128 crossbar arrays (100-ns

cycle time), the OU-based design is 9.6× slower (64× cycles and

6.6× faster cycle time). However, as what we have presented in this

paper, the OU-based design enables a new opportunity to exploit

sparsity for further performance and energy improvements. So

in this subsection, we demonstrate that with the proposed joint

weight and activation sparsity explorationmethod, the practical OU-

based architecture, which achieves satisfactory inference accuracy

considering the limitation of ReRAM cell reliability, could actually

deliver comparable performance and energy efficiency with the

over-idealized design, ISAAC.

Figure 24(a) shows the execution time of our SRE normalized to

ISAAC’s execution time. For fair comparison, we apply ReCom [24]

to exploit weight sparsity for ISAAC. We can observe that SRE

achieves better performance than the over-idealized ISAAC for 3

out of 6 neural network models. For neural networks with consider-

able increase in weight compression ratio on OU-based architecture

than on ISAAC, SRE delivers higher performance speedup. On av-

erage, SRE provides 15.8% performance improvement over ISAAC.

In the aspect of energy efficiency, for all of the evaluated neu-

ral network models, SRE is more energy efficient than ISAAC, as

shown in Figure 24(b). Without exploiting sparsity, the OU-based

architecture consumes roughly 2.5× energy than ISAAC due to

the combined effect of a higher number of accesses to peripheral

circuits/buffers (ADC, IR, and OR) and the lower-resolution (6-bit)

ADC (vs. 8-bit ADC). With the proposed scheme, SRE provides

67.0% energy savings over ISAAC on average. The energy savings

are considerable especially for neural network models with a large

amount of sparsity such as VGG-16 (87.6%).

8 RELATEDWORK

Pruning Algorithms

Various algorithmic techniques have been studied to remove the

redundancy inside neural network models. For instance, quantiza-

tion [17], low-rank matrix factorization [12], and �1-norm regular-

ization [28] have been proposed to prune networks during training.

Han et al. [18] propose another approach to directly remove low-

value weights and retrain the network, but most of the computation

reduction is attained in fully-connected layers. As the majority of

computations are at convolution layers, Molchanov et al. [33] de-

velop a new formulation based on Taylor expansion to iteratively

5As described in Section 5, the cycle time of SRE is 30ns at 65nm technology. For an

apples-to-apples comparison with ISAAC, the cycle time of SRE is scaled down from

65nm to 32nm, and is approximately 15 ns.
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remove the least important parameters in convolution layers. Sev-

eral studies focus on adapting the sparse network structures to

make it hardware-friendly in an algorithmic way [29, 45, 48]. Yu et

al. [48] propose a method to customize DNN pruning for different

hardware platforms based on each platform’s data-parallelism. Wei

el al. [45] regularize the structure of DNN and prune weights in a

systematic way to derive a hardware-friendly compressed neural

network. Liang et al. [29] propose a crossbar-grain pruning algo-

rithm to remove an entire crossbar whose partial sum contributes

less to its output. These weight pruning algorithms can be utilized

to increase the speedup/energy-savings of DNN inference.

Sparse DNN Acceleration in Digital ASICs and GPUs

Many prior studies have designed different mechanisms to ex-

ploit weight sparsity [49], activation sparsity [1, 8], or both [16, 36]

in CMOS-based digital accelerators in order to improve the energy

efficiency of DNN inference. To exploit weight sparsity, Zhang et

al. [49] propose Cambricon-X, which retains only nonzero weights

in its internal buffers and uses an indexing module to efficiently

fetch needed inputs for computation. However, it still wastes times

computing multiplications for zero-valued activations. To exploit

activation sparsity, Chen et al. [8] propose Eyeriss to gate the mul-

tiplier when an input activation is zero to save energy. Another

sparse DNN accelerator, Cnvlutin [1], selects only non-zero ac-

tivation values for delivery as multiplier operands. Nevertheless,

neither Eyeriss nor Cnvlutin skips computations with zero weights.

To jointly exploit weight and activation sparsity, EIE [16] uses a

compressed representation for both activations and weights, and

only delivers non-zero operands to the multipliers. However, EIE

is designed only for fully connected layers. SCNN [36] also jointly

exploits weight and activation sparsity. It targets the convolution

layers, where the majority of computations take place, and uses

a sparse planar-tiled input-stationary Cartesian product dataflow

to enable efficient storage, delivery, and processing of the sparse

weights and activations.

Efficiently executing sparse DNN inferences on GPU is challeng-

ing, as the irregular DNN topology and non-contiguous data struc-

ture increase the amount of branch divergences and uncoalesced

memory accesses. To improve performance, Hill et al. [20] propose

a synapse vector elimination technique to drop non-contributing

synapses in the neural network and maintain computational regu-

larity when pruning the network model. Their proposed technique

reduces under-utilization of GPU resources.

ReRAM-based Sparse DNN Accelerators

The tightly coupled crossbar structure in the ReRAM-based

DNN accelerator makes it difficult to effectively skip irregular zero

weights and activations in DNNs. Directly applying sparsity ex-

ploration techniques designed for CMOS-based digital accelerators

and GPUs on ReRAM-based DNN accelerators is not practical, as

zero weights/activations are tightly coupled with other non-zero

data in the same row/column and cannot be easily skipped. Re-

Com [24] is the first ReRAM-based DNN accelerator that exploits

neural network sparsity. They use SSL [45] to structurally com-

press neural network models and remove all-zero rows for resource

savings. They also exploit activation sparsity to reduce off-chip

memory accesses. However, with ReCom’s coarse-grain compres-

sion, only all-zero rows can be removed; many zero weights still

remain in the compressed model. SNrram [44] is another ReRAM-

based sparse DNN accelerator that compresses the model at a finer

level, i.e., filter-sized all-zero columns in structurally compressed

neural networks. As the size of a filter is usually smaller than a

row, SNrram better exploits sparsity than ReCom. However, the

scheme requires the use of an output indexing module with signifi-

cant storage overhead. SNrram also exploits activation sparsity, but

activation compression is only performed for deconvolution-layers

in generative adversarial networks (GANs). Lin et al. [30] propose

a different sparse mapping scheme based on k-means clustering,

and use a crossbar-grained pruning algorithm to remove cross-

bars with low utilization. These prior sparsity solutions assume an

over-idealized ReRAM crossbar architecture that activates an entire

crossbar array in a single cycle. In contrast to these studies, our SRE

takes advantage of practical fine-grained OU-based computations

to jointly exploit weight and activation sparsity. Chen et al. [7]

exploit the output sparsity introduced by the ReLU function to

reduce computation. They propose an adaptive estimation method

to detect negative output activations and terminate unnecessary

bit-level convolutions earlier. Their early-termination technique is

orthogonal to our SRE and can be combined with our approach to

further improve performance and save energy.

9 CONCLUSION

In this paper, we study the design challenges of sparsity exploration

on ReRAM-based DNN accelerators, and demonstrate that a prac-

tical OU-based ReRAM accelerator opens up new opportunities

to effectively exploit DNN sparsity. We propose the first practical

sparse ReRAM engine (SRE) that takes advantage of fine-grained

OU-based computations to jointly exploit weight and activation

sparsity. Our evaluation across a broad range of neural network

models shows that SRE provides significant performance speedups

(up to 42.3x) and energy savings (up to 95.4%) over a baseline that

does not exploit sparsity. In addition, SRE successfully enables a

practical ReRAM-based DNN accelerator design, which achieves sat-

isfactory inference accuracy considering the limitation of ReRAM

cell reliability while delivering comparable performance and energy

efficiency with the over-idealized counterpart.
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