
GPGPU Power Modeling for Multi-Domain Voltage-Frequency Scaling

João Guerreiro, Aleksandar Ilic, Nuno Roma, Pedro Tomás

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal
{Joao.Guerreiro, Aleksandar.Ilic, Nuno.Roma, Pedro.Tomas}@inesc-id.pt

Abstract—Dynamic Voltage and Frequency Scaling (DVFS)
on Graphics Processing Units (GPUs) components is one of
the most promising power management strategies, due to its
potential for significant power and energy savings. However,
there is still a lack of simple and reliable models for the
estimation of the GPU power consumption under a set of
different voltage and frequency levels.

Accordingly, a novel GPU power estimation model with both
core and memory frequency scaling is herein proposed. This
model combines information from both the GPU architecture
and the executing GPU application and also takes into account
the non-linear changes in the GPU voltage when the core and
memory frequencies are scaled. The model parameters are
estimated using a collection of 83 microbenchmarks carefully
crafted to stress the main GPU components. Based on the
hardware performance events gathered during the execution
of GPU applications on a single frequency configuration, the
proposed model allows to predict the power consumption of
the application over a wide range of frequency configurations,
as well as to decompose the contribution of different parts of
the GPU pipeline to the overall power consumption.

Validated on 3 GPU devices from the most recent NVIDIA
microarchitectures (Pascal, Maxwell and Kepler), by using a
collection of 26 standard benchmarks, the proposed model
is able to achieve accurate results (7%, 6% and 12% mean
absolute error) for the target GPUs (Titan Xp, GTX Titan X
and Tesla K40c).

I. INTRODUCTION

During the past decade, Graphics Processor Units (GPUs)

have suffered many evolutions, transitioning from real-time

graphics processors to high performance accelerators for

general-purpose applications, with particular application in

Deep Learning [1]. Because GPU architectures are able to

achieve both high arithmetic throughput and high memory

bandwidth [2], they are ideal to accelerate data parallel

applications. GPUs are nowadays a staple in many high-

performance computing (HPC) systems, confirmed by their

usage in 72 of the most recent TOP500 HPC systems list.

One common challenge of GPU-accelerated systems re-

gards the power and energy constraints. Despite their poten-

tial to high performance computing, GPU devices consume

considerable amounts of power, even on underused compo-

nents. This issue is often addressed by Dynamic Voltage and

Frequency Scaling (DVFS), which consists on scaling the

voltage and frequency of the GPU components according to

the requirements of the executing applications and leading

to significant power and energy savings [3], [4], [5], [6].

However, to efficiently apply these power management

techniques, an accurate model is required to predict how

the power consumption scales when different GPU fre-

quency/voltage configurations are applied. Previous works

have showed that applications that utilize the GPU resources

differently have their performance and power consumption

scale in distinct ways when DVFS is applied [7], [8], [9],

[10]. Hence, to accurately characterize the GPU power

consumption when executing any given application, it is nec-

essary to analyze the usage pattern of the multiple GPU com-

ponents. Other research works have proposed GPU power

models [11], [12], [13], that predict the power consumption

only at a fixed GPU configuration, i.e. not predicting the

consequent changes in power consumption caused by DVFS.

More recent works partially tackle this problem [14], [15],

by focusing on power prediction at different frequency

configurations, although achieving non-negligible accuracy

errors (ranging from 10% up to 24%). Nevertheless, none

ot these approaches considers the non-linear scaling of the

GPU voltage with the operating frequency.

In accordance, this paper main contribution is a new

approach to estimate GPU power consumption across an

ample range of frequency and voltage configurations for the

multiple GPU domains (core and memory). This is done

by carefully crafting a set of 83 CUDA microbenchmarks,

exercising the different components of real GPUs. The

average GPU power consumption during the execution of

each microbenchmark is measured for all frequency/voltage

levels, while a collection of performance events is measured

only at a reference configuration, allowing a clear under-

standing of how the power consumption changes with DVFS

and how each microbenchmark exploits the underlying GPU.

With this information, a power model for the consid-

ered GPU device is estimated using an iterative heuristic

algorithm that relies on statistical regression. Based on

the observed GPU components utilization rates, the model

allows the prediction of the power consumption of each

component, as well as estimating how the voltage scales with

their operating frequency. Once the model is created, it is

possible to characterize the power consumption of any GPU

application for all frequency and voltage configurations, by

measuring the performance events during its execution at a

single configuration.

Beyond DVFS prediction, the proposed model can also be

used in other scenarios, such as in providing an estimate of

789

2018 IEEE International Symposium on High Performance Computer Architecture

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00072

the total and/or per-component power consumption for short-

lived kernels or even in devices without embedded power

sensor; or provide insights on the most influential factors

of GPU power consumption, useful during application opti-

mization.

The proposed GPU power model was extensively vali-

dated with a collection of applications from standard bench-

marks (Parboil [16], Rodinia [17], Polybench [18] and

CUDA SDK [19]), by using real GPU devices from the three

most recent NVIDIA microarchitectures (Pascal, Maxwell

and Kepler). The proposed model achieves accurate results,

on a frequency range of up to 2× change in core frequency

and 4× change in memory frequency, with average errors of

about 7%, 6% and 12% for the Pascal, Maxwell and Kepler

devices, respectively. This is a significant improvement over

the accuracy offered by previous state-of-the-art models and

low-level simulators, with the benefit of also running faster

than the latter. Accordingly, the most significant contribu-

tions of this paper are the following:

• a microbenchmark suite that stresses the GPU com-

ponents that are the most relevant to the GPU power

consumption, as well as the full disclosure of the

performance events that characterize the utilization of

the GPU components;

• a novel DVFS-aware GPU power model, able to predict

the GPU power consumption (decoupling it at the level

of each GPU component) at different frequency and

voltage configurations by using performance events

gathered at a single configuration — to the best of our

knowledge, this is the first truly DVFS-aware power

model, by being able to estimate how GPU voltage

scales with the operating frequency on modern GPU

devices1;

• validation of the proposed GPU power model with

standard benchmarks on commercially available GPU

devices from multiple architectures, including the most

recent Pascal microarchitecture.

The rest of this paper is organized as follows. Sec-

tion II motivates the presented work. Section III details

the proposed DVFS-aware power model and Section IV

presents the proposed microbenchmark suite. Section V

presents the experimental results obtained to validate the

proposed model. Section VI overviews the related work and

Section VII concludes the manuscript.

II. BACKGROUND AND MOTIVATION

Since GPU devices started being used as massively par-

allel general-purpose accelerators, their microarchitecture

observed several incremental changes. Nonetheless, common

design principles are usually observed, such as their modular

1The complete source code (microbenchmark suite and a tool to construct
the DVFS-aware GPU power consumption model) is publicly available at:
https://github.com/hpc-ulisboa/gpupowermodel.

Instruction Cache

Texture / L1 Cache
Shared Memory

Instruction Buffer

Warp Scheduler

Register File

4x

32x 1x 8x 8x

Dispatch Dispatch

INT/FP
(Cores) DP SFU LD/ST

L2 CACHE

Memory Controller

DRAM

C
or

e
 D

om
ai

n
M

em
or

y
 D

om
ai

n

Streaming
Multiprocessors (SMs)

x30

Figure 1: Block diagram of NVIDIA’s Titan Xp GPU.

design and structure (giving rise to both mobile and high-

performance devices).

Another common characteristic across most GPU gener-

ations (illustrated in Figure 1 for a Titan Xp GPU) is the

existence of independent frequency domains, such as the

core (or graphics) domain, clocked at fcore and the memory
domain, clocked at fmem and which affects only the device

memory (DRAM) bandwidth.

By applying DVFS to exploit the independent frequency

domains, it is possible to adapt the performance of the

GPU components to the requirements of the application

under execution and attain energy savings [3], [4], [5],

[6]. However, optimizing the GPU configuration (i.e. the

frequency and voltage levels of both core and memory

domains) is a non-trivial problem [20], [9], [10], as it

requires an accurate estimation of both the execution time

and average power consumption and how they change when

the GPU configuration is modified.

Generally, the power consumption of a GPU device can

be decomposed in the sum of the power consumptions

of the multiple architectural components [21], with the

power of each component (Ck) being associated with its

peak power consumption and with how an application

stresses such component during its execution (Power(Ck) ∝
Utilization(Ck)).

A. Power consumption and DVFS

Gonzalez et al. [22] and Butts et al. [23] proposed the

power models presented in Equations 1 and 2:

PowerDynamic = a · C ·V2 · f, (1)

PowerStatic = V ·N ·Kdesign · Îleak, (2)

where a denotes the average utilization ratio, C the total

capacitance, V the supply voltage, f the operating frequency

and N the number of transistors in the chip design. Kdesign

is a constant factor associated with the technology char-

acteristics and Îleak is a normalized leakage current for a

single transistor, which depends on the threshold voltage.

These two power models can be used to describe how the

dynamic and static components scale with the frequency

and voltage of their respective hardware elements. However,

790

Core Frequency [MHz]

Av
er

ag
e

Po
we

r [
W

]

fmem = 3505 MHz
fmem = 810 MHz

500 600 700 800 900 1000 1100 1200
50

100

150

200

250

181

Pe
r-C

om
po

ne
nt

 U
tili

za
tio

n

0.47

0.19

0.25

0.85

2.0

1.6

1.2

0.8

0.4

0

DRAM

L2 Cache

SF Unit

SP Unit

INT Unit

Measured at:
 fmem = 3505 MHz
 fcore = 975 MHz

Core Frequency [MHz]

Av
er

ag
e

Po
we

r [
W

]

fmem = 3505 MHz
fmem = 810 MHz

500 600 700 800 900 1000 1100 1200
50

100

150

200

250

135

0.51

0.11
0.15

2.0

1.6

1.2

0.8

0.4

0

Shared Memory
SF Unit
INT Unit

SP Unit

Measured at:
 fmem = 3505 MHz
 fcore = 975 MHz

A. BlackScholes (CUDA SDK)

B. CUTCP (Rodinia)

Figure 2: DVFS impact on the power consumption of two

applications on the GTX Titan X GPU. On the right side

is presented the utilization of the GPU components during

the application execution (GPU frequencies set to fcore =
975 MHz and fmem = 3505 MHz).

although they give a valuable insight on the impact of

DVFS, it is usually impossible to accurately measure these

two components separately, let alone determine the model

individual parameters. Consequently, other approaches to

model the GPU power consumption are required.

Additionally, while it is common for GPU manufacturers

to provide tools to dynamically scale the frequency of each

GPU domain, there is usually no way of knowing how the

voltage is scaling. In fact, while in some previous NVIDIA

generations (like the Fermi), the GPU voltage scaled linearly

with the frequency of the cores [4], in Maxwell GPUs it is

possible to scale the frequency of the cores without changing

the voltage [10].

B. DVFS impact on GPU power consumption

Each GPU application has its unique characteristics, such

as the algorithm, the data types, the used operations, as

well as the size of the input data, the dimensions of the

grid of threads, etc. These characteristics determine how the

different GPU components are used during the application

execution. Furthermore, depending on how the applications

exercise the GPU components, the effects of DVFS on the

total GPU power consumption can vary between applications

— the effects also depend on the architectural characteristics

of each utilized component (see Equations 1 and 2).

Figure 2 presents an example of such a scenario, where

the BlackScholes and CUTCP benchmarks were executed on

a NVIDIA GTX Titan X GPU across multiple frequency and

voltage configurations. Figure 2 also presents the utilization

of the main GPU components, represented as the ratio of the

achieved and peak theoretical throughputs of the component.

As it can be seen, the two applications present very different

utilization rates of the GPU components, which results in

the distinct power consumption levels of 181W and 135W

at the default frequency configuration of the GPU (fcore =
975 MHz and fmem = 3505 MHz).

Additionally, it can also be seen that the variation of

the power consumption when the memory frequency is

decreased is much higher for the BlackScholes benchmark,

mainly because of its greater DRAM utilization: when the

memory frequency decreases from 3505 MHz to 810 MHz,

the power consumption decreases by 52% (from 181W to

87W). On the other hand, the power consumption of the

CUTCP benchmark decreases only by 24% (from 135W

to 102W). Regarding the core frequency scaling, it can

be seen that the GPU power cannot be represented as a

simple linear function of the core frequency, as suggested

in the power models proposed in previous works [12], [14],

due to the implicit voltage scaling (see also Equations 1

and 2 and observe the non-linear behaviour of the power

consumption in Figure 2).

From these observations, it is clear that an accurate

DVFS-aware power model is needed, to characterize the

relationship between the utilization of the GPU components,

their runtime power consumption and how they change when

the frequency/voltage of the GPU domains are scaled.

This is a gap that this research aims to close, by proposing

an iterative heuristic algorithm based on statistical regression

to model both the uncertainties of the GPU components

and how their voltage scales with the frequency of each

domain, creating an accurate power consumption model

of the GPU. Through extensive microbenchmarking of the

several GPU components, it is possible to estimate the

parameters of the power consumption model. Once the

model is constructed, one can predict the total and/or per-

component power consumption of a new (unseen) applica-

tion on any frequency/voltage configuration, by measuring

its performance events at a single configuration.

III. DVFS-AWARE POWER MODEL

A. Power consumption model

The proposed DVFS-aware power model assumes the

decomposition of the GPU power consumption across its

internal components. This is done by considering that the

components may operate under different frequency and

voltage domains, such that:

PGPU =

NV-F∑
k=1

P(Dk), (3)

where NV-F represents the number of independent volt-

age/frequency (V-F) domains and P(Dk) represents the

791

power consumption of each domain (Dk). The power of each

domain (Dk) is defined as follows:

P(Dk) = α0Vk +Vk
2fk(α1 +

NC∑
i=1

γi ·Ui) (4)

where Vk and fk represent the specific voltage and frequency

of the Dk domain, NC is the number of GPU components

operating under domain Dk and Ui ∈ [0, 1] is their respective

average utilization rate. The coefficients α0, α1, γ1,...,γNC

represent a set of hardware-specific parameters, associated

to the characteristics of the underlying architecture, such as

component total capacitance and leakage resistance. Hence,

the proposed power model comprises 3 different terms: 1)

α0Vk, corresponding to the static power of the domain (see

Equation 2); 2) Vk
2fk · α1, corresponding to the power

consumption associated with that specific frequency and

voltage level, independent of the component utilizations

(e.g., idle power of that V-F level); and 3) Vk
2fk · γiUi,

corresponding to the dynamic power of component i (see

Equation 1).

To reduce the number of unknown parameters, Equation 4

can be normalized to a reference voltage (VR):

P(Dk) = α0VR
Vk

VR
+

Vk

VR

2

fk(α1VR +

NC∑
i=1

γiVR ·Ui)

= β0V̄k + V̄2
kfk(β1 +

NC∑
i=1

ωi ·Ui), (5)

where β0 = α0VR, β1 = α1VR, ωi = γiVR and V̄k = Vk

VR
.

This formulation is particularly useful during the model

estimation, since the normalized V̄k is 1 at the reference

configuration, making it simpler for this particular setup

and providing the grounds for the initial estimation of the

parameters (see Section III-D).

Although one can generally consider multiple V-F do-

mains, in most modern GPU devices NV-F = 2, correspond-

ing to the core domain (Pcore), which includes the L2 cache,

and the memory domain (Pmem), i.e. PGPU = Pcore+Pmem.

By replacing Equation 5 for these two domains and by

denoting with Ncore the number of components from the

core domain whose power consumption is considered in the

model, the following is obtained:

Pcore = β0V̄core + V̄2
corefcore(β1 +

Ncore∑
i=1

ωiUi), (6)

Pmem = β2V̄mem + V̄2
memfmem(β3 + ωmemUmem). (7)

Equations 6 and 7 show the distinctive approach of

the proposed model when compared with the state-of-the-

art [12], [14], since it considers multiple V-F domains and

relies on a more accurate relationship between frequency

scaling, voltage levels and power consumption.

B. Hardware utilization metrics
To accurately determine the utilization parameters (Ui) in

Equations 6 and 7, a set of metrics is defined, which consider

the GPU hardware components with the greatest contribu-

tion to the power consumption variations, namely: integer

(Int), single- and double-precision floating-point (SP/DP)

and special-function (SF) units, shared memory, L2 cache

and DRAM. Although it would be potentially beneficial to

consider more components of the GPU architecture (e.g.
L1 instruction and data caches, texture units, etc.), it is not

easy to assess their real-time utilization, since NVIDIA does

not disclose events or metrics to accurately describe their

average utilization. Nonetheless, should such information be

disclosed, one may easily consider other hardware units, in

order to further improve the model accuracy. Moreover, as it

will be described in Section III-C, even for the selected GPU

components it was deemed necessary to rely on undisclosed

events, by performing extensive experimental testing to

uncover their potential meaning.
The utilization level of the considered GPU compute

units, measured during the application execution, can be

obtained by observing the number of executing warps and

by comparing it to the number of warps that would execute

if the units were always filled:

Ux =
AWarpsx ·WarpSize

ACycles ·UnitsPerSMx
, x ∈ {Int, SP,DP, SF},

(8)

where AWarpsx is the number of warps executing on unit

x during the application execution, ACycles is the number

of cycles when there is at least one active warp on the SMs,

UnitsPerSMx is the number of units of type x on each

SM and WarpSize is the number of threads in a warp (a

characteristic of the GPU device).
On the other hand, the utilization rate of the different

memory hierarchy levels can be computed by looking at the

achieved bandwidth at each level (ABand) and by compar-

ing it with the corresponding peak bandwidth (PeakBand),

such that:

Uy =
ABandy

PeakBandy
, y ∈ {L2, Shared,DRAM} . (9)

C. Architecture-specific events
Some of the metrics used to compute the utilization

rate in the proposed model can be directly gathered from

the publicly available device characteristics, such as the

UnitsPerSM for the Int, SP, DP and SF units, and the

WarpSize. The DRAM and shared memory peak bandwidth

can be calculated using the known device characteristics

(PeakBand = f · Bytes
Cycle , where f is the operating frequency

of that memory level). The L2 cache peak bandwidth cannot

be computed as trivially, as it was shown by numerous

works [24], [25], [26]. Hence, it was experimentally deter-

mined with a set of specific L2 microbenchmarks (detailed

in Section IV), specifically developed for this purpose.

792

Table I: Performance events required to compute the metrics

used in the proposed power consumption model.

Metric Titan Xp GTX Titan X Tesla K40c
ACycles active cycles

ABandL2
l2 subp{0,1} total rd sq∗ l2 subp{0,1,2,3} t rd sq∗

l2 subp{0,1} total wr sq∗ l2 subp{0,1,2,3} t wr sq∗

ABandShared
shared ld trans l1 sh ld trans

shared st trans l1 sh st trans

ABandDRAM
fb subp{0,1} rd sectors

fb subp{0,1} wr sectors

AWarpsSP/INT
† W580, W581 W361, W362

W131, W134

W136, W137

AWarpsDP
† W584 W364 W141

AWarpsSF
† W560 W359 W133

InstINT
† W831 W504 W205

InstSP
† W829 W502 W203

∗ sq - sector queries
† The prefix W stands for: 352321 for Titan Xp, 335544 for GTX Titan X

and 318767 for Tesla K40c.

However, other required metrics depend on the average

utilization of the GPU components, which also depend on

the application characteristics (and therefore, need to be

measured during their execution). Table I presents the set of

performance events that were used to obtain the remaining

parameters shown in Equations 8 and 9, collected using

the NVIDIA CUPTI library. The events identified with

a label correspond to the events disclosed by NVIDIA.

The remaining events, identified with a numeric ID, were

selected through an extensive experimental testing in order

to assess their meaning. Furthermore, since some of the

considered metrics (e.g. ABandDRAM) depend on the values

of multiple performance events (4 for this specific metric)

an aggregation step needs to be conducted.

Moreover, since in the considered GPU devices the events

related with the SP and Int units are combined into the same

set of events (making them indistinguishable), the utilization

of each of those components is determined by the ratio of

instructions executed for each instruction type:

AWarpsz =
AWarpsInt/SPInstz

InstInt + InstSP
, z ∈ {Int, SP}. (10)

D. Model parameter estimation

The final step towards the definition of the proposed

DVFS-aware power model corresponds to the determination

of the unknown parameters X = [β0, β1, β2, β3, ωmem, ω1,

. . . , ωN] and of the set of voltages V̄ = (V̄core, V̄mem)
associated with each frequency configuration (which are also

considered as unknowns because general GPU drivers do not

directly provide these values). Hence, a set of specifically

developed microbenchmarks (described in Section IV) is

used to stress the considered GPU components to better

characterize their uncertainties. The set of measurements

gathered during the execution of these microbenchmarks, i.e.
the utilization rates and the power consumption at each V-F

configuration, can then be used to estimate the parameters

of the proposed model. Moreover, since there is a relation

between the unknowns V̄k and βi/ωi in the proposed model

(Equations 6 and 7), a simple least squares regression cannot

be used, as it leads to a non-full-rank optimization problem.

Hence, an iterative optimization algorithm was devised to

estimate such parameters, which works as follows:

1) Determine the initial value of the unknowns X by

considering the reference frequency F1 = (fcore1,

fmem1), where V̄core1 = V̄mem1 = 1. Consider also

two additional configurations F2 = (fcore2, fmem1)
and F3 = (fcore1, fmem2) and assume that their corre-

sponding normalized voltage levels are also 1 (V̄core2

= V̄mem2 = 1). By using the measurements obtained

at those three configurations, solve the following linear

system using a least squares estimation:

X =argmin
X

∑
Microbench.∈BA

(
Pmeas. − P̂

)2

s.t. V̄core = V̄mem = 1,

(11)

where Pmeas. is the measured power consumption,

P̂ = Pcore + Pmem, as given by Equations 6 and 7,

and BA is the set of microbenchmarks executed at

the frequency configurations F1,F2 and F3.

2) By using the previously determined vector of param-

eters X — for each frequency configuration (fcore,

fmem) — use the measurements from the set of mi-

crobenchmarks to estimate the values of V̄core and

V̄mem, by solving the following problem:

For each F = (fcore, fmem) vector, solve :

V̄ = argmin
V̄

∑
Microbench.∈BB

(
Pmeas.−P̂

)2

s.t. ∀
fx1>fx2

V̄x1≥V̄x2, x∈{core,mem}
(12)

where V̄xi is the voltage level associated with fre-

quency fxi and BB is the set of microbenchmarks

executed at frequency configuration (fcore, fmem).
3) Considering the newly determined values for V̄core

and V̄mem, repeat step 1 to estimate the new values

of X, but using the measurements from all frequency

levels, i.e. by extending BA to include the set of

measurements taken for all microbenchmarks at all

frequency configurations.

4) Iterate between steps 2 and 3 until convergence is

achieved, or the maximum number of iterations is

reached.

One benefit of the proposed methodology over previous

studies is the ability to dynamically determine how the

GPU voltage is scaling for each frequency configuration.

Considering that part of the power consumption scales with

the square of the voltage, it is important to have an informed

knowledge of these values, in order to achieve an accurate

model of the architecture. Hence, despite being impossible to

measure the real-time voltage of each GPU domain in many

793

DATA_TYPE r0, r1, r2, r3;

r0=A[threadId];
r1=r2=r3=r0;
for (int i=0;i<N;i++) {
 r0 = r0 * r0 + r1;
 r1 = r1 * r1 + r2;
 r2 = r2 * r2 + r3;
 r3 = r3 * r3 + r0;
}
B[threadId]=r0;

(a) Int, SP, DP Code:
DATA_TYPE r0, r1, r2, r3;

r0=A[threadId];
r1=r2=r3=r0;
for(int i=0;i<N;i++) {
 r0 = log(r1);
 r1 = cos(r2);
 r2 = log(r3);
 r3 = sin(r0);
}
B[threadId]=r0;

(b) SF Code:
__shared__ DATA_TYPE shared[THREADS];
DATA_TYPE r0;
for(int i=0;i<COMP_ITERATIONS;i++) {
 r0 = shared[threadId];
 shared[THREADS - threadId - 1] = r0;}

(c) Shared Memory Code:

DATA_TYPE r0;
for(int i=0;i<COMP_ITERATIONS;i++) {
 r0 = cdin[threadId];
 cdout[threadId]=r0;}
cdout[threadId]=r0;

(d) L2-Cache Code:

DATA_TYPE r0, r1;

r0=A[threadId];
r1=r0;
for (int i=0;i<N;i++) {
 r0 = r0 * r0 + r1;
 r1 = r1 * r1 + r0;
}
B[threadId]=r0;

(e) DRAM Code:

Figure 3: Example CUDA source code of some of the used microbenchmarks.

ld.global.f32 %f1, [%rd1];
mov.f32 %f2, %f1;
mov.f32 %f3, %f1;
mov.f32 %f4, %f1;
BA1:
 fma.rn.f32 %f5, %f1, %f1, %f2;
 fma.rn.f32 %f6, %f2, %f2, %f3;
 fma.rn.f32 %f7, %f3, %f3, %f3;
 fma.rn.f32 %f8, %f4, %f4, %f1;
 ...
 add.s32 %r5, %r5, 32;
 setp.lt.s32 %p1, %r5, 512;
 bra BA1;
st.global.f32 [%rd1], %fd5;

Loop unrolled
32 times

Check if
achieved
512 iterations
if not, jump
back to BA1

SP PTX Code:

Figure 4: PTX source code of the microbenchmark stressing

the single-precision floating-point units.

computing systems, the proposed methodology still allows

achieving accurate power predictions, since no assumption

is made on how the voltage scales with frequency. However,

if there is a previous information regarding the voltage

levels of each domain at any given frequency configuration,

the proposed methodology can be simplified into a single

execution of step 3, by utilizing the real voltage values.

E. Power consumption prediction

With the model parameters determined, it is possible to

predict how the voltage scales with the frequency of each

GPU domain and to obtain the total power consumption of

any executed application for the whole range of the device

V-F configurations, by simply measuring its performance

events on a single configuration. This allows a considerable

decrease of the design search space, which is a highly valu-

able advantage when applying DVFS in real-time. Finally,

the obtained power model also allows the decomposition of

the power consumption into the partial consumptions of the

several GPU components.

IV. MICROBENCHMARKING THE GPU

To model the unknown characteristics of the underlying

architecture, the proposed modelling methodology relies on

in-depth microbenchmarking of specific GPU components.

By creating a wide set of microbenchmarks, covering the

several components of the GPU, it is possible to isolate their

power consumption, enabling an accurate prediction of their

contribution to the total GPU power consumption.

Figure 3 presents a subset of CUDA code examples from

the developed microbenchmarks. To stress the main arith-

metic units (Int, SP and DP), the microbenchmark presented

in Figure 3a was developed, where the DATA TYPE can be

switched between int, float and double. Figure 4 presents

the PTX code corresponding to the SP variation of the

microbenchmark, where it can be seen that the FP operations

make use of architectural registers. When executing this

microbenchmark, each thread starts by initializing the values

of 4 registers with data from the global memory. Afterwards,

each thread executes a series of multiply and addition oper-

ations (using the PTX fused multiply-add instruction), until

a number of N iterations is reached (N=512 in the example

shown in Figure 4). The threads finalize by storing the com-

puted value back to the global memory. By running the same

code with different values of N, it is possible to characterize

the impact of different instruction mixes to the GPU power

consumption, by assigning different amounts of arithmetic

operations per memory access (arithmetic intensity). As

the value of N increases, more arithmetic instructions are

executed for each pair of load/store instructions, resulting in

increasingly higher levels of utilization of the corresponding

arithmetic units and lower utilization levels of the memory

hierarchy (DRAM and L2 cache).

Figure 3b presents the developed microbenchmark to

stress the special-function units. The code is very similar

to the previous arithmetic microbenchmarks, with the dif-

ference relying on using transcendental operations instead

of a simple multiply and addition.

The microbenchmark presented in Figure 3c was devel-

oped to stress the memory subsystem, where each thread

consecutively performs one load and one store to the shared

memory. The load and store addresses are chosen in a way

that minimizes the shared-memory bank conflicts for both

loads and stores.

Due to the absence of publicly available information

regarding the operation and structure of the L2 cache on

NVIDIA GPUs, developing a microbenchmark to stress this

794

Pe
r-C

om
po

ne
nt

Ut
iliz

a
tio

n
2.0

1.5

1.0

0.5

0

100

200

Po
w

er
 [W

]

150

50

SP Unit
INT Unit
DP Unit
SF Unit
L2 Cache
Shared Memory
DRAM

DP (x12)INT (x12) SP (x11)

L2 Cache

Constant
SP Unit

DP Unit
SF Unit

Shared Memory
DRAM

INT Unit

Measured

SF (x8) L2 (x10) Shared (x10) DRAM (x12) MIX (x7)

A.

B.

Figure 5: Per-component utilization rates and power breakdown of the microbenchmark suite on GTX Titan X at the default

frequency (fcore = 975MHz and fmem = 3505MHz).

component is not a trivial task. Hence, the considered mi-

crobenchmark (Figure 3d) is based on [26], where different

access patterns are explored to characterize the L2 cache.

Figure 3e illustrates the microbenchmarks used to stress

the GPU DRAM. While the structure is rather similar to the

arithmetic microbenchmarks (Figure 3a), lower arithmetic

intensities can be obtained by assigning a lower number of

arithmetic instructions per loop and by choosing smaller

values for N, which results in higher utilization of the

DRAM (since the threads spend less time inside the SMs).

Finally, a set of microbenchmarks corresponding to a mix

of the several used components was also considered, as well

as a microbenchmark where the GPU is awaken with no

executing kernel (Idle), resulting in the proposed suite of 83

microbenchmarks.

Figure 5A presents the utilization rate of the seven consid-

ered GPU components, obtained by executing the developed

microbenchmarks on the GTX Titan X GPU (Maxwell) at

the default frequency configuration. Looking at the first 11

microbenchmarks from the Integer collection, it is possible

to see the effects of varying the arithmetic intensity (by

increasing N, in Figure 3a). This can be observed with

the gradual decrease of the utilization rate corresponding to

both elements from the memory hierarchy (DRAM and L2

cache), and by the increase in the utilization of the Int units.

The same behaviour can be observed for the SP, DP and

SF microbenchmarks. Regarding the memory microbench-

marks, these successfully stress the corresponding memory

element, with varying degrees of utilizations obtained again

by varying the loop iterations in their source code. Overall,

the results show that the proposed microbenchmark suite

successfully accomplishes its design goal, i.e. in stressing

the considered components.

Upon model construction, i.e. after estimating the un-

known parameters in Equations 6 and 7, it is possible to pre-

dict the power consumption of each microbenchmark at the

component-level. Figure 5B illustrates the per-component

power breakdown of each microbenchmark, together with

the total measured power consumption at the default fre-

quency configuration. From these results, it can be observed

that the proposed model is particularly accurate in predicting

the power consumption on this set of applications (see

Section V-B for a robust assessment of the results using

an independent set of applications) and that the power

consumption of the components follow their corresponding

utilization rate. Additionally, it can also be observed that,

for this V-F configuration, the constant portion of the power

consumption, i.e. the terms from Equations 6 and 7 that do

not depend on the components utilization, contribute with

84W to the total power consumption, and that the maximum

contribution of the dynamic power is about 49% (achieved

in one of the Mix microbenchmarks).

V. EXPERIMENTAL RESULTS

A. Experimental setup

To validate the proposed model, three GPUs from the most

recent NVIDIA microarchitectures (see Table II) were used

as testing platforms on a Linux CentOS7 environment. While

the Tesla K40c GPU has a single non-idle memory frequency

level, the two other GPUs allow multiple configurations. For

this reason, and since the Titan GPUs are more recent, the

presented results will mostly focus on the GTX Titan X and

Titan Xp.

The NVML library was used for monitoring and changing

the operating frequencies of the GPU domains (while the

voltage is automatically set). The real power measurements

are also obtained using NVML, whose values are refreshed

at an estimated 35ms period for the Titan Xp, 100ms for

the GTX Titan X and 15ms for the Tesla K40c. Since many

GPU benchmarks have very short execution times, which

may result in misleading power measurements given the

observed refresh rates, the kernels were repeatedly executed

whenever necessary, to always reach an execution time of at

least 1 second at the fastest GPU configuration (highest core

795

Table II: Summarized description of the used GPUs.

Titan GTX Tesla
Xp Titan X K40c

Base architecture Pascal Maxwell Kepler

Compute capability 6.1 5.2 3.5

Memory frequencies (MHz) {5705, 4705}∗ {4005, 3505,
3004

3300, 810}
Core freq. range (MHz) [1911:582] [1164:595] [875:666]

Number of core freq. levels 22 16 4

Default Mem. Frequency 5705 3505 3004

Default Core Frequency 1404 975 875

Threads per warp 32 32 32

Number of SMs 30 24 15

Memory Bus Width 48B 48B 48B

Shared mem. banks 32 32 32

SP/INT Units/SM 128 128 192

DP Units/SM 4 4 64

SF Units/SM 32 32 32

TDP (W) 250 250 235
∗ NVIDIA driver does not allow setting the memory frequency to lower levels.

Table III: Standard benchmarks used to validate the proposed

power model.

Suite Application Name

Rodinia [17]

Streamcluster, Backprop, LUD, Gaussian,
Hotspot, K-Means, ParticleFilter naive,
ParticleFilter float, SRAD v1, SRAD v2

Parboil [16] CUTCP, LBM

Polybench [18]

2MM, 3MM, FDTD-2D, SYRK, CORR,
GEMM, GESUMMV, GRAMSCHM,
SYRK DOUBLE, 3DCONV, COVAR

CUDA SDK [19] Blackscholes, ConjugateGradientUM, matrixMulCUBLAS

and memory frequencies). The power consumption of each

kernel was computed as the average of all gathered sam-

ples. For benchmarks with multiple kernels the total power

consumption was obtained by weighting the consumption

of each kernel with its relative execution time. To guarantee

the accuracy of the presented results, all benchmarks were

repeated 10 times, with the presented values corresponding

to the median value.

The results will be analysed by considering the whole

frequency range in Section V-B. To create the model, the

microbenchmark suite described in Section IV was executed

on different frequency levels, with the performance events

shown in Table I being measured only at the reference fre-

quency levels. The algorithm proposed to estimate the power

model converged in less than 50 iterations, corresponding

to about 30 seconds on an Intel i7 4500U processor. To

obtain a bias-free validation of the model, an independent

collection of 26 applications from 4 benchmark suites was

used (see Table III), with each application being executed

only at the reference frequency configuration to measure the

required hardware events. Since these applications were not

used to estimate the model parameters, they allow showing

the model robustness for new (unseen) applications. The

500 900700 1100600 800 1000 1200

1.2

1.1

1.0

0.9

Core Frequency [MHz]

V
/

V R
ef

Measured Voltage
Predicted Voltage

(a) GTX Titan X.

500 1300900 1700700 1100 1500 1900

1.4

1.2

1.0

0.8

Core Frequency [MHz]

V
/

V R
ef

Measured Voltage
Predicted Voltage

(b) Titan Xp.

Figure 6: Measured vs. predicted core voltage.

20

60

100

140

180

220

Pr
ed

ic
te

d
 P

ow
er

 [W
]

40

80

120

160

200

240
Titan Xp GTX Titan X

Mean Absolute Error = 6.1%

Frequency levels
 - Memory: 4
 - Core: 16

Mean Absolute Error = 6.9%

Frequency levels
 - Memory: 2
 - Core: 22

Tesla K40c

20 10060 140 180 220
Measured Power [W]

Mean Absolute Error = 12.4%

Frequency levels
 - Memory: 1
 - Core: 4

20 10060 140 180 220
Measured Power [W]

20 10060 140 180 220
Measured Power [W]

2MM
FDTD
SYRK

CORR
GEMM
GESMV

GRAMS
SYRK_D
3MM

BCKP
LUD

STCL COVAR
PF_N
PF_F

K_M
K_M_2
SRAD_1

SRAD_2
BLCKSC
CGUM

GAUSS

3DCNV
HOTS

CUTCP
LBM
CUBLAS

Figure 7: Power prediction for all V-F configurations, for

the validation set of standard benchmarks (not used in the

model construction).

accuracy of the predictions is validated using the power con-

sumption measurements taken at all considered frequency

levels (see Table II).

B. DVFS-aware power model validation

Voltage levels prediction: Even though the devised model

assumes that both Vcore and Vmem can scale with the

changes in frequency of the two GPU domains (see Sec-

tion II-B), from extensive experimental testing, no voltage

differences were observed across the different memory fre-

quency levels for the considered GPUs.

On the other hand, the results denote clear differences

on the core voltage levels for the GTX Titan X and Titan

Xp GPUs. Figure 6 presents the comparison between the

predicted core voltage (obtained during the construction

of the model), with the measured voltage for the Titan

Xp and GTX Titan X. The real measured voltages were

obtained using the NVIDIA Inspector and MSI Afterburner

(third party Windows tools). However it was not possible to

sweep through all core and memory frequency ranges, due

to limitations of these tools, nor was it possible to verify the

voltage levels on the Tesla K40c GPU. The results clearly

show that there are two distinct regions for the core voltage

when scaling the core frequency: i) a constant voltage region,

for lower frequencies; and ii) after a specific frequency,

the voltage starts increasing linearly with the frequency. By

comparing the predicted and measured values, it can be

observed that the devised model is accurate in predicting

the core voltage, and in identifying the breaking point

between the two distinct regions. The existence of these

796

M
ea

n
 E

rro
r [

%
]

0

10

20

30

-10

-20

-30

Core Frequency: [595;1164] MHz (16 levels)
Memory Frequency: 4005 MHz

Core Frequency: [595;1164] MHz (16 levels)
Memory Frequency: 3505 MHz

M
ea

n
 E

rro
r [

%
]

0

10

20

30

-10

-20

-30

ST
C

L
BC

KP LU
D

2M
M

FD
TD

SY
RK

C
O

RR
G

EM
M

G
ES

UM
V

G
RA

M
S

SY
RK

_D
3M

M
G

A
US

S
HO

TS

C
O

V
A

R
PF

_N
PF

_F
K-

M
K-

M
_2

SR
A

D
_1

SR
A

D
_2

3D
C

N
V

BL
C

KS
C

C
G

UM LB
M

C
UT

C
P

ST
C

L
BC

KP LU
D

2M
M

FD
TD

SY
RK

C
O

RR
G

EM
M

G
ES

UM
V

G
RA

M
S

SY
RK

_D
3M

M
G

A
US

S
HO

TS

C
O

V
A

R
PF

_N
PF

_F
K-

M
K-

M
_2

SR
A

D
_1

SR
A

D
_2

3D
C

N
V

BL
C

KS
C

C
G

UM LB
M

C
UT

C
P

Core Frequency: [595;1164] MHz (16 levels)
Memory Frequency: 3300 MHz

Core Frequency: [595;1164] MHz (16 levels)
Memory Frequency: 810 MHz

Mean Absolute Error = 5.4% Mean Absolute Error = 4.8%Mean Absolute Error = 4.8%

Mean Absolute Error = 8.7%Mean Absolute Error = 5.1%

Figure 8: Prediction error obtained with the validation set

of benchmarks on GTX Titan X. Each figure presents the

prediction error for all core frequencies with a fixed memory
frequency of all benchmarks.

64x64 512x512 4096x4096

0.50

0.28

0.12
0.58

0.92

0.13

0.17

0.26

SP Unit
INT Unit
DP Unit
SF Unit
L2 Cache
Shared Memory
DRAM

Pe
r-C

om
po

ne
nt

 U
tili

za
tio

n

0

0.4

0.8

1.2

1.6

2.0

Measured at:
 fmem = 3505 MHz
 fcore = 975 MHz

Av
er

ag
e

Po
we

r [
W

]

600500 700 800 900 1000 1100 1200
Core Frequency [MHz]

50

100

150

200

250

Matrix Size

Mean Absolute Error = 6.8%
Matrix size
4096x4096

Matrix size
512x512

Matrix size
64x64

Measured
Predicted

Measured

Measured

Predicted

Predicted

(a)

(a) Since the prediction at fcore=1164 MHz would surpass TDP, the prediction considers an automatic frequency
decrease to the closest frequency level (f core=1126 MHz) that does not violate TDP.

Figure 9: Effects of varying the input matrices size for the

matrixMulCUBLAS kernel, on the GTX Titan X.

two different scaling behaviours may significantly affect

the power consumption of an application over the different

core frequencies. Moreover, it should be highlighted that

significant core voltage differences are predicted on the GTX

Titan X across different memory frequencies (although it is

not shown in the figure because such values could not be

validated).

Power consumption prediction with DVFS: Figure 7

presents the accuracy of the proposed power model for the

validation benchmarks2, for multiple core and memory V-F

configurations. Since multiple frequency settings were taken

into account, the range of obtained power values is large, e.g.
going from 40W up to 248W on the GTX Titan X.

On the validation benchmarks the model achieves mean

absolute errors of 6.9%, 6.0% and 12.4% for the three

devices. The observed higher error on the Tesla K40c can

be explained by a reduced accuracy of the hardware events

when characterizing the utilization of the GPU components

2The validation benchmarks were not used in the construction of the
model, to allow a robust assessment of the results.

(using the undisclosed events presented in Table I). Nonethe-

less, the achieved prediction error is still considerably lower

than the one achieved in previous works on the same mi-

croarchitecture, where the prediction error was 23.5% [14].

The architecture and existing performance events of the two

other GPUs (GTX Titan X and Titan Xp) are very similar,

resulting in similar accuracies of the power model. It is also

worth noting that even by using the performance events

measured only at the reference configuration, the model

achieves accurate results when predicting the power con-

sumption for a wide range of configurations. In particular,

the results of the GTX Titan X show accurate predictions

up to a frequency range of 4.3× for the memory frequency

(3505MHz→810MHz) and 1.6× for the core frequency

(975MHz→595MHz).

Figure 8 depicts the prediction error of the power model

for the considered validation benchmarks for different mem-

ory frequencies of the GTX Titan X. When covering a

frequency range of 2× for the core frequencies and 4× for

the memory frequencies, a mean prediction error of 6.0% is

still achieved, over all the V-F configurations. As one might

expect, when predicting the power at the operating frequency

furthest away from the reference configuration (where the

performance events that were used to build the model were

measured), the accuracy error slightly increases. This is seen

by the 4.9% accuracy error when fmem = 3505 MHz, while

at fmem = 810 MHz the accuracy error increases to 8.7%.

Input data size: For a given kernel, the characteristics

of the input data will determine how the different GPU

components are stressed. For example, one kernel with

small enough input data such that it fits in the L2-cache

is expected to have different resource utilization than the

same kernel with a much larger input data, as this will lead

to an increase of DRAM accesses. Naturally, the different

utilization patterns are taken into account in the model,

resulting in distinct power consumptions.

Figure 9 presents the effects of varying the size of the

(square) input matrices of the matrixMulCUBLAS kernel in

the GPU power consumption and in the utilization of each

GPU component. As it can be seen, with larger input data

sizes, the utilization of the SP unit, L2-cache and DRAM

increase, resulting in the presented rise of the GPU power

consumption, which is predicted by the proposed model with

a 6.8% average error.

Decoupling the GPU power: Once the model is fully

determined, it is possible to estimate the power consumption

of each GPU component for any application. This power-

breakdown can be particularly interesting for application

optimization, since it provides the developers with crucial

information about which components represent the main

power consumption bottlenecks.

Figure 10 presents the utilization and power breakdown of

the set of standard benchmarks for two V-F configurations

on the GTX Titan X GPU. From the presented results, it can

797

0.80

0.3

0.35

0.22
0.11
0.14

0.49

0.17

0.68

0.30
0.19
0.13

0.14

0.71

0.86

0.37 0.58
0.69

0.14

0.52

0.56

0.19

0.35
0.67

0.83

0.13

0.52

0.52

0.12

0.72

0.11

0.71

0.11

0.83

0.24

0.61

0.19

0.60

0.54

0.11
0.25

0.23 0.15

0.71

0.17
0.10

0.47 0.85

0.64

0.70
0.23

0.210.510.300.47

0.25
0.19

0.15
0.10 0.11

fcore=975MHz, fmem=3505MHz: Mean absolute error = 5.2%

fcore=975MHz, fmem=810MHz: Mean absolute error = 8.8%

fcore=975MHz, fmem=3505MHz

Pe
r-C

om
po

ne
nt

Ut
iliz

at
io

n
2.0

1.6

1.2

0.8

0.4

0

Po
w

er
 (W

)

180
160
140

80
60

120
100

ST
C

L

BC
KP LU
D

2M
M

FD
TD

SY
RK

C
O

RR

G
EM

M

G
ES

M
V

G
RA

M
S

SY
RK

_D

3M
M

G
A

US
S

HO
TS

C
O

V
A

R

PF
_N

PF
_F

K-
M

K-
M

_2

SR
A

D
_1

SR
A

D
_2

3D
C

N
V

BL
C

KS
C

C
G

UM LB
M

C
UT

C
P

40

Po
w

er
 (W

)

180
160
140

80
60

120
100

40

SP Unit
INT Unit
DP Unit
SF Unit
L2 Cache
Shared Memory
DRAM

Measured

Constant
SP Unit

DP Unit
SF Unit
L2 Cache
Shared Memory
DRAM

INT Unit

C
UB

LA
S

0.26
0.17

0.50

0.92

200

200

Figure 10: Power consumption breakdown on the real benchmarks, on the GTX Titan X GPU.

be observed that the group of validation benchmarks is rather

representative, presenting large differences in the utilization

levels of the different GPU components. Nonetheless, in

both V-F configurations, it can be seen that a non-negligible

portion of the power consumption is accounted for in the

constant part (80W for the reference configuration and 50W

for the low memory configuration), which aggregates the

static power, the idle power of that frequency configuration,

and the power consumptions of other non-modelled GPU

components (due to the lack of informative counters). Natu-

rally, between the two V-F configurations, the large variation

in DRAM operating frequency leads to the observed large

variation in the DRAM power consumption, while the power

of the remaining components stays almost constant.

Use cases: The proposed power consumption model can

be applied on the following scenarios: 1) GPUs without
sensor, by using a previously built model (e.g. using external

sensors) to provide an estimate of the total and/or per-

component GPU power consumption (similarly to [27]

from Intel). 2) Application analysis, by using the per-

component breakdown to assess the power bottlenecks of

developing applications (alternative to the usual performance

optimization); or even in a virtualization scenario (e.g.
NVIDIA GRID system using Hyper-V execution [28]),

where the model — constructed in the Hypervisor — could

be provided to the guest VMs, allowing them to estimate

their corresponding total and/or per-component power con-

sumption (which they currently have no way of measuring).

3) DVFS management, by facilitating the search for the

optimal frequency state, as it allows estimating the power

consumption at different frequency configurations without

requiring exhaustive execution on all possible configurations

as in [29]. 4) GPU hardware integration, by implement-

ing the proposed model in hardware (similarly to Intel

RAPL [30]), where it would be able to take into account fine-

grained V-F perturbations and potentially even non-SMU

(System Management Unit) V-F adjustments.

VI. RELATED WORK

Initial attempts to model the GPU power consump-

tion were focused on modelling the power at a fixed

frequency/voltage configuration, neglecting the effect of

DVFS [31], [32], [33], [34], [35], [36]. In particular, Na-

gasaka et al. [37] proposed a power consumption model for

a Tesla GPU (GTX285) based on hardware performance

events and on a statistical approach to find the correla-

tion between the performance profiles and the GPU power

consumption. They achieved 4.7% average prediction error,

although they also stated that the approach was ineffective on

more recent GPUs, namely those from the Fermi generation.

Hong et al. also proposed a power model for a Tesla GPU

(GTX280) [11] based on an analysis of both the binary

PTX and of the pipeline, at runtime. The offline PTX

analysis allows this model to attain highly accurate GPU

power predictions, at the cost of being very GPU-specific.

Hence, such an approach lacks the ability to make accurate

predictions for different GPU architectures, or even for the

same GPU at different core and memory configurations.

Song et al. used an artificial neural-network to train the

GPU power consumption [13], achieving better prediction

accuracy than other traditional regression based models.

However, neural network approaches usually create output

798

models of high complexity, where it is often hard to extract

its physical meaning.

Leng et al. integrated Hong’s power model inside the

GPGPU-Sim [38] simulator to form GPUWattch [12]. Sup-

porting both NVIDIA’s Tesla and Fermi GPU architec-

tures, GPUWattch can estimate the cycle-level GPU power

consumption during application execution. The considered

model assumes that the power consumption of a GPU

domain always scales linearly with its frequency[12, eq.6].

However, as it was previously shown (see Figure 2) this is

not always the case, because of the non-linear behaviour

of the voltage (see also Figure 6). Nath et al. also used

GPGPU-Sim to create a performance model for DVFS,

which could potentially be expanded to include a power

model [39]. However, such approach requires adding logic

to the GPU scoreboard, making it impossible to replicate

on real hardware. This type of approaches has been deemed

product-specific and difficult to apply on modern GPUs [14].

Abe et al. proposed DVFS-aware power regression models

for GPUs from the NVIDIA’s Tesla, Fermi and Kepler

generations [14], which separate the GPU power consump-

tion in core and memory domains, each proportional to

their corresponding frequency and associated performance

events. The models are estimated with linear regression by

using measurements taken at 3 different core and 3 different

memory frequencies. The proposed models achieved average

prediction errors of 15% for the Tesla GPU, 14% for

the Fermi GPU and 23.5% for the most recent Kepler

GPU. However, the authors do not disclose which set of

performance events are used in the model. Additionally,

despite performing the power consumption decomposition

in the core and memory domains, similar to the one herein

proposed, the authors do not consider the non-linear scaling

effects of the voltage.

Wu et al. studied how the performance and power con-

sumption of an AMD GPU scale with core and memory

frequency variations, as well as with different number of

cores [15]. These authors group GPU applications into

distinct clusters based on their characteristics, each rep-

resenting a different performance/power scaling. Neural-

network classifiers are used to characterize new applications,

by predicting which scaling factor better represents an

application. They achieve an average deviation of about 10%

on the tested GPU device. However, the model accuracy

is highly dependent on a set of fine-tuned parameters,

such as the number of clusters, which makes it difficult

to replicate on different architectures. More recently, in a

follow-up [40], a technique was proposed to optimize the

GPU energy efficiency by predicting the characteristics of

upcoming kernels, based on recent execution history.

VII. CONCLUSIONS AND FUTURE WORK

This manuscript presented a new DVFS-aware GPU

power model that is able to predict the power consumption

of the several GPU components for any frequency/voltage

configuration, by using the performance events gathered at

a single configuration. The proposed approach makes use

of an especially devised iterative algorithm that relies on

statistical regression and is able to model not only the

unknown characteristics of the underlying architecture, but

also to accurately predict how the GPU voltage scales with

the core/memory domain frequencies.

When used with a set of three different GPUs, represent-

ing the three most recent NVIDIA microarchitectures, the

proposed DVFS-aware power model accurately estimates the

power consumption with an average error of 7%, 6% and

12% on the Pascal, Maxwell and Kepler GPUs, respectively.

Particularly, in the Maxwell (or Pascal) GPU, the model

provides accurate results across a frequency range of 1.6×
(2.4×) for the core and 4.3× (1.2×) for the memory

frequencies.

The work herein presented opens the possibility for many

different future directions, one of which is the implemen-

tation of the proposed DVFS-aware power model in real-

time. This can be done by taking advantage of the iterative

nature of many of the most common GPU applications,

by measuring the performance events during the first call

to a GPU kernel and then using the power prediction to

determine the frequency/voltage configuration that best suits

that kernel. Additionally, the proposed model can be used

for the development of novel energy-aware GPU simulators

and for the energy-optimization of GPU applications.

ACKNOWLEDGMENT

This work was partially supported by Fundação

para a Ciência e a Tecnologia (FCT), under grants

SFRH/BD/101457/2014 and UID/CEC/50021/2013.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, and Others,
“TensorFlow: a system for large-scale machine learning,” in
Proc. Conf. Oper. Syst. Des. Implement. (OSDI), 2016.

[2] NVIDIA, “NVIDIA, CUDA C Programming Guide v9.0.
2017.” 2017. [Online]. Available: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html

[3] S. Herbert and D. Marculescu, “Analysis of dynamic
voltage/frequency scaling in chip-multiprocessors,” in Proc.
Int. Symp. Low Power Electron. Des. (ISLPED), 2007.

[4] X. Mei, L. S. Yung, K. Zhao, and X. Chu, “A measurement
study of GPU DVFS on energy conservation,” in Proc.
Workshop Power-Aware Comput. Syst. (HotPower), 2013.

[5] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “GreenGPU:
A Holistic Approach to Energy Efficiency in GPU-CPU
Heterogeneous Architectures,” in Proc. Int. Conf. Parallel
Process. (ICPP), 2012.

[6] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher,
and Z. Zong, “Effects of Dynamic Voltage and Frequency
Scaling on a K20 GPU,” in Proc. Int. Conf. Parallel Process.
(ICPP), 2013.

799

[7] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via
scheduling,” in Proc. Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2010.

[8] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, Liang
Wang, and K. Skadron, “A characterization of the Rodinia
benchmark suite with comparison to contemporary CMP
workloads,” in Proc. Int. Symp. Workload Characterization
(IISWC), 2010.

[9] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Performance
and Power-Aware Classification for Frequency Scaling of
GPGPU Applications,” in Proc. Workshop Algorithms, Model.
Tools Parallel Comput. Heterog. Platforms (HeteroPar), 2016.

[10] X. Mei, Q. Wang, and X. Chu, “A survey and measurement
study of GPU DVFS on energy conservation,” Digital
Communications and Networks, vol. 3, no. 2, pp. 89–100,
2017.

[11] S. Hong and H. Kim, “An integrated GPU power and
performance model,” in Proc. Int. Symp. Comput. Archit.
(ISCA), 2010.

[12] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, V. J. Reddi, J. Leng, T. Hetherington,
A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and
V. J. Reddi, “GPUWattch: enabling energy optimizations in
GPGPUs,” in Proc. Int. Symp. Comput. Archit. (ISCA), 2013.

[13] S. Song, C. Su, B. Rountree, and K. W. Cameron,
“A Simplified and Accurate Model of Power-Performance
Efficiency on Emergent GPU Architectures,” in Proc. Int.
Symp. Parallel Distrib. Process. (IPDPS), 2013.

[14] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and
M. Peres, “Power and performance characterization and
modeling of gpu-accelerated systems,” in Proc. Int. Parallel
Distrib. Process. Symp. (IPDPS), 2014.

[15] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena,
and D. Chiou, “GPGPU performance and power estimation
using machine learning,” in Proc. Int. Symp. High Perform.
Comput. Archit. (HPCA), 2015.

[16] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, D. Geng, W.-M. Liu, and W. Hwu,
“Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” Center for Reliable
and High-Performance Computing, Tech. Rep., 2012.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark suite
for heterogeneous computing,” in Proc. Int. Symp. Workload
Characterization (IISWC), 2009.

[18] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,”
URL http//www.cs.ucla.edu/˜pouchet/software/polybench/.

[19] NVIDIA, NVIDIA, GPU Computing SDK., 2017. [Online].
Available: https://developer.nvidia.com/cuda-code-samples

[20] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding
GPU Power: A Survey of Profiling, Modeling, and Simulation
Methods,” ACM Comput. Surv. (CSUR), 2016.

[21] C. Isci and M. Martonosi, “Runtime power monitoring in
high-end processors: methodology and empirical data,” in
Proc. Int. Symp. Microarchitecture (MICRO), 2003.

[22] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and
threshold voltage scaling for low power CMOS,” IEEE J.
Solid-State Circuits (SSC), vol. 32, no. 8, pp. 1210–1216,
1997.

[23] J. Butts and G. Sohi, “A static power model for architects,”
in Proc. Int. Symp. Microarchitecture (MICRO), 2000.

[24] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through

microbenchmarking,” in Proc. Int. Symp. Perform. Anal.
Syst. Softw. (ISPASS), 2010.

[25] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy
Through Microbenchmarking,” IEEE Trans. Parallel Distrib.
Syst. (TPDS), vol. 28, no. 1, pp. 72–86, jan 2017.

[26] A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring
GPU performance, power and energy-efficiency bounds
with Cache-aware Roofline Modeling,” in Proc. Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), 2017.

[27] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson,
“Fine-Grain Power Breakdown of Modern Out-of-Order
Cores and Its Implications on Skylake-Based Systems,” ACM
Trans. Archit. Code Optim. (TACO), vol. 13, no. 4, pp. 1–25,
dec 2016.

[28] NVIDIA and Microsoft, “Graphics Accelerated Pro-
ductivity For Every User, Any Application,” 2016.
[Online]. Available: http://images.nvidia.com/content/grid/
pdf/microsoft-server-solution.pdf

[29] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Multi-kernel
Auto-Tuning on GPUs: Performance and Energy-Aware
Optimization,” in Proc. Euromicro Int. Conf. Parallel,
Distrib. Network-Based Process. (PDP), 2015.

[30] D. Hackenberg, R. Schone, T. Ilsche, D. Molka, J. Schuchart,
and R. Geyer, “An Energy Efficiency Feature Survey of
the Intel Haswell Processor,” in Proc. Int. Parallel Distrib.
Process. Symp. Workshop (IPDPSW), 2015.

[31] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical
power consumption analysis and modeling for GPU-based
computing,” in Proc. Workshop Power-Aware Comput. Syst.
(HotPower), 2009.

[32] J. Chen, Bin Li, Ying Zhang, L. Peng, and J.-k. Peir,
“Statistical GPU power analysis using tree-based methods,”
in Proc. Int. Green Comput. Conf. and Workshops (IGCC),
2011.

[33] Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and
Power Analysis of ATI GPU: A Statistical Approach,” in
Proc. Int. Conf. Networking, Archit. Storage (NAS), 2011.

[34] S. Ghosh, S. Chandrasekaran, and B. Chapman, “Statistical
modeling of power/energy of scientific kernels on a multi-
GPU system,” in Proc. Int. Green Comput. Conf. and
Workshops (IGCC), 2013.

[35] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song,
S. Yalamanchili, and W. Sung, “Power Modeling for GPU
Architectures Using McPAT,” ACM Trans. Des. Autom.
Electron. Syst. (TODAES), vol. 19, no. 3, pp. 1–24, jun 2014.

[36] V. Adhinarayanan, B. Subramaniam, and W.-C. Feng,
“Online Power Estimation of Graphics Processing Units,” in
Proc. Int. Symp. Clust. Cloud Grid Comput. (CCGrid), 2016.

[37] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and
S. Matsuoka, “Statistical power modeling of GPU kernels
using performance counters,” in Proc. Int. Green Comput.
Conf. and Workshops (IGCC), 2010.

[38] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong,
and T. M. Aamodt, “Analyzing CUDA workloads using a
detailed GPU simulator,” in Proc. Int. Symp. Perform. Anal.
Syst. Softw. (ISPASS), 2009.

[39] R. Nath and D. Tullsen, “The CRISP performance model
for dynamic voltage and frequency scaling in a GPGPU,” in
Proc. Int. Symp. Microarchitecture (MICRO), 2015.

[40] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang,
and D. H. Albonesi, “Dynamic GPGPU Power Management
Using Adaptive Model Predictive Control,” in Proc. Int.
Symp. High Perform. Comput. Archit. (HPCA), 2017.

800

