
A Configurable Cloud-Scale
DNN Processor for Real-Time AI

Jeremy Fowers Kalin Ovtcharov Michael Papamichael Todd Massengill Ming Liu
Daniel Lo Shlomi Alkalay Michael Haselman Logan Adams Mahdi Ghandi

Stephen Heil Prerak Patel Adam Sapek Gabriel Weisz Lisa Woods
Sitaram Lanka Steven K. Reinhardt Adrian M. Caulfield Eric S. Chung Doug Burger

Microsoft

Abstract—Interactive AI-powered services require low-latency
evaluation of deep neural network (DNN) models—aka “real-
time AI”. The growing demand for computationally expensive,
state-of-the-art DNNs, coupled with diminishing performance
gains of general-purpose architectures, has fueled an explosion of
specialized Neural Processing Units (NPUs). NPUs for interactive
services should satisfy two requirements: (1) execution of DNN
models with low latency, high throughput, and high efficiency,
and (2) flexibility to accommodate evolving state-of-the-art mod-
els (e.g., RNNs, CNNs, MLPs) without costly silicon updates.

This paper describes the NPU architecture for Project Brain-
wave, a production-scale system for real-time AI. The Brainwave
NPU achieves more than an order of magnitude improvement
in latency and throughput over state-of-the-art GPUs on large
RNNs at a batch size of 1. The NPU attains this performance
using a single-threaded SIMD ISA paired with a distributed mi-
croarchitecture capable of dispatching over 7M operations from
a single instruction. The spatially distributed microarchitecture,
scaled up to 96,000 multiply-accumulate units, is supported by
hierarchical instruction decoders and schedulers coupled with
thousands of independently addressable high-bandwidth on-chip
memories, and can transparently exploit many levels of fine-grain
SIMD parallelism. When targeting an FPGA, microarchitectural
parameters such as native datapaths and numerical precision
can be “synthesis specialized” to models at compile time, enabling
high FPGA performance competitive with hardened NPUs. When
running on an Intel Stratix 10 280 FPGA, the Brainwave
NPU achieves performance ranging from ten to over thirty-five
teraflops, with no batching, on large, memory-intensive RNNs.

Index Terms—neural network hardware; accelerator architec-
tures; field programmable gate arrays

I. INTRODUCTION

Hardware acceleration of deep neural networks (DNNs) is

becoming commonplace as the computational complexity of

DNN models has grown. Compared to general-purpose CPUs,

accelerators reduce both cost and latency for training and

serving leading-edge models. Fortunately, the high level of

parallelism available in DNN models makes them amenable

to silicon acceleration. With evolving DNN-specific features,

GPGPUs have been particularly successful at accelerating

DNN workloads. In addition, a Cambrian explosion of new

Neural Processing Unit (NPU) architectures is taking place,

driven by academic researchers, startups, and large companies.

Training and inference (evaluating a trained model) have

different requirements, however. Training is primarily a

throughput-bound workload and insensitive to the latency of

processing a single sample. Inference, on the other hand, can

be much more latency sensitive. DNNs are increasingly used

in live, interactive services, such as web search, advertising,

interactive speech, and real-time video (e.g., for self-driving

cars), where low latency is required to provide smooth user

experiences, satisfy service-level agreements (SLAs), and/or

meet safety requirements.

Highly parallel architectures with deep pipelines, such as

GPGPUs, achieve high throughput on DNN models by batch-

ing evaluations, exploiting parallelism both within and across

requests. This approach works well for offline training, where

the training data set can be partitioned into “minibatches”,

increasing throughput without significantly impacting con-

vergence. However, systems optimized for batch throughput

typically can apply only a fraction of their resources to a single

request. In an online inference setting, requests often arrive one

at a time; a throughput architecture must either process these

requests individually, leading to reduced throughput while still

sustaining batch-equivalent latency, or incur increased latency

by waiting for multiple request arrivals to form a batch.

We have developed a full-system architecture for DNN in-

ference that uses a different approach [1], [2]. Rather than driv-

ing up throughput at the expense of latency by exploiting inter-

request parallelism, the system reduces latency by extracting

as much parallelism as possible from individual requests. We

do not sacrifice throughput but achieve it as the direct result

of low single-request latency. We use the term “real-time AI”

to describe DNN inference with no batching. This system,

called Project Brainwave (BW for short) achieves much lower

latencies than equivalent technologies such as GPGPUs on a

watt-for-watt basis, with competitive throughput.

This paper details the architecture and microarchitecture

of the BW NPU, which is at the heart of the BW system.

In its current form, the BW NPU is a DNN-optimized “soft

processor” synthesized onto FPGAs. Despite the lower clock

rate and higher area overheads that FPGAs incur, the BW

NPU achieves record-setting performance for real-time AI,

sustaining 35 Teraflops on large RNN benchmarks with no

batching. However, only one of the techniques that the BW

NPU uses to achieve low latency on individual DNN requests

is tied to reconfigurable logic, and the rest could be applied to

a “hard NPU” with a higher clock rate but reduced flexibility.

1

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00012

The key aspects of the BW system and NPU are:

• Architecture: The BW NPU implements a single-

threaded SIMD ISA comprised of matrix-vector and

vector-vector operations, contrasting with most current

accelerators which are heavily multithreaded (e.g., GPUs)

or fine-grained MIMD (e.g., Graphcore [3]). While using

a single-threaded model for a massively parallel accel-

erator may seem counterintuitive, the BW NPU is able

to extract sufficient SIMD and pipeline parallelism to

provide high utilization from individual requests. The

single-threaded model also reduces the burden on soft-

ware; rather than relying on compilers or programmers

to extract parallelism, the software that runs on the BW

NPU is primarily a linearization of the operators in the

accelerated subgraph.

• Memory system: To minimize latency, the BW system

typically pins DNN model weights in distributed on-chip

SRAM memories, which provide terabytes per second of

bandwidth at low power (as in other recent NPUs [4]).

Our current FPGAs also have local DRAM, which can

be used for more computationally intensive (and thus less

bandwidth-bound) models such as CNNs, or to run large

models on a limited number of FPGAs.

• Microarchitecture: The BW NPU microarchitecture

uses three techniques to extract parallelism. The first is

hierarchical decode and dispatch (HDD), where com-

pound SIMD operations are successively expanded into

larger numbers of primitive operations and fanned out

to the functional units. As an example, a single com-

pound matrix-vector instruction will end up producing

over 10,000 primitive operations. Second, the BW NPU

employs vector-level parallelism (VLP), where the com-

pound operations are broken into operations with a fixed

native vector size (e.g. 100-400 operations per vector);

it is these vector operations that form the primitives that

are fanned out to the compute units (similar to scalar

instructions in an ILP machine). Third, the BW toolchain

maps these parallelized vector operations to a flat, one-

dimensional network of vector functional units, and con-

nects them in a dataflow manner so vectors can flow

directly from one functional unit to another to minimize

pipeline bubbles. Higher-level operations such as matrix-

vector multiplications or convolutions are superimposed

onto the flat vector unit space.

• System: The FPGA chips that host BW NPUs in the BW

system are connected directly to the datacenter network,

so that they can receive streams of DNN inference

requests from remote servers with little overhead. Models

with multiple components can be partitioned across mul-

tiple FPGAs. While the BW system currently runs multi-

FPGA models in production, the focus of this paper is on

single-node evaluation of popular models that fit entirely

within individual FPGAs.

• Synthesis Specialization: Since the BW NPU provides

a high-level single-threaded abstraction, the underlying

microarchitecture can vary widely. This flexibility allows

the BW NPU to be mapped to a variety of imple-

mentations, such as different generations of FPGAs or

ASIC technologies. However, this flexibility also permits

the microarchitecture to vary within a specific technol-

ogy type and generation. The BW NPU accepts four

synthesis-time parameters that can optimize the microar-

chitecture resources for a particular DNN model or class

of models. These parameters are data type (precision),

native vector size, number of data lanes, and size of the

matrix-vector tile engine. This parameterization allows a

leaner microarchitecture for each of a number of model

classes, as opposed to a hardened implementation, which

must implement a superset of support to be general across

a range of model types.

Across a range of medium to large RNN benchmarks, run-

ning on a Stratix 10 FPGA, the BW NPU achieves throughputs

ranging from 11 to 35.9 Teraflops, at latencies under 4 ms.

These results use a low-precision floating-point format that

provides equivalent model scoring accuracy. More importantly,

these results are achieved without batching, so the system can

serve requests individually in real time. The BW system shows

that, for DNN inference, systems need not sacrifice low latency

to achieve high throughput.

II. BACKGROUND

The BW system integrates with an existing hyperscale cloud

infrastructure that runs production services with real-time AI

requirements [5]. This section gives background on the salient

features of the target datacenter architecture and the main

layers of the DNN serving stack.

A. A Hyperscale Datacenter Acceleration Architecture

Figure 1 illustrates the components of a hyperscale datacen-

ter. The acceleration architecture we describe is in large-scale,

world-wide production. Every standard dual-socket server

hosts one or more PCIe-attached accelerator cards that contain

FPGAs and/or ASICs. The accelerator cards have direct access

to the datacenter network and are placed in-line between the

server NIC and the top-of-rack (TOR) switches. Using an

on-chip RDMA-like lossless protocol, the accelerators can

communicate point-to-point directly at low latency to any of

the hundreds of thousands of servers located in the same

datacenter. The datacenter architecture shown in Figure 1

enables accelerators to be logically disaggregated and pooled

into instances of hardware microservices with no software in

the loop. Once initialized and registered with a distributed

resource manager, a given hardware microservice is published

to subscribing CPUs in the system and accessed directly

through an IP address.

The system of Figure 1 fundamentally influences the way in

which accelerators are managed and architected at cloud scale.

The CPU and FPGA resources devoted to a particular acceler-

ation scenario can be scaled independently, avoiding stranded

capacity and improving overall datacenter utilization. Large,

2

F

C

F

C

TOR (L0)

F

C

40G

L1

L2

TOR (L0)

L1FPGA/
ASIC

Dual
Socket
CPUs

40G
NIC

PCIe
Gen3
x16

40G

Dual
Socket
CPUs

40G
NIC

40G

FPGA/
ASIC

FPGA/
ASIC

FPGA/
ASIC

FPGA/
ASIC

FPGA/
ASIC

FPGA/
ASIC

FPGA/
ASICC

F
F
F

F

F
F
F

C
F
F
F

F

F
F
F

C
F
F
F

F

F
F
F

9x40G

Fig. 1. BW system at cloud scale. From left to right, servers with bump-in-the-wire accelerators, accelerators connected directly to the hyperscale datacenter
network, an accelerator appliance.

partitionable problems can be spatially distributed across mul-

tiple accelerators. For example, we have split bidirectional

RNNs across two independent FPGAs, with the server invok-

ing the forward and backward RNN FPGAs separately and

concatenating their outputs.

B. DNN Acceleration Platform

The DNN acceleration platform runs on the scale infras-

tructure and consists of three components: (1) a toolflow that

transforms pre-trained DNN model checkpoints into software

and accelerator executables, (2) a federated runtime that

orchestrates model execution between CPUs and distributed

hardware microservices, and (3) the programmable BW NPU

instantiated on FPGAs.

In the initial phases of the toolflow, a pre-trained DNN

model is exported from a DNN framework (e.g., Tensor-

Flow [6]) into BW’s graph intermediate representation (GIR).

The GIR undergoes a series of optimizations and transfor-

mations based on target constraints of the backend system,

including the target number of accelerators and the available

on-chip memory per accelerator. In latency-sensitive real-time

scenarios, the toolflow can often partition large graphs that

exceed the capacity of a single FPGA into sub-graphs whose

parameters can be pinned individually into accelerators’ on-

chip memory. This partitioning avoids the memory capaci-

ty/bandwidth tradeoff that often thwarts the deployment of

large RNNs and MLPs. Operations that are not supported by or

cannot be profitably accelerated on the BW NPU are grouped

into sub-graphs for execution on CPU cores.

Once the partitioning is complete, the FPGA and CPU sub-

graphs are compiled to BW NPU and CPU ISA binaries,

respectively. (The BW NPU ISA is described in Section IV-C.)

Once generated, the backend executables are packaged and

deployed to a federated CPU runtime in the cloud that executes

both the CPU sub-graphs and accelerator subgraphs initiated

through calls to a remote hardware microservice.

III. CRITICAL-PATH METHODOLOGY

FOR LATENCY-AWARE DESIGN

Before explaining the BW NPU architecture in detail, this

section describes a critical-path methodology for rigorously

guiding the design and evaluation of real-time NPUs optimized

for the latency of single requests. While stand-alone metrics

such as operations per second and energy efficiency are

popular optimization targets, these metrics do not capture the

effects of batching, which can artificially drive up utilization

while increasing latency.

Model Dimension Ops
Cycles

Data
UDM SDM BW NPU

LSTM 2000x2000 64M 19 352 718 32MB
GRU 2800x2800 94M 31 520 662 47MB

CNN
In:28x28x128
K:128x3x3

231M 13 1204 1326 247KB

CNN
In:56x56x64
K:256x1x1

103M 13 549 646 200KB

TABLE I
CRITICAL-PATH ANALYSIS OF LSTM, GRU, AND CNN.

To address this gap, we introduce additional latency-centric

metrics based on critical-path analysis: (1) the number of

cycles required to serve a model on an Unconstrained Dataflow

Machine (UDM) with infinite resources, and (2) the cycles to

serve on a Structurally-constrained Dataflow Machine (SDM)

that shares the same number of functional units with a tar-

get accelerator implementation. When modeling the critical

path, only functional unit latencies are counted in the UDM

and SDM. These metrics enable robust NPU evaluation by

characterizing the latency gap from idealized implementations.

UDM reflects the lower bound latency capturing all available

parallelism of a single DNN request; whereas SDM reflects

the lowest possible latency under realistic resource constraints

and assesses how well an implementation exploits available

parallelism of a single DNN request with high microarchitec-

tural efficiency.

LSTM Example. Figure 2 illustrates a critical-path analysis

applied to the dataflow of a long short-term memory (LSTM)

block [7], used commonly in state-of-the-art speech and text

production DNN models. Table I compares the UDM and

SDM latencies to the BW NPU on a single 2000-dimensional

LSTM evaluation (see Section VII for more detail). The

LSTM requires 64M operations per time step and can be

executed in 19 cycles on an idealized UDM. The more realistic

SDM constrained to 96,000 multiply-accumulators (MACs)

as in the actual BW NPU, serves the model in 352 cycles.

The 18X gap between the SDM and UDM suggests that

further performance improvements can be gained with more

resources. The actual BW NPU implementation serves the

LSTM in 718 cycles—within 2X of the idealized SDM—

indicating good microarchitectural efficiency. For reference,

3

3N / #FUSigmoid

N / #FUTanh

4N / #FUAdd

4N2 / #FUMVM*
+ log(N)

4N / #FUAdd +

M
V
M

M
V
M

Wf Uf

+bf

S

+

M
V
M

M
V
M

Wi Ui

+bi

S

+

M
V
M

M
V
M

Wo Uo

+bo

S

+

M
V
M

M
V
M

Wc Uc

+bc

Th

2N / #FUHadamard *
ft

*
itct-1

ht-1

N / #FUAdd +

N / #FUTanh

N / #FUHadamard

Th

*

ot

htct

xt Legend

5

4

2

1

3

6

7

8

Operations

3N sigmoids
N tanhs

4N adds

8N2 multiplies
8N N/2 add-
reductions

4N adds

2N multiplies

N adds

N tanhs

N multiplies

Latency

* FUMVM = 1 multiply and 1 add

S PWV
SigmoidS PWV
Sigmoid

Th PWV TanhTh PWV Tanh

* Hadamard
Product* Hadamard
Product

t-1 Previous
Statet-1 Previous
State

xt Vectorxt Vector

Wf MatrixWf Matrix

M
V
M

Matrix-
Vector
Multiply

M
V
M

Matrix-
Vector
Multiply

+ PWV Add+ PWV Add

Fig. 2. LSTM critical-path analysis. Operation count and latency are shown as functions of LSTM dimension (N) and number of functional units (#FU).

Table I also compares LSTM to representative 2-D CNN

layers from ResNet-50 [8]. The LSTMs overall are much

more challenging to accelerate, exhibiting lower available

parallelism and higher data requirements than 2-D CNNs.

Microarchitectural inefficiencies such as data and structural

hazards, pipeline stalls, and limited memory bandwidth con-

spire to prevent NPU implementations from approaching ideal

SDM latencies. The remainder of this paper shows that it is

possible to extract most of the available parallelism from a

single DNN request with high microarchitectural efficiency.

IV. ARCHITECTURE

A. Overview

The goals of the BW NPU architecture are: (1) to provide

a simple programming abstraction that can be targeted easily

by programmers and compilers, (2) to encode sufficient infor-

mation of potentially large DNN operations that an underlying

microarchitecture can efficiently exploit available parallelism,

and (3) to support enough flexibility to address a wide range

of DNN models spanning RNNs, MLPs, and CNNs.

To meet these goals, the BW NPU adopts a single-threaded

SIMD ISA made up of compound operations that operate on

one- and two-dimensional fixed-size “native” vectors and ma-

trices as first-class datatypes. While vector-based processing

is a well-established paradigm, the BW NPU ISA introduces

unique features tailored to the requirements of low-latency

DNN serving. Sub-graphs of a large DNN model can be

encoded through atomic instruction chains (without named

storage between instructions) that efficiently capture explicit

communication between graph edges, simplifying software

development and reducing complexity in hardware (see Sec-

tion V). The BW NPU architecture also exposes specialized

instructions, datatypes, and memory abstractions that are op-

timized for low-latency DNN serving.

The BW NPU matrix/vector datapath is implemented as a

coprocessor, using a conventional scalar core to issue BW

NPU instructions to the datapath via an instruction queue. The

scalar core provides the BW NPU’s control flow, including

dynamic input-dependent control flow, a critical requirement

for certain models such as single-batch RNNs with variable-

length timesteps.

B. Matrix-Vector Multiplication

In conventional basic linear algebra routines (BLAS) [9],

there are three canonical levels at which BLAS linear algebra

routines can be performed: (1) Level 1 (L1) consisting of

vector-only operations, (2) Level 2 (L2) consisting of matrix-

vector operations, and (3) Level 3 (L3) consisting of matrix-

matrix operations. L1 can be used to implement L1-L3, and

similarly L2 can be used to implement L2-L3.

The TPU1, a commercially deployed cloud NPU [10] most

closely aligns to L3 using a systolic two-dimensional matrix-

matrix multiplication array. L3 matrix-matrix multiplication is

the most straightforward to scale in a hardware implementation

due to high data re-use (O(N)) and reduced bandwidth

requirements but requires dense layers in a DNN model to be

batched for high efficiency. In other words, L3 matrix-matrix

multiplication is a relatively poor fit for unbatched execution.

L2 matrix-vector multiplication, on the other hand, is highly

desirable for single-request serving, especially in memory-

intensive RNNs and MLPs that are dominated by large dense

layers. As a result, the BW NPU architecture focuses on

matrix-vector multiplication as its key operation. Many higher

dimensional models (e.g., dense matrix-matrix multiply, 1D

or 2D CNNs, etc.) can be efficiently linearized onto matrix-

vector multiplication, whereas the opposite is more difficult.

For the sake of optimized batch-1 serving and to support a

variety of models, we specifically avoided the creation of

higher-dimensional primitives such as explicit matrix-matrix

multiplication and/or convolutional kernels. We have found

that while optimizing lower-dimensional primitives in hard-

ware is more difficult (but can be accomplished and scaled up

to high degrees of parallelism as discussed in Section VII),

the afforded flexibility has been invaluable.

C. BW NPU Instruction Set Architecture

The BW NPU instruction set has evolved over time to

accommodate the requirements of production DNN models

spanning LSTMs, GRUs, 1D (text) CNNs, 2D (image) CNNs,

4

Name Description IN Operand 1 Operand 2 OUT
v rd Vector read - MemID Memory index V
v wr Vector write V MemID Memory index -
m rd Matrix read - MemID (NetQ or DRAM only) Memory index M
m wr Matrix write M MemID (MatrixRf or DRAM only) Memory index -
mv mul Matrix-vector multiply V MatrixRf index - V
vv add PWV addition V AddSubVrf index - V
vv a sub b PWV subtraction, IN is minuend V AddSubVrf index - V
vv b sub a PWV subtraction, IN is subtrahend V AddSubVrf index - V
vv max PWV max V AddSubVrf index - V
vv mul Hadamard product V MultiplyVrf index - V
v relu PWV ReLU V - - V
v sigm PWV sigmoid V - - V
v tanh PWV hyperbolic tangent V - - V
s wr Write scalar control register - Scalar reg index Scalar value -
end chain End instruction chain - - - -

PWV = point-wise vector operation. IN = implicit input (V: vector, M: matrix, -: none). OUT = implicit output.

TABLE II
THE SINGLE-THREADED BW NPU ISA EXPOSES A COMPACT AND SIMPLE ABSTRACTION FOR TARGETING DNN MODELS.

word/character embeddings, and dense MLPs. Table II gives a

sampling of frequently used BW NPU instructions, discussed

in greater detail below.

Data types, Storage, I/O. In the BW NPU, all instructions

operate on N -length 1D vectors or N×N 2D matrices. Vectors

and matrices are treated as separate data types and stored in

independent register files. N is a fixed value in a given BW

NPU implementation. The ideal vector size depends on the

target set of models—a too-large vector requires inefficient

padding, whereas a too-small vector increases control over-

head. Section VI further discusses how synthesis specialization

of native dimensions in the context of FPGA-based BW NPUs

can be used to tailor a hardware instance to a model.

Vector and matrix read and write operations (v rd, v wr,

m rd, m wr) use their first operand to select a memory target,

which could be a specific register file, DRAM, or a network

I/O queue. Their second operand provides a memory index,

except in the case of network I/O. For other instructions, the

memory structure accessed (if any) is implicitly identified by

the opcode, as BW NPU memories are tightly coupled to

specific function units. For these instructions, only an index

operand is needed.

Matrix storage is specialized for constant values (model

weights). Matrices can be read only from the network (for

initialization) or from DRAM, and can be written only to the

matrix register file (MRF) or to DRAM. The MRF is read only

as an implicit operand of a matrix-vector multiply (mv mul).

Instruction Chaining. A fundamental feature of the BW NPU

ISA is explicit instruction chaining, in which sequences of

dependent instructions pass values directly from one operation

to the next. Explicit chaining allows the microarchitecture

to exploit substantial pipeline parallelism without complex

hardware dependency checking or multi-ported register files.

As will be discussed further in Section V, this chain-enabled

pipeline parallelism allows the microarchitecture to resolve

critical serial dependences with low latency.

The IN and OUT columns in Table II show the implicit

(chain) input and output operands for each instruction. Chains

must begin with v rd or m rd, the only instructions which

generate a chain output without a chain input. Vector chains

may then include any number of operations that both consume

and produce a vector, though the length and order of operations

is constrained by the microarchitectural implementation. A

vector chain terminates with a v wr operation, which sinks

the vector output of the prior instruction. As a special case of

chain semantics, a vector chain can end with multiple v wr

operations, which multicasts the final vector value to multiple

destinations.

Matrix chains always consist of exactly two instructions, an

m rd and an m wr, and serve only to initialize matrices from

the network and move matrices between the MRF and DRAM.

Mega-SIMD execution. The BW NPU enables operation on

multiples of the native dimension using by setting scalar

control registers using s wr. For example, setting rows=4

and columns=5 causes subsequent mv mul operations to treat

20 consecutive MRF entries as a tiled 4N × 5N matrix,

consuming 5 input vectors (5N values) and producing 4

output vectors (4N values). Other instructions in the chain are

also scaled appropriately, e.g., the v rd operation that feeds

the mv mul will read 5 contiguous VRF entries to provide

sufficient input, and any v wr at the end of the chain will

write 4 contiguous VRF entries. This capability has been

used with great extent to parameterize models, with the added

benefit of reducing instruction bottlenecks. In the largest GRU

evaluated in Section VII, a single instruction can be configured

to dispatch over 7 million operations.

Despite its performance potential, the BW NPU ISA pro-

vides a succinct and relatively readable programming model.

A fully parameterized and performance-tuned LSTM, summa-

rized below, can be expressed in just under 100 lines of code:

void LSTM(int steps) {
for (int t = 0; t < steps; t++) {

v rd(NetQ);
v wr(InitialVrf , ivrf xt) ;
// xWf = xt ∗ Wf + bf

5

VRF

Matrix-Vector Multiplier

Multifunction
Unit

cr
os

sb
ar

x

A

+ VRF

DR
AM

Nios

Tile
Engine VR

F

M
RF Tile

Engine VR
F

M
RF Tile

Engine VR
F

M
R F Tile

Engine VR
F

M
R F Tile

Engine VR
F

M
RF Tile

Engine VR
F

M
RF

Vector
Arbitration

Network

VRF

Multifunction
Unit

cr
os

sb
ar

x

A

+ VRF

VRF

x

A +PWV Activation
Functions

Hadamard
 Product
PWV Add/
Sub/Max

Legend Memory
Vector data

Operations

Ne
tw

or
k

Top Level
Scheduler

Fig. 3. Microarchitecture overview.

v rd(InitialVrf , ivrf xt) ;
mv mul(mrf Wf);
vv add(asvrf bf) ;
v wr(AddSubVrf, asvrf xWf);
// xWi = xt ∗ Wi + bi ...
// xWf = xt ∗ Wo + bo ...
// xWc = xt ∗ Wc + bc ...
// f gate −> multiply by c prev
v rd(InitialVrf , ivrf h prev) ;
mv mul(mrf Uf);
vv add(asvrf xWf);
v sigm(); // ft
vv mul(mulvrf c prev);
v wr(AddSubVrf, asvrf ft mod);
// i gate ...
// o gate ...
// c gate −> store ct and c prev
v rd(InitialVrf , ivrf h prev) ;
mv mul(mrf Uc);
vv add(asvrf xWc);
v tanh() ;
vv mul(mulvrf it) ;
vv add(asvrf ft mod); // ct
v wr(MultiplyVrf, mulvrf c prev) ;
v wr(InitialVrf , ivrf ct) ;
// produce ht , store and send to network
v rd(InitialVrf , ivrf ct) ;
v tanh() ;
vv mul(mulvrf ot); // ht
v wr(InitialVrf , ivrf h prev) ;
v wr(NetQ);

}
}

Matrix-Vector
Multiplier

Tile Engine

VRF

...

Accumulator

Vector
Add-Reduction

Sc
he

du
le

r

Float16 to BFP
Converter

BFP to Float16
Converter

...

Float16 Vector Input

Float16 Vector Output

Tile Engine

VRF

Tile Engine

VRF

Accumulator Accumulator

MRF MRF MRF

Fig. 4. Matrix-vector multiplier overview.

V. MICROARCHITECTURE

The goal of the BW NPU microarchitecture, as explained

in the introduction and in Section III, is to maximally exploit

the vector-level parallelism (VLP) of a single DNN request

at high hardware efficiency. In practice, pipeline stalls caused

by hazards, decoding inefficiencies, and inherent serial data

dependences in models (e.g., between LSTM time steps) limit

the exploitable VLP within a single request.

Figure 3 gives a high-level view of the BW NPU microar-

chitecture. The primary goal is to map and execute instruction

chains (described in Section IV) to a continuous, uninterrupted

stream of vector elements flowing through the function units.

The function units form a linear pipeline, mirroring the instruc-

tion chain structure, with the matrix-vector multiplier (MVM)

at the head. The vector arbitration network manages data

movement among the memory components: pipeline register

files (MRF and VRFs), DRAM, and network I/O queues. A

top-level scheduler configures the control signals for the func-

tion units and vector arbitration network based on the BW ISA

instruction chains it receives from the scalar control processor

(a Nios soft processor in our current implementation).

The remainder of this section presents additional detail

on three key aspects of the microarchitecture: the MVM,

the vector multifunction units, and the hierarchical control

structure that drives them.

A. Matrix-Vector Multiplier

The matrix-vector multiplier (MVM) is the primary

workhorse of the BW NPU. The MVM is scaled across a

network of dot product units consisting of up to 100,000

independent multipliers and accumulators. Unlike a matrix-

matrix multiplier, the MVM is memory-bandwidth limited. To

alleviate this bottleneck, each input to every single dot product

unit requires a dedicated memory port to feed the units at

maximum throughput.

A hierarchical view of the MVM is depicted in Figure 4.

At the highest level, the MVM instantiates a series of matrix-

vector tile engines, each of which implements a native-sized

MVM. In turn, each tile engine is made up of a series of dot

6

Tile Engine Vector
Register File

DPEDPE

Vector Input

Fan-In Tree

×N

×L

Vector Output
×L = Number of Data Lanes×L = Number of Data Lanes
×N = Number of Dot Product Engines (DPEs)
×L = Number of Data Lanes
×N = Number of Dot Product Engines (DPEs)

M
R
F

M
R
F

Vector
Exponent

Store

Matrix
Exponent

Store

++

×L

Vector
Exponent

Store

Matrix
Exponent

Store

+

×L

FIFOFIFOFIFO

Vector
Exponent

Store

Matrix
Exponent

Store

+

×L

FIFO Fan-In Tree

Fan-Out Tree

Fig. 5. Matrix-vector tile engine microarchitecture.

product engines, as shown in Figure 5. As the name suggests,

each dot product engine is responsible for the dot product

computation that corresponds to multiplying the input vector

by one native row in the matrix tile. The dot product engines

are composed of lanes of parallel multipliers that feed into

an accumulation tree. These lanes provide parallelism within

the columns of a row of a matrix tile. Combined, the MVM

exploits four dimensions of parallelism: inter-MVM, MVM

tiling, across the rows of a tile, and within the columns of the

row. The total throughput of an MVM in FLOPs per cycle can

be expressed as 2 × # tile engines × # DPEs × # lanes.

Sustaining L2 MVM Bandwidth. Each multiplier receives

one vector element and one matrix element per cycle. The

matrix elements are delivered by a dedicated port of the matrix

register file (MRF) positioned adjacent to that multiplier. The

MRF is banked by native tiles across the tile engines. Each

bank is further sub-banked by rows, such that the first sub-bank

in a tile engine (associated with the first dot-product engine)

contains the first row of every matrix tile in the MRF bank.

The elements of each row are interleaved in SRAM such that

each SRAM read port can be directly connected to a multiplier.

This organization scales the number MRF read ports with

local compute tiles. MRF entries can be written only from

DRAM or the network input queue, so write bandwidth

requirements are much lower.

Because MVM performance depends on MRF bandwidth,

needed matrix operands must fit in the available on-chip

SRAM to achieve high utilization. As discussed in Section II,

the full-system design of the BW NPU architecture permits

partitioning large multi-component RNN/MLP models across

multiple accelerators when a single accelerator’s on-chip mem-

ory is exhausted. CNNs are more compute intensive, and

thus can overlap transfers of new operands from DRAM with

computation on the current MRF contents.

B. Multifunction Units

The output from the MVM is routed through a series of

vector multifunction units (MFUs). The MFUs support vector-

vector operations such as multiplication and addition as well

as unary vector activation functions like ReLU, sigmoid, and

tanh. These are exposed in the ISA as the vv * and v *

operations in Table II. Dedicated vector register files (VRFs)

associated with the add/subtract and multiply function units

provide the secondary operands needed for those operations.

Each MFU contains a set of vector function units (three in

the current design) connected to the MFU’s input and output

ports by a non-blocking crossbar. The crossbar is configured

according to the current instruction chain to route the MFU’s

input to its output via any sequence or sub-sequence of the

internal function units (including a complete bypass). Once

configured, a sequence of vectors can be pipelined through

the MFU. Multiple MFUs can be chained to support longer

sequences of vector operations. We have found that two MFUs

are sufficient to support most instruction chains.

C. Hierarchical Decode and Dispatch (HDD)

The BW NPU uses a conventional scalar control processor

(with its own scalar instruction set) to dynamically issue BW

NPU instructions asynchronously to the top-level scheduler,

as shown in Figure 3. In our current FPGA implementation,

the control processor is realized with an off-the-shelf Nios II/f

soft processor paired with custom C libraries for generating

BW NPU instructions through software macros.

The top-level scheduler must decode each instruction chain

into thousands of primitive operations to control the operation

of many spatially distributed compute resources. The hierar-

chical decode and dispatch (HDD) logic shown in Figure 6

expands compound operations into distributed control signals

that manage thousands of compute units and dozens of register

files and switches. The top-level scheduler dispatches to 6

decoders and 4 second-level schedulers, which in turn dispatch

to an additional 41 decoders. This scheme, combined with

buffering at each stage, keeps the entire compute pipeline run-

ning with an average of one compound instruction dispatched

from the Nios every four clock cycles.

Figure 6 illustrates how the largest functional unit (the

MVM) is controlled from a single instruction. An expansion of

decoding information occurs from top-to-bottom as the Nios

processor streams T iterations of N static instructions into the

top-level scheduler. Next, the top-level scheduler dispatches

the MVM-specific portion of instructions to a second-level

scheduler, which expands operations along the target matrix’s

R rows and C columns (using the row and column control

registers described in Section IV-C). These MVM schedules

are mapped to E matrix-vector tile engines, with operations

dispatched to a set of E decoders each for the tile engines and

their associated vector register files and accumulation units,

along with a monolithic add-reduction unit. Finally, these

decoders generate control signals that fan out into the data

plane, with each tile engine dispatcher fanning out to hundreds

of dot product engines.

7

Nios

Top-Level Scheduler

O(T×N) dynamic
instructions

MVM Scheduler

O(T×N)

O(R×C×T×N)

Vector
Register File

O(E×R×C×T×N)

Matrix-Vector
Tile Engine

Accum-
ulator

Decoder Decoder

Add-
Reduce

Multifunction
Unit

MFU
Scheduler

etc

etc

Vector
Data

etc

Control Plane
Data Plane

O(N) static
instructions

DecoderDecoder

Fig. 6. Hierarchical decode and dispatch (HDD) into the matrix-vector multiplier.

VI. SYNTHESIS SPECIALIZATION

The BW microarchitecture can be viewed as a fully pa-

rameterizable processor family that can be customized to

specific models for efficiency. While hardened BW processors

can operate at high clock frequencies, their parameters must

be selected at compile-time, whereas soft BW processors

targeting FPGAs can be synthesis-specialized to particular

models.

Datapath Specialization. The BW architecture exposes sev-

eral major parameters that can be used for specializing a

microarchitecture instance to specific models: (1) aligning the

native vector dimension to parameters of the model tends

to minimize padding and waste during model evaluation,

(2) increasing lane widths can be used to drive up intra-

row-level parallelism, (3) increasing matrix multiply tiles can

exploit sub-matrix parallelism for large models. The results of

Section VII show the implications for customizing parameters

to models.

Narrow Precision Data Types. Extensive literature (e.g.,

[11]–[14]) has shown that deep neural networks are highly

compressible in data types and sparsity. On FPGAs, we

employ a narrow precision block floating point format [15] that

shares 5-bit exponents across a group of numbers at the native

vector level (e.g., a single 5-bit exponent per 128 independent

signs and mantissas). The quantization noise introduced by

BFP only affects dot products, since secondary operations

(e.g., point-wise vector multiply or tanh) still execute as

float16 on hardware. Using variations of BFP, we successfully

trim mantissas to as low as 2 to 5 bits with negligible impact

on accuracy (within 1-2% of baseline) using just a few epochs

of fine-tuning on production state-of-the-art DNN models and

large ImageNet models (e.g., ResNet-50). Using our variant

of BFP, no hyperparameter tuning (e.g., altering layer count

or dimensions) is required.

With shared exponents and narrow mantissas, the cost

of floating point (traditionally the Achilles heel of FPGAs)

drops considerably, since shared exponents eliminate expen-

sive shifters per MAC, while narrow bitwidth multiplications

map extremely efficiently onto lookup tables and DSPs. We

employ a variety of strategies to exploit narrow precision to

its full potential on FPGAs; for example, by packing 2 or 3 bit

multiplications into DSP blocks combined with cell-optimized

soft logic multipliers and adders, as many as 96,000 MACs

can be deployed on a Stratix 10 280 FPGA.

VII. EVALUATION

This section presents hardware implementation results

across three generations of Intel FPGAs that demonstrate the

scalability of the BW NPU architecture.

A. FPGA Implementation Results

We target three generations of Intel FPGAs, a mature — and

relatively small by today’s standards — Stratix V D5 device,

and two contemporary FPGA devices, an Arria 10 1150 and

Stratix 10 2801. All BW NPU instances have been validated

against actual hardware and the reported resource usage and

clock frequency results are based on final post-fit reports from

Quartus 15.1.1 for Stratix V, Quartus Prime 17.0.0 for Arria

10, and Quartus Prime 17.1ir.2 for Stratix 10.

The high degree of synthesis-time parameterization de-

scribed in Section VI allows us to tailor each BW NPU

instance to satisfy the needs of the given model to be served

and at the same time make the most efficient use of the un-

derlying FPGA hardware. Table III shows HW implementation

results for three BW configurations, BW S5, BW A10, and

BW S10, targeting three generations of Intel FPGA devices.

Depending on workload and model requirements we can

scale a BW NPU design across various dimensions until we

exhaust the limiting resources on the given target FPGA. The

remainder of this evaluation focuses on the BW S10 instance.

B. RNN Performance Analysis

We physically measure the performance of the BW S10

instance using DeepBench [16], a set of microbenchmarks

containing representative layers from popular DNN models

such as DeepSpeech [17]. We focus on GRU/LSTM inference

tests at low batch sizes. We compare the latency and compute

throughput trends between the BW NPU implemented on

Stratix 10 280 and the DeepBench published results on a

modern NVIDIA Titan Xp GPU.

Table IV shows a summary of the hardware used for the

experiments. While both devices are made on similar process

1Stratix 10 results are measured on pre-production silicon.

8

BW NPU Instance #MV Tiles #Lanes Native Dim. MRF Size #MFUs Target Device #ALMs (%) #M20Ks (%) DSPs (%) Freq. (MHz) Peak TFLOPS
BW S5 6 10 100 306 2 Stratix V D5 149641 (87%) 1192 (59%) 1047 (66%) 200 2.4

BW A10 8 16 128 512 2 Arria 10 1150 216602 (51%) 2171 (80%) 1518 (100%) 300 9.8

BW S10 6 40 400 306 2 Stratix 10 280 845719 (91%) 8192 (69%) 5245 (91%) 250 48

TABLE III
HARDWARE IMPLEMENTATION RESULTS FOR DIFFERENT BW NPU CONFIGURATIONS AND FPGAS. NUMBERS IN PARENTHESES CORRESPOND TO THE

FRACTION OF TOTAL DEVICE RESOURCES.

nodes, they are different in TDP and peak TFLOPS which is

primarily due to the different numerical formats being used.

We present both raw throughput and latency numbers and will

draw conclusions based on percent hardware utilization, trends

observed and comparison with an ideal dataflow machine.

Titan Xp BW S10
Numerical Type Float32 BFP (1s.5e.2m)

Peak TFLOPS 12.1 48.0

TDP (W) 250 125

Process TSMC 16nm Intel 14nm

TABLE IV
EXPERIMENT HARDWARE SPECIFICATIONS

1) No Batching: Batch size of 1 provides us with the

lowest cloud service latency since requests are processed as

soon as they arrive. It further simplifies software APIs and

deployment complexity since a batching queues and runtime

are not needed. Table V shows the raw effective TFLOPS

and the execution latency of each benchmark. The BW NPU

can run all DeepBench layers at under 4ms at batch 1,

reaching up to 35.9 effective TFLOPS for a large GRU over

hundreds of timesteps. This represents an approximate two

orders of magnitude advantage over the Titan Xp. This is

in part attributed to the BW NPU’s high peak TFLOPS at

narrow precision, but more significantly, this is due to better

hardware utilization. Figure 7 shows the utilization, which is

the percentage of the peak TFLOPS reached for each layer.

At batch size of 1, the BW NPU reaches 23% to 75% of peak

FLOPS for medium to large LSTM/GRUs (>1500 dimension).

This is a 4-23x improvement over Titan Xp’s utilization. The

BW NPU is able to fully expose on-chip RAM bandwidth,

pipeline dependent RNN vectors and exploit all degrees of

matrix-vector parallelism to keep its compute units busy. This

translates into low latency response times at batch size of 1.

As the GRU/LSTM hidden dimension decreases, amount of

parallelism and total operations decreases as well. Correspond-

ingly, compute utilization drops for both Titan Xp and BW.

In addition, for small LSTM/GRUs, BW’s utilization drops

due (1) the relative large native tile dimension, which can

result in wasteful work, and (2) the deep pipelines that delays

dependent data from being written back quickly. However,

we emphasize that BW’s reconfigurable architecture allows us

to adjust for the different degrees of parallelism (e.g. shrink

native dimension) according to the overall DNN dimensions,

which can recover utilization and lower latency.
2) Critical Path Analysis: We use the critical path method-

ology from Section III to analyze the difference in latency

between BW and a SDM with the same clock frequency and

Benchmark Device Latency (ms) TFLOPS % Utilization

GRU h=2816 t=750

SDM 1.581 - -

BW 1.987 35.92 74.8

Titan Xp 178.60 0.40 3.3

GRU h=2560 t=375

SDM 0.661 - -

BW 0.993 29.69 61.8

Titan Xp 74.62 0.40 3.3

GRU h=2048 t=375

SDM 0.438 - -

BW 0.954 19.79 41.2

Titan Xp 51.59 0.37 3.0

GRU h=1536 t=375

SDM 0.266 - -

BW 0.951 11.17 23.3

Titan Xp 31.73 0.33 2.8

GRU h=1024 t=1500

SDM 0.558 - -

BW 3.792 4.98 10.4

Titan Xp 59.51 0.32 2.6

GRU h=512 t=1

SDM 0.00017 - -

BW 0.013 0.25 0.5

Titan Xp 0.06 0.05 0.4

LSTM h=2048 t=25

SDM 0.037 - -

BW 0.074 22.62 47.1

Titan Xp 5.27 0.32 2.7

LSTM h=1536 t=50

SDM 0.043 - -

BW 0.145 13.01 27.1

Titan Xp 6.20 0.30 2.5

LSTM h=1024 t=25

SDM 0.011 - -

BW 0.074 5.68 11.8

Titan Xp 1.87 0.22 1.9

LSTM h=512 t=25

SDM 0.0038 - -

BW 0.077 1.37 2.8

Titan Xp 1.26 0.08 0.7

LSTM h=256 t=150

SDM 0.0126 - -

BW 0.425 0.37 0.8

Titan Xp 1.99 0.08 0.7

TABLE V
DEEPBENCH RNN INFERENCE PERFORMANCE RESULTS

number of compute resources as BW S10 (250 MHz, 96000

MVM MACs, and all other compute balanced). When we

compare the SDM latencies in Table V to the BW S10, we

find that the BW S10 is within a factor of 2.17X for the

large GRUs and LSTMs (dimension > 2000). However, this

factor falls off for the remaining models because the high-

dimension MVMs and deep pipeline of the BW S10 lead to

essentially the same latency per time step in steady state for

all evaluated models regardless of their size, between 252 and

296 microseconds. Future work will emphasize reducing the

MVM granularity and increasing MFU resources to evaluate

multiple spurs of the DNN graph in parallel as the SDM does.

3) Small Batches: Some cloud services will be able to

tolerate a slightly longer response latency, in which case a

small amount of batching can be employed. In Figure 8,

we show utilization scaling with the number of batches.

Though DeepBench caps inference batch size at 4, we also

9

3.3% 3.3% 3.2% 3.3% 3.0% 2.8% 2.6% 0.4%

74.8% 74.8% 74.8%

61.8%

41.2%

23.3%

10.4%
0.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

h=2816,
t=750

h=2816,
t=375

h=2816,
t=187

h=2560,
t=375

h=2048,
t=375

h=1536,
t=375

h=1024,
t=1500

h=512,
t=1

%
 U

til
iza

tio
n

Benchmark

Titan Xp
PX

(a) GRU

2.7% 2.5% 1.9% 0.7% 0.7%

47.1%

27.1%

11.8%
2.8% 0.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

h=2048,
t=25

h=1536,
t=50

h=1024,
t=25

h=512,
t=25

h=256,
t=150

%
 U

til
iza

tio
n

Benchmark

Titan Xp

PX

(b) LSTM

Fig. 7. Hardware utilization across DeepBench RNN inference experiments. h = hidden dimension, t = time steps

show batch size of 32 as a point of comparison. Since BW

executes a single input at a time, with increased batch size, the

utilization remains constant. We note that there is additional

firmware optimizations to be made for batch size >= 2 by

interleaving the computation for each RNN timestep among all

input batches to further space out dependencies. This would

be particularly effective at increasing utilization for small

LSTM/GRU layers, which are not always able to fill the deep

BW pipeline. This optimization is left for future work.

In contrast, GPU utilization increases proportionally as

batch size increases since there is now more independent

parallel work to fill the GPU SMs. However, at batch size

of 4, the Titan Xp remains at under 13% utilization even for

large RNNs. Increasing the batch size to 32 brings up GPU

utilization, but in practice such large batch sizes cannot be

used for DNN serving in the cloud without violating SLA.
4) Power Efficiency: We measured the peak chip power

consumption of a Stratix 10 280 FPGA to be 125W by running

a power virus design that used all of the on-chip IPs/resources.

Though we did not measure power consumption for each

DeepBench experiment, a conservative estimate based on the

125W peak power consumption figure, would put the power

efficiency of BW at 287 GFLOPS/W when running large

models at high device utilization.

C. CNN Performance Analysis

The BW NPU architecture can also accelerate and serve

large CNN models at low latency. In this section, we report

on preliminary results of a BW NPU variant specialized for

CNNs running a production image-based featurizer based on

ResNet-50 [8]. The topology and computational requirements

are nearly identical to the originally reported model except for

the final dense layer, which is replaced by scenario-specific

classifiers (e.g., decision tree in a Bing ranking pipeline) that

run on CPU.

Table VI compares the latency and throughput to run the

ResNet-50-based featurizer standalone on a BW NPU hosted

TABLE VI
THE BRAINWAVE NPU ON ARRIA 10 ACHIEVES COMPETITIVE

THROUGHPUT AND LATENCY TO AN NVIDIA P40 GPU AT BATCH SIZE 1
ON A RESNET-50-BASED IMAGE FEATURIZER.

Nvidia P40 BW CNN A10

Technology node 16nm TSMC 20nm TSMC
Framework TF 1.5 + TensorRT 4 TF + BW
Precision INT8 BFP (1s.5e.5m)
IPS (batch 1) 461 559
Latency (batch 1) 2.17 ms 1.8 ms

on an Arria 10 1150 (TSMC 20nm FPGA) against a high-

end inference-optimized Nvidia P40 GPU (TSMC 16nm). Our

measurements on real hardware include the latency to compute

a single request as well as the transfer time over PCI express

between host CPU and accelerator.

At batch size 1, the high-end P40 using INT8 precision

achieves 461 inferences per second (IPS), while the BW NPU

on Arria 10 achieves 559 IPS. On an unloaded system, the

BW NPU serves a single instance of the model in 1.8 ms,

while the P40 achieves 2.17 ms. The P40 achieves higher

throughput than the Arria 10 at large batch sizes; for example,

at a batch size of 16, the P40 attains 2,270 IPS; however,

latency increases to 7 ms per batch, which does not include

the time needed to form inputs from a batching queue. These

results show that the BW NPU is an effective architecture

for single batch, low latency serving—competitive with high-

end, newer generation GPUs on compute-intensive CNNs and

orders of magnitude faster on RNNs.

VIII. RELATED WORK

The unbridled successes of deep learning over the past

several years (e.g., [8], [18]) have fueled an explosion of

systems/AI research and the popularization of software frame-

works for deep learning (e.g., TensorFlow [6], Caffe [19],

etc). Correspondingly, many accelerators have been proposed,

as we describe below. The combination of a single-threaded

10

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 32

%
 U

til
iza

tio
n

Batch Size

Titan Xp PX

(a) GRU-2816

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 32

%
 U

til
iza

tio
n

Batch Size
(b) GRU-1024

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 32

%
 U

til
iza

tio
n

Batch Size
(c) LSTM-2048

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 32

%
 U

til
iza

tio
n

Batch Size
(d) LSTM-1024

Fig. 8. Utilization scaling with increasing batch sizes.

programming model, a flat vector space suitable for CNNs and

RNNs, model pinning in on-chip memories, and specialization

to a range of vector lengths and data types at synthesis time

differentiates the BW NPU from the large body of related

work.

A plethora of ASIC-based DNN designs have focused

on accelerating compute-intensive deep CNNs for computer

vision (e.g., [20]–[32]). The 2-D CNN models exhibit high

levels of parallelism and data re-use, making them easier

targets for acceleration relative to memory-intensive RNNs.

The “DianNao” family of AI processors [4], [20], [33]–

[35] span designs targeting small embedded clients to AI

supercomputing, for both training and serving. The DaDian-

Nao approach uses model pinning to minimize energy transfer

and memory bottlenecks to feed spatially distributed compute

units, a strategy similar to what we apply at datacenter scale.

Eyeriss [36] explores a spatial dataflow engine for accelerating

deep CNN models and achieves 10X more energy efficiency

than GPUs. Other approaches also explore elision of unnec-

essary computation at the bit-level [37]–[39].

A significant percentage of cloud-scale workloads are driven

by text-oriented scenarios requiring RNNs, MLPs, 1-D CNNs,

and other more memory-intensive DNN algorithms, which

many prior approaches do not consider. The EIE [12] and

ESE [40] are two closely related works that optimize the

serving of RNNs/MLPs through execution engines that process

compressed models [41] directly. Deephi [42] offers produc-

tion instances of CNN-optimized and RNN-optimized engines

that compute on compressed models in FPGAs, but unlike the

BW NPU they do not offer a converged engine that achieves

high performance on uncompressed models.

The commercial viability of DNNs has spawned a wave

of products from large companies and startups, including

Google’s TPU [10], [43], [44], Nvidia’s SCNN [45], Wave

Computing [46], Graphcore [3], Movidius [47], and many

others (complete list in [48]). The TPU1 is the first reported

large-scale deployed instance of a DNN accelerator for CNN

and RNN inference. While it achieves high levels of efficiency

for CNNs, it requires batching for high efficiency (at least 16)

and performs with relatively low hardware utilization on RNNs

(under 4%) even with high minibatch sizes [10].

Abstractions. An effort to generalize DNN accelerators

such that they can support a wider range of DNN models

has resulted in research into DNN-specific Instruction Set

Architectures (ISAs). For example, Cambricon [49] is a load-

store architecture that integrates data types such as scalars,

vectors, matrices and control instructions to provide coverage

for a wide range of DNNs to achieve higher code density

than general-purpose ISAs as well as cover a wider range

of models than traditional accelerators. The BW NPU uses

a similar strategy, utilizing a specialized ISA optimized for

low area footprint yet efficient execution of a wide range of

DNN models.

Model Compression and Narrow Precision. Reduction in

the numerical precision of activations and weights in neural

networks is one strategy of achieving a boost in compute

performance as well as power efficiency. Binarized Neural

Networks and fixed-point numerical representation are popular

approaches to achieving good efficiencies [11], [13], [14],

[50]–[55]. However, this body of work is limited in that it only

targets a single type of neural network, namely CNNs. To sup-

port a wider variety of neural networks, including RNNs, the

BW NPU utilizes a novel approach to numerical quantization,

one that allows it to scale the number of quantization bits given

a target application, as well as utilize a shared vector exponent

to enable a wider dynamic range, resulting in negligible or no

losses in model accuracy.

Model compression and weight pruning are another ap-

proach to achieving good efficiencies. One such example is

Deep Compression [41] but there are also others [56]–[61].

Although, these approaches can achieve great results for large,

over-provisioned models, it is difficult to generalize to models

of arbitrary size and complexity without significant drawbacks

to model accuracy.

A key strategy used by the BW NPU to achieve high

performance is through pinning neural networks—the idea

that model weights can be pinned onto on-chip memory in

order to achieve the necessary high memory read bandwidth

for serving models in real time. Baidu’s Persistent RNN [62]

uses a similar approach targeting GPU devices for distributed

training, although GPUs’ on-chip memory is more limited in

capacity and inflexible in precision. The BW NPU applies

pinning to fully configurable FPGAs and uses a scale-out

network of FPGAs to solve the case where the model weights

11

overflow the on-chip capacity.

There has been a large body of research in DNN accelerators

targeting FPGAs, in particular for accelerating Convolutional

Neural Networks (CNNs), such as [42], [63]–[94]. The BW

NPU is one of the first to utilize the latest generation Intel

Stratix 10 280 device for DNN acceleration achieving an order

of magnitude higher performance than GPUs on RNNs [95].

Other research efforts also exist in analog and

neuromorphic-type computing approaches such as [96]–

[99]. However, these approaches typically do not provide

state of the art accuracy compared to more artificial neural

networks. For a more detailed survey on efficient DNN

accelerators, refer to [48] and [100].

IX. CONCLUSIONS

The system that we described in this paper uses several

techniques to achieve high throughput and low latency for

real-time AI, with no minibatching. The system pins models

in on-chip memories and extracts mega-SIMD parallelism

from a single thread of control, with some of the compound

instructions generating millions of independent operations.

Hierarchical decode and dispatch breaks these operations into

fleets of fixed-length vector operations that are then scheduled

on a distributed substrate, operating in parallel and exploiting

direct producer-consumer dataflow routing to reduce pipeline

bubbles. Additionally, the datapath can be parameterized to

provide a match to different models, whether it be data types,

native vector size, number of lanes, or number of matrix-

vector units. Taken together, these techniques allow higher

utilization and lower latency on a collection of RNNs than

a high-performance GPGPU built in an equivalent process

technology. For the larger models, the latencies are 10-90X

lower than the GPGPU, and effective utilization is higher than

the GPU for all benchmarks until a batch size of 32 is applied.

This system currently supports many models and is running

in large-scale production (tens of thousands of nodes).

The dataflow analysis shows that there is still considerable

parallelism in the larger models we measured to exploit. As

the resources grow, so must the native vector length, so control

overheads do not start to dominate. We do not yet know

the limits of the single-threaded model to exploitable DLP

times VLP, and whether this model will continue to scale

to the increased area afforded by the few remaining silicon

process nodes. However, the scaling from Stratix V, through

Arria 10, and to Stratix 10 has been effective, with sustained

utilizations. Another unknown in this space is the ideal clock

rate; the FPGA clock rates are low compared to high frequency

ASICs, allowing higher utilization of the architecture. As we

push the frequency of the Stratix 10 implementation with

production silicon, performance will grow but efficiencies

will drop with increased pipeline bubbles. Similar to CPUs

exploiting ILP, the NPU space must find the best balance of

frequency and efficiency for exploiting vector-level processing,

which is currently unknown.

REFERENCES

[1] E. Chung et al., “Accelerating persistent neural networks at datacenter
scale,” in 2017 IEEE Hot Chips 29 Symposium, Aug 2017.

[2] ——, “Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave,” in IEEE MICRO: Hot Chips, April 2018.

[3] N. Toon and S. Knowles, “Graphcore,” https://www.graphcore.ai, 2017.

[4] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
Proc. 47th Annu. Int. Symp. on Microarchitecture (MICRO), 2014, pp.
609–622.

[5] A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services,” in Proc. 41st Annu. Int. Symp. on Computer
Architecture (ISCA), 2014, pp. 13–24.

[6] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in 12th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2016, pp. 265–283.

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[8] K. He et al., “Deep Residual Learning for Image Recognition,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 770–778.

[9] C. L. Lawson et al., “Basic Linear Algebra Subprograms for Fortran
Usage,” ACM Trans. Math. Softw., vol. 5, no. 3, pp. 308–323, Sep.
1979.

[10] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proc. 44th Annu. Int. Symp. on Computer Archi-
tecture (ISCA), 2017, pp. 1–12.

[11] S. Gupta et al., “Deep Learning with Limited Numerical Precision,”
in Proc. 32nd Int. Conf. on Machine Learning - Volume 37, 2015, pp.
1737–1746.

[12] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proc. 43rd Annu. Int. Symp. on Computer Archi-
tecture (ISCA), 2016, pp. 243–254.

[13] M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[14] U. Köster et al., “Flexpoint: An Adaptive Numerical Format for
Efficient Training of Deep Neural Networks,” in NIPS, 2017.

[15] J. H. Wilkinson, Rounding Errors in Algebraic Processes, 1st ed.
Englewood Cliffs, NJ: Prentice-Hall, 1963.

[16] S. Narang and G. Diamos, “Baidu DeepBench,” https://github.com/
baidu-research/DeepBench, 2017.

[17] A. Y. Hannun et al., “Deep Speech: Scaling up end-to-end speech
recognition,” CoRR, vol. abs/1412.5567, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proc. 25th International
Conference on Neural Information Processing Systems - Volume 1,
2012, pp. 1097–1105.

[19] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Em-
bedding,” in Proc. 22nd ACM International Conference on Multimedia,
2014, pp. 675–678.

[20] Y. Chen et al., “DianNao Family: Energy-efficient Hardware Accel-
erators for Machine Learning,” Commun. ACM, vol. 59, no. 11, pp.
105–112, Oct. 2016.

[21] P. Whatmough, “DNN ENGINE: A 16nm sub-uj deep neural network
inference accelerator for the embedded masses,” in 2017 IEEE Hot
Chips 29 Symposium, Aug 2017.

[22] C. Farabet et al., “Neuflow: A runtime-reconfigurable dataflow pro-
cessor for vision,” in Proc. Embedded Computer Vision Workshop
(ECVW’11), 2011, (invited paper).

[23] B. Moons and M. Verhelst, “A 0.3-2.6 TOPS/W Precision-Scalable
Processor for Real-Time Large-Scale ConvNets,” 2016.

[24] R. LiKamWa et al., “RedEye: Analog ConvNet Image Sensor Archi-
tecture for Continuous Mobile Vision,” in Proc. 43rd Annu. Int. Symp.
on Computer Architecture (ISCA), 2016, pp. 255–266.

[25] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,”
in Proc. 43rd Annu. Int. Symp. on Computer Architecture (ISCA), June
2016, pp. 27–39.

[26] S. Chakradhar et al., “A Dynamically Configurable Coprocessor for
Convolutional Neural Networks,” in Proc. 37th Annu. Int. Symp. on
Computer Architecture (ISCA), 2010, pp. 247–257.

12

[27] S. Venkataramani et al., “ScaleDeep: A Scalable Compute Architecture
for Learning and Evaluating Deep Networks,” in Proc. 44th Annu. Int.
Symp. on Computer Architecture (ISCA), 2017, pp. 13–26.

[28] S. Li et al., “DRISA: A DRAM-based Reconfigurable In-Situ Accel-
erator,” in Proc. 50th Annu. Int. Symp. on Microarchitecture (MICRO),
2017, pp. 288–301.

[29] B. Reagen et al., “Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators,” in Proc. 43rd Annu. Int. Symp.
on Computer Architecture (ISCA), June 2016, pp. 267–278.

[30] M. Peemen et al., “Memory-centric accelerator design for Convolu-
tional Neural Networks,” in Proc. 31st IEEE Int. Conf. on Computer
Design (ICCD), Oct 2013, pp. 13–19.

[31] S. W. Park et al., “An Energy-Efficient and Scalable Deep Learning/In-
ference Processor With Tetra-Parallel MIMD Architecture for Big Data
Applications,” IEEE Trans on Biomed Circuits Syst, vol. 9, no. 6, pp.
838–848, Dec 2015.

[32] V. Gokhale et al., “A 240 G-ops/s Mobile Coprocessor for Deep
Neural Networks,” in 2014 IEEE Conf. on Computer Vision and Pattern
Recognition Workshops, June 2014, pp. 696–701.

[33] T. Chen et al., “DianNao: A Small-footprint High-throughput Ac-
celerator for Ubiquitous Machine-learning,” in Proc. 19th Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014, pp. 269–284.

[34] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. 42nd Annu. Int. Symp. on Computer Architecture
(ISCA), June 2015, pp. 92–104.

[35] D. Liu et al., “PuDianNao: A Polyvalent Machine Learning Accelera-
tor,” in Proc. 20th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). New York, NY, USA:
ACM, 2015, pp. 369–381.

[36] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proc. 43rd Annu. Int. Symp. on Computer Architecture (ISCA), June
2016, pp. 367–379.

[37] P. Judd et al., “Stripes: Bit-serial deep neural network computing,” in
Proc. 49th Annu. Int. Symp. on Microarchitecture (MICRO), Oct 2016,
pp. 1–12.

[38] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” in Proc. 43rd Annu. Int. Symp. on Computer
Architecture (ISCA), June 2016, pp. 1–13.

[39] ——, “Bit-pragmatic Deep Neural Network Computing,” in Proc. 50th
Annu. Int. Symp. on Microarchitecture (MICRO), 2017, pp. 382–394.

[40] S. Han et al., “ESE: Efficient Speech Recognition Engine with
Sparse LSTM on FPGA,” in Proc. ACM/SIGDA Int. Symp. on Field-
Programmable Gate Arrays, 2017, pp. 75–84.

[41] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding,” in International Conference on Learning Representations,
2016.

[42] K. Guo et al., “From model to FPGA: Software-hardware co-design
for efficient neural network acceleration,” in 2016 IEEE Hot Chips 28
Symposium, Aug 2016, pp. 1–27.

[43] C. Young, “Evaluation of the Tensor Processing Unit: A Deep Neural
Network Accelerator for the Datacenter,” in 2017 IEEE Hot Chips 29
Symposium, Aug 2017.

[44] J. Dean, “Recent Advances in Artificial Intelligence via Machine
Learning and the Implications for Computer System Design,” in 2017
IEEE Hot Chips 29 Symposium, Aug 2017.

[45] A. Parashar et al., “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks,” SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 27–40, Jun. 2017.

[46] C. Nicol, “A dataflow processing chip for training deep neural net-
works,” in 2017 IEEE Hot Chips 29 Symposium, Aug 2017.

[47] D. Moloney, “Embedded deep neural networks: The cost of everything
and the value of nothing,” in 2016 IEEE Hot Chips 28 Symposium,
Aug 2016, pp. 1–20.

[48] V. Sze et al., “Efficient Processing of Deep Neural Networks: A
Tutorial and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, Dec 2017.

[49] S. Liu et al., “Cambricon: An Instruction Set Architecture for Neural
Networks,” in Proc. 43rd Annu. Int. Symp. on Computer Architecture
(ISCA), June 2016, pp. 393–405.

[50] M. Rastegari et al., “XNOR-Net: ImageNet Classification Using Bi-
nary Convolutional Neural Networks,” in In Proceedings of European
Conference on Computer Vision, 2016.

[51] B. Moons et al., “Energy-efficient ConvNets through approximate
computing,” in IEEE Winter Conf. on Appl. of Computer Vision
(WACV), 2016, pp. 1–8.

[52] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Pro-
ceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA:
MIT Press, 2015, pp. 3123–3131.

[53] P. Judd et al., “Reduced-precision strategies for bounded memory in
deep neural nets,” CoRR, vol. abs/1511.05236, 2015.

[54] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approxi-
mation of convolutional neural networks,” CoRR, vol. abs/1604.03168,
2016.

[55] P. Colangelo et al., “Fine-grained acceleration of binary neural net-
works using Intel Xeon processor with integrated FPGA,” in Proc. 25th
IEEE Int. Symp. on Field-Programmable Custom Computing Machines
(FCCM), April 2017, pp. 135–135.

[56] J. Cong and B. Xiao, Minimizing Computation in Convolutional Neural
Networks. Cham: Springer International Publishing, 2014, pp. 281–
290.

[57] J. Yu et al., “Scalpel: Customizing DNN Pruning to the Underlying
Hardware Parallelism,” in Proc. 44th Annu. Int. Symp. on Computer
Architecture (ISCA), 2017, pp. 548–560.

[58] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Con-
volutional Neural Networks Using Energy-Aware Pruning,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
6071–6079, 2017.

[59] Y. Kim et al., “Compression of deep convolutional neural networks for
fast and low power mobile applications,” CoRR, vol. abs/1511.06530,
2015.

[60] F. N. Iandola et al., “SqueezeNet: Alexnet-level accuracy with 50x
fewer parameters and <1MB model size,” CoRR, vol. abs/1602.07360,
2016.

[61] S. Han et al., “Learning Both Weights and Connections for Efficient
Neural Networks,” in Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, pp. 1135–1143.

[62] G. Diamos et al., “Persistent RNNs: Stashing Recurrent Weights On-
Chip,” in Proc. 33rd Int. Conf. on Machine Learning, 2016, pp. 2024–
2033.

[63] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN Accelerator
Efficiency Through Resource Partitioning,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture, ser. ISCA
’17. New York, NY, USA: ACM, 2017, pp. 535–547.

[64] J. Ouyang et al., “SDA: Software-defined accelerator for large-scale
dnn systems,” in 2014 IEEE Hot Chips 26 Symposium, Aug 2014, pp.
1–23.

[65] ——, “SDA: Software-defined accelerator for general-purpose big data
analysis system,” in 2016 IEEE Hot Chips 28 Symposium, Aug 2016,
pp. 1–23.

[66] J. Ouyang, “XPU: A programmable FPGA accelerator for diverse
workloads,” in 2017 IEEE Hot Chips 29 Symposium, Aug 2017.

[67] D. Shin and H.-J. Yoo, “DNPU: An energy-efficient deep neural
network processor with on-chip stereo matching,” in 2017 IEEE Hot
Chips 29 Symposium, Aug 2017.

[68] A. Rahman, J. Lee, and K. Choi, “Efficient FPGA Acceleration of
Convolutional Neural Networks Using Logical-3D Compute Array,”
in Conf. on Design, Automation & Test in Europe (DATE), 2016, pp.
1393–1398.

[69] A. Podili, C. Zhang, and V. Prasanna, “Fast and efficient implemen-
tation of convolutional neural networks on FPGA,” in Proc. 28th
IEEE Int. Conf. on Application-specific Systems, Architectures and
Processors (ASAP), July 2017, pp. 11–18.

[70] S. Li et al., “An FPGA design framework for CNN sparsification and
acceleration,” in Proc. 25th IEEE Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), April 2017, pp. 28–28.

[71] L. Lu et al., “Evaluating fast algorithms for convolutional neural
networks on FPGAs,” in Proc. 25th IEEE Int. Symp. on Field-
Programmable Custom Computing Machines (FCCM), April 2017, pp.
101–108.

13

[72] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN accelerator with
flexible buffering to minimize off-chip transfer,” in Proc. 25th IEEE Int.
Symp. on Field-Programmable Custom Computing Machines (FCCM),
April 2017, pp. 93–100.

[73] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing
neural networks for efficient FPGA implementation,” in Proc. 25th
IEEE Int. Symp. on Field-Programmable Custom Computing Machines
(FCCM), April 2017, pp. 85–92.

[74] E. Kousanakis et al., “An architecture for the acceleration of a hybrid
leaky integrate and fire SNN on the convey HC-2ex FPGA-based
processor,” in Proc. 25th IEEE Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), April 2017, pp. 56–63.

[75] S. Yin et al., “Learning Convolutional Neural Networks for Data-
Flow Graph Mapping on Spatial Programmable Architectures (Abstract
Only),” in Proc. ACM/SIGDA Int. Symp. on Field-Programmable Gate
Arrays, 2017, pp. 295–295.

[76] S. I. Venieris and C. S. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in Proc. 24th
IEEE Int. Symp. on Field-Programmable Custom Computing Machines
(FCCM), May 2016, pp. 40–47.

[77] Y. Li et al., “A 7.663-TOPS 8.2-W Energy-efficient FPGA Accelerator
for Binary Convolutional Neural Networks (Abstract Only),” in Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA:
ACM, 2017, pp. 290–291.

[78] H. Nakahara et al., “A Batch Normalization Free Binarized Convolu-
tional Deep Neural Network on an FPGA (Abstract Only),” in Proc.
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2017,
pp. 290–290.

[79] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in Proc. ACM/SIGDA Int. Symp. on Field-
Programmable Gate Arrays, 2017, pp. 65–74.

[80] U. Aydonat et al., “An OpenCLTMDeep Learning Accelerator on Arria
10,” in Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA’17. New York, NY,
USA: ACM, 2017, pp. 55–64.

[81] Y. Ma et al., “Optimizing Loop Operation and Dataflow in FPGA
Acceleration of Deep Convolutional Neural Networks,” in Proc.
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2017,
pp. 45–54.

[82] C. Zhang and V. Prasanna, “Frequency Domain Acceleration of Con-
volutional Neural Networks on CPU-FPGA Shared Memory System,”
in Proc. ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays,
2017, pp. 35–44.

[83] J. Zhang and J. Li, “Improving the Performance of OpenCL-based
FPGA Accelerator for Convolutional Neural Network,” in Proc.
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2017,
pp. 25–34.

[84] R. Zhao et al., “Accelerating Binarized Convolutional Neural Networks
with Software-Programmable FPGAs,” in Proc. ACM/SIGDA Int. Symp.
on Field-Programmable Gate Arrays, 2017, pp. 15–24.

[85] E. Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Neural Networks?” in Proc. ACM/SIGDA Int. Symp.
on Field-Programmable Gate Arrays, 2017, pp. 5–14.

[86] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network,” in Proc. ACM/SIGDA Int. Symp. on
Field-Programmable Gate Arrays, 2016, pp. 26–35.

[87] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Ac-
celerator for Large-Scale Convolutional Neural Networks,” in Proc.
ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays, 2016,
pp. 16–25.

[88] C. Zhang et al., “Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks,” in Proc. ACM/SIGDA Int. Symp. on
Field-Programmable Gate Arrays, 2015, pp. 161–170.

[89] W. Qadeer et al., “Convolution Engine: Balancing Efficiency & Flex-
ibility in Specialized Computing,” in Proc. 40th Annu. Int. Symp. on
Computer Architecture (ISCA), 2013, pp. 24–35.

[90] K. Ovtcharov et al., “Toward accelerating deep learning at scale using
specialized hardware in the datacenter,” in 2015 IEEE Hot Chips 27
Symposium, Aug 2015, pp. 1–38.

[91] C. Farabet et al., “CNP: An FPGA-based processor for Convolutional
Networks,” in 2009 International Conference on Field Programmable
Logic and Applications, Aug 2009, pp. 32–37.

[92] C. Farabet, C. Poulet, and Y. LeCun, “An FPGA-based stream pro-
cessor for embedded real-time vision with Convolutional Networks,”
in 2009 IEEE 12th International Conference on Computer Vision
Workshops, ICCV Workshops, Sept 2009, pp. 878–885.

[93] C. Ding et al., “CirCNN: Accelerating and Compressing Deep Neural
Networks Using Block-circulant Weight Matrices,” in Proc. 50th Annu.
Int. Symp. on Microarchitecture (MICRO), 2017, pp. 395–408.

[94] M. Alwani et al., “Fused-layer CNN accelerators,” in Proc. 49th Annu.
Int. Symp. on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[95] D. Lewis et al., “The StratixTM10 Highly Pipelined FPGA Architec-
ture,” in Proc. ACM/SIGDA Int. Symp. on Field-Programmable Gate
Arrays, 2016, pp. 159–168.

[96] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in Proc. 43rd Annu. Int.
Symp. on Computer Architecture (ISCA), June 2016, pp. 380–392.

[97] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelera-
tor with In-Situ Analog Arithmetic in Crossbars,” in Proc. 43rd Annu.
Int. Symp. on Computer Architecture (ISCA), June 2016, pp. 14–26.

[98] S. B. Eryilmaz et al., “Neuromorphic architectures with electronic
synapses,” in Proc. 17th Int. Symp. on Quality Electronic Design
(ISQED), March 2016, pp. 118–123.

[99] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” CoRR, vol. abs/1603.08270, 2016.

[100] A. Ling and J. Anderson, “The Role of FPGAs in Deep Learning,”
in Proc. ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays,
2017, pp. 3–3.

14

