
Fault-Tolerant Architecture for On-Board

Dual-Core Synthetic-Aperture Radar Imaging?

Helena Cruz1,2[0000−0003−2709−867X], Rui Policarpo
Duarte1,2[0000−0002−7060−4745], and Horácio Neto1,2[0000−0002−3621−8322]

1 INESC-ID, Rua Alves Redol, 9, Lisbon, Portugal
2 Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
{helena.cruz,rui.duarte,horacio.neto}@tecnico.ulisboa.pt

Abstract. In this research work, an on-board dual-core embedded archi-
tecture was developed for SAR imaging systems, implementing a reduced-
precision redundancy fault-tolerance mechanism. This architecture pro-
tects the execution of the BackProjection Algorithm, capable of gener-
ating acceptable SAR images in embedded systems subjected to errors
from the space environment. The proposed solution was implemented on
a Xilinx SoC device with a dual-core processor. The present work was
able to produced images with less 0.65 dB on average, than the fault-
free image, at the expense of a time overhead up to 33%, when in the
presence of error rates similar to the ones measured in space environ-
ment. Notwithstanding, the BackProjection algorithm executed up to
1.58 times faster than its single-core version without any fault-tolerance
mechanisms.

Keywords: Synthetic-Aperture Radar · BackProjection Algorithm ·Ap-
proximate Computing · FPGA · Dual-Core · SoC.

1 Introduction

There is an increasing need for satellites, drones and Unmanned Aerial Vehi-
cles (UAVs) to have lightweight, small, autonomous, portable, battery-powered
systems able to generate Synthetic-Aperture Radar (SAR) images on-board and
broadcasting them to Earth, avoiding the time-consuming data processing at the
receivers.

SAR is a form of radar used to generate 2D and 3D images of Earth which
is usually mounted on moving platforms such as satellites, aircrafts and drones.
SAR can operate through clouds, smoke and rain and does not require a light
source, making it a very attractive method to monitor the Earth, in particular,

? This work was supported by national funds through Fundação para a Ciencia e a
Tecnologia (FCT) with reference UID/CEC/50021/2019, and project SARRROCA,
�Synthetic Aperture Radar Robust Recon�gurable Optimized Computing Archi-
tecture� with reference: PTDC/EEI-HAC/31819/2017, funded by FCT/MCTES
through national funds, and POCI - Programa Operacional Competitividade e In-
ternacionalização e PORLisboa � Programa Operacional Regional de Lisboa.

2 H. Cruz et al.

the melting of polar ice-caps, sea level rise, wind patterns, erosion, drought
prediction, precipitation, landslide areas, oil spills, deforestation, �res, natural
disasters such as hurricanes, volcano eruptions and earthquakes.

Space is a harsh environment for electronic circuits and systems as it can
cause temporary or permanent errors on them. Therefore, systems designed for
spacecrafts or satellites must be reliable and tolerate space radiation. The main
radiation sources in space are: high-energy cosmic ray protons and heavy ions,
protons and heavy ions from solar �ares, heavy ions trapped in the magneto-
sphere and protons and electrons trapped in the Van Allen belts [3, 15, 20].
These radiation sources are capable of deteriorating the electronic systems and
provoking bit-�ips, leading to failures in electronic systems [2, 11, 14, 16]. Fault
tolerance mechanisms are used to increase the reliability of these systems at the
expense of extra mechanisms, processing time and power.

BackProjection is an algorithm for SAR image generation that is capable
of generating high quality images. BackProjection is considered the reference
algorithm for image formation since it does not introduce any assumptions or
approximations regarding the image. However, it is a very computationally in-
tensive algorithm. Therefore, typical fault-tolerance mechanisms will introduce
a huge penalty on its performance.

System-on-Chip (SoC) Field-Programmable Gate Arrays (FPGAs) were cho-
sen as a target device because of their power e�ciency, performance and recon-
�gurability, which are very important characteristics for space systems. Further-
more, the use of a SoC FPGA will enable future developments of dedicated
hardware accelerators to improve the performance of the system.

2 Background

2.1 Synthetic-Aperture Radar

SAR is a form of radar used to generate 2D and 3D high resolution images of
objects. Unlike other radars, SAR uses the relative motion between the radar and
the target to obtain its high resolution. This motion is achieved by mounting the
radar on moving platforms such as satellites, aircrafts or drones, as illustrated
in Fig. 1. The distance between the radar and the target in the time between
the transmission and reception of pulses creates the synthetic antenna aperture.
The larger the aperture, the higher the resolution of the image, regardless of the
type of aperture used. To generate SAR images, it is necessary to use an image
generation algorithm, such as the BackProjection Algorithm, described below.

2.2 BackProjection Algorithm

The BackProjection algorithm takes the following values as input: number of
pulses, location of the platform for each pulse, the carrier wave number, the radial
distance between the plane and target, the range bin resolution, the real distance
between two pixels and the measured heights. The BackProjection algorithm,
from [1], performs the following steps for each pixel and each pulse:

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 3

Fig. 1: Example of geometries involved in a SAR system.

1. Computes the distance from the platform to the pixel.

2. Converts the distance to an associated position (range) in the data set (re-
ceived echoes).

3. Samples at the computed range using linear interpolation, using Eq. 1 [13].

gx,y(rk) = g(n) +
g(n+ 1)− g(n)
r(n+ 1)− r(n)

· (rk − r(n)) (1)

4. Scales the sampled value by a matched �lter to form the pixel contribution.
This value is calculated using Eq. 2, and dr is calculated using Eq. 3, as in
[13].

eiω2|
−→rk| = cos(2 · ω · dr) + i sin(2 · ω · dr) (2)

dr =
√
(x− xk)2 + (y − yk)2 + (z − zk)2 − rc (3)

5. Accumulates the contribution into the pixel. The �nal value of each pixel is
given by Eq. 4 [13].

f(x, y) =
∑
k

gx,y(rk, θk) · ei·ω·2·|
−→rk| (4)

Table 1 summarizes the algorithm's variables and their meaning.

4 H. Cruz et al.

Table 1: Variables and their meaning
Variable Meaning

g(n) Wave sample in the previous adjacent range bin.
g(n+ 1) Wave sample in the following adjacent range bin.
r(n) Corresponding range to the previous adjacent bin.

r(n+ 1) Corresponding range to the following adjacent bin.
rk Range from pixel f(x, y) to aperture point θk.
dr Di�erential range from platform to each pixel versus center of swath.

xk, yk, zk Radar platform location in Cartesian coordinates.
x, y, z Pixel location in Cartesian coordinates.
rc Range to center of the swath from radar platform.

f(x, y) Value of each pixel (x, y).
θk Aperture point.
rk Range from pixel f(x, y) to aperture point θk.
ω Minimal angular velocity of wave.

gx,y(rk, θk) Wave re�ection received at rk at θk

Algorithm 1.1 BackProjection algorithm pseudocode.
Source: PERFECT Manual Suite [1].

1: for all pixels k do
2: fk ← 0
3: for all pulses p do
4: R← ||ak − vp||
5: b← b(R−R0)/∆Rc
6: if b ∈ [0, Nbp− 2] then
7: w ← b(R−R0)/∆Rc − b
8: s← (1− w) · g(p, b) + w · g(p, b+ 1)
9: fk ← fk + ei·ku·R

10: end if

11: end for

12: end for

The pseudocode to compute the aforementioned steps is shown in Algo-
rithm1.1. ku represents the wave number and is given by 2πfc

c , where fc is
the carrier frequency of the waveform and c is the speed of light, ak refers to the
position of the pixel, and vp, corresponds to the platform position.

The BackProjection algorithm implementation used in this study was taken
from the PERFECT Suite [1] and is written in C. This suite also contains
three input image sets: small, medium and large, which produce images of sizes
512×512, 1024×1024 and 2048×2048 pixels, respectively.

2.3 SAR Image Quality Assessment

The metric used to evaluate the quality of a SAR image is the Signal-To-Noise
Ratio (SNR). The SNR measures the di�erence between the desired signal and

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 5

the background noise, see Eq. 5. The larger the SNR value, the greater the agree-
ment between the pixel values. Values above 100dB are considered reasonable
[1].

SNRdB = 10 log10

(∑N
k=1 |rk|2∑N

k=1 |rk − tk|2

)
(5)

� rk - Reference value for k-th pixel.
� tk - Test value for k-th pixel.
� N - Number of pixel to compare.

2.4 Fault-Tolerant SAR Image Generation

Precise fault-tolerant mechanisms consist of repetitions of the same operations
in one or more units and evaluate which is the most voted result, regarding it as
the correct one. The most common one is Triple Modular Redundancy (TMR)
and consists of having three entities calculating the same value and have a voter
entity compare the results. The most common output value is assumed to be
the correct one. This mechanism is explained in [8, 10]. In the aforementioned
mechanism more than twice the power is consumed, and a latency overhead is
always required.

Fault-tolerant versions of SAR image generation algorithms are presented
in [8, 10, 19]. [10] proposes a fault tolerance mechanism for the Fast-Fourier
Transformer (FFT) algorithm based on range and azimuth compression by im-
plementing Concurrent Error Detection (CED) and using weighted sum, and also
implements scrubbing. [19] also presents a mechanism for FFT algorithm based
on a weighted checksum encoding scheme. [8] describes a Fault-Management Unit
which is responsible for the following functions: a scrub controller to periodically
reload the FPGA con�gurations data, a fault detection circuit to periodically
test the hardware, a switching circuit responsible for removing a faulty processor
and replace it by an alternative processor, and a majority voter circuit, which
is responsible for comparing the results of a TMR mechanism used during the
SAR algorithm execution.

2.5 Approximate Computing Fault Tolerance

If small variations in the computation of image processing algorithms are in-
troduced, they may not be perceptible at all. Therefore, such algorithms allow
some deviations from the correct value while still having valid images. In this
context, this paper proposes a novel fault-tolerance mechanism which relies on
approximations of the computations when in the presence of errors.

Reduced-Precision Redundancy (RPR) is used to reduce the overhead intro-
duced by TMR by using a full-precision computation and two reduced-precision
computations. RPR can be implemented in hardware, following an architec-
ture similar to TMR, or software, following an architecture similar to temporal

6 H. Cruz et al.

rpBPU

BPU

rpBPU

BPU

Core 0

rpBPU

BPU

rpBPU

BPU

Core 1

Pixel
Computations

Reduced-Precision
Redundancy FT

Fig. 2: Workload distribution of the developed fault tolerance mechanism be-
tween the CPU cores.

redundancy. The full-precision computation corresponds to the �original com-
putation� and the other two computations to approximations. Computing the
approximations reducing the overhead of the redundant computations, hence it
is more e�cient than calculating a full-precision values. However, the overhead
of the voting process is kept constant. Examples of applications that use RPR
are [12, 17].

In [4], the authors proposed a mechanism for Single Event Upset (SEU)
mitigation, which relies only on the comparison of the full-precision result against
only one approximation, obtained from a Look-Up Table (LUT). Due to the lack
of precision, only the Most Signi�cant Bits (MSbs) are compared. It they are
equal, the full-precision result is passed to the output of the arithmetic units,
otherwise, the approximate result is used. While it is not possible to determine
which unit is the acting as the faulty one, the full-precision computation is always
more prone to error than the reduced one.

3 Dual-Core Fault-Tolerant SAR Imaging Architecture

3.1 Proposed Architecture

In the BackProjection algorithm, the pixel computations are the most intensive
set of computations.

The calculation of each pixel, or Backprojection Unit (BPU), is done in par-
allel, which means each core computes one pixel at a time. For this reason, it is
protected by RPR, reducing the total overhead in the system. A scheme of the
architecture of the fault tolerance mechanism is displayed in Fig. 2, where it is
possible to observe which parts of the Backprojection (BP) algorithm are pro-
tected. The approximations are calculated after the full-precision computations.
The approximation computation and the error detection are represented in Fig.
2 as Reduced-Precision Backprojection Units (rpBPUs).

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 7

Table 2: Dual-core execution times in function of the number of pixels per batch.
The longer execution per batch number is displayed in bold in the table.

Original
Pixels in Batch

4 8 16 32

Core 0 � 240.4s 240.6s 241.5s 241.7s

Core 1 � 239.9s 239.3s 241.0s 239.4s

Total 477.4s 480.3s 479.9s 482.6s 480.4s

3.2 Algorithm Parallelization

In this algorithm, the pixel computations have no dependencies, therefore, they
can be computed in parallel. The workload was divided between the cores stat-
ically since dynamic load-balancing introduces overhead in the system. The re-
sults of this test are presented in Table 2, where the execution time is presented
in function of the number of pixels per batch. The tested number of pixels per
batch was 4, 8, 16 and 32.

From Table 2 it is possible to conclude that the number of BPUs per batch
does not have a signi�cant in�uence on the total execution time since it is smaller
or equal than 1%. It is also possible to observe that the workload is relatively
balanced, since there are not any accentuated di�erences in the execution times
of each core. This leads to conclude that dynamic load-balancing is not necessary
and that the batch number is also indi�erent. The �nal chosen number of units
per batch was 4, since it resulted in a similar execution time on both cores.

3.3 Modi�ed Reduced-Precision Redundancy

This work uses a modi�ed version of the RPR mechanism, which computes only
one approximation (rpBPU) after computing the full precision result (BPU) to
perform the comparison. The architecture of the modi�ed RPR mechanism is
presented in Fig. 3.

Both full-precision and reduced-precision values are compared by computing
their di�erence. If the di�erence is greater than an acceptable threshold (T) from
the reduced-precision value, it is assumed the value is incorrect and the reduced-
precision value is used instead. If not, the full-precision result is assumed correct
and is used. The reduced-precision value is copied to the output when an error
is detected because it is calculated in a shorter amount of time, and thus it
is less likely to have been a�ected by a fault. The reduced-precision values are
calculated using the aforementioned optimizations.

3.4 Algorithm Pro�ling

To produce a reduced computation of the BPU it was necessary to pro�le the
source code to determine which were the most time consuming operations. More-

8 H. Cruz et al.

over, the operations that last longer are the ones that are more prone to be sub-
jected to error. In future work, this pro�ling will also be important to determine
which operations to port into a hardware accelerator.

For pro�ling, the software implementation of the BackProjection algorithm
ran on the target device, Zynq FPGA from Xilinx, with the small image as
input. It took approximately 8 minutes to generate this image, using the o33

optimization level. Other image sizes required processing times greater than 156
minutes. The implementation of the algorithm was pro�led using gprof4. Table 3
shows the percentage of time dedicated to the most time consuming instructions
in the BackProjection algorithm.

Table 3: BackProjection algorithm pro�ling.
Operation Execution Time (%)

Sine 42.05
Cosine 42.54
Others 15.41

The trigonometric functions are responsible for over 80% of the execution
time of the algorithm, which means that the potential for the reduced-precision
redundancy mechanism lies within these functions. The rest of the algorithm,
including input and output operations, is executed in under 16% of the time.

3.5 Trigonometric Functions Optimization

The optimizations for the trigonometric functions tested are described below
and the results are presented in Table 4.

� COordinate Rotation DIgital Computer (CORDIC) algorithm [18];
� Taylor Series;
� Wilhem's LUT5;
� libfixmath6;

3 https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
4 https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
5 https://www.atwillys.de/content/cc/sine-lookup-for-embedded-in-c/
6 https://github.com/PetteriAimonen/libfixmath

Fig. 3: The architecture of the modi�ed RPR fault-tolerance mechanism.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html_mono/gprof.html
https://www.atwillys.de/content/cc/sine-lookup-for-embedded-in-c/
https://github.com/PetteriAimonen/libfixmath

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 9

Table 4: Comparison of the results produced by di�erent optimization algorithms
for the trigonometric functions.

Design Variation Time [s] SNR [dB]

Baseline 477.4 138.9

CORDIC 10 iterations 238.8 60.5

15 iterations 262.7 90.5

20 iterations 286.3 120.2

25 iterations 311.3 136.1

30 iterations 335.1 136.3

Taylor Series 4 terms 186.0 71.8

5 terms 192.3 103.8

6 terms 201.5 133.6

7 terms 210.4 135.3

Wilhem's Look-Up Table n/a 123.2 69.1

Lib�xmath Taylor I 179.3 54.5

Taylor II 158.8 33.6

LUT 134.8 99.2

Ganssle 3 coe�cients 163.5 66.3

4 coe�cients 167.3 105.2

5 coe�cients 170.7 118.3

7 coe�cients 176.5 134.8

7 coe�cients 179.8 135.3

� Ganssle optimizations [9].

Observing the results on Table 4, the following conclusions can be drawn. All
optimizations are indeed faster than the original version, which was expected.
However, most of these optimizations lead to a large precision loss.

The implementation of the CORDIC algorithm used to test was developed
by John Burkardt7. CORDIC is the algorithm with the worst performance, with
all its tested versions being slower than any other version of another algorithm.

The results obtained from the Taylor Series algorithm were outperformed by
the Ganssle methods, both in SNR and execution time.

The Wilhem's Look-Up Table method was the fastest overall and outper-
formed some variations of the other algorithms. It is a good alternative in sys-
tems with very limited memory since the LUT table occupies 66 bytes only,
however, if memory does not represent an issue, the libfixmath library is a
better alternative.

Besides the LUT variation, libfixmath provides two functions based on Tay-
lor Series. These two variations are outperformed by the Ganssle optimizations

7 https://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.html

https://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.html

10 H. Cruz et al.

and even the author's Taylor Series implementation, with worse performance
and less precision. libfixmath LUT variation is one of the best options for the
BackProjection optimization.

The Ganssle optimizations are a good alternative to replace the trigonomet-
ric functions in the BackProjection algorithm. The �rst variation, the one that
uses 3 coe�cients to calculate the �nal result, is outperformed by both the LUT
methods. Nevertheless, the other variations provide higher precision without a
signi�cant increase in the execution time. There are two functions that vary
only in the type of variables they use: single precision or double precision. Dou-
ble precision is more subject to errors since it requires more bitwise calculations
and the gain in precision is not signi�cant to the point of being worth comput-
ing them in prone to error environments. The 4-coe�cient variation does not
provide much more precision when compared to the libfixmath LUT function
and the execution time increases by more than 30 seconds, making the former
a better alternative. The 5-coe�cient variation provides more precision with an
execution time increase of less than 36 seconds. The 7-coe�cient (implemented
with single precision) function provides a precision very similar to the original,
with a di�erence of only less than 4dB in the SNR, and an increase of less than
43 seconds.

To sum up, the functions that represent a better option for the BackProjec-
tion algorithm optimization are the libfixmath LUT and the Ganssle variations
of 5 and 7 coe�cients. These three functions are used in the implementation of
the RPR mechanism.

4 Implementation Results

The research design was implemented on a Pynq-Z2 board from TUL. This board
contains a Zynq XC7Z020 device from Xilinx, an external 512MB DDR3 memory,
and I/O peripherals. The Zynq device contains a Programmable Logic (PL) and
a Processing System (PS). The PL corresponds to a Xilinx 7-series FPGA. The
PS main components are a dual-core ARM Cortex-A9 processor and a memory
controller.

4.1 Precision Optimization Evaluation

Algorithm 1.1 was implemented using three precision reduction optimizations:
the libfixmath LUT and the 5 and 7-coe�cient Ganssle trigonometric func-
tions. The execution times of the complete architecture for each of these opti-
mizations is presented in Table 5. As can be observed, the architecture imple-
mented using the libfixmath is 1.58 times faster than the serial original version
of the algorithm. Regarding the 5-coe�cient Ganssle algorithm, the execution
was 1.50 times faster than the original and the 7-coe�cient Ganssle algorithm
was 1.49 times faster than the original version. When compared to the dual-
core version of the BackProjection algorithm, the �nal architecture using the
libfixmath LUT method, the 5-coe�cient and 7-coe�cient Ganssle algorithms
introduce an overhead of 25%, 32% and 33%, respectively.

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 11

Table 5: Comparison between the execution times depending on the optimiza-
tion.
Design Baseline

(single core)
Baseline
(dual core)

Lib�xmath Ganssle
5-coef.

Ganssle
7-coef.

Exec. Time [s] 477.4 240.4 301.5 317.3 319.7

Table 6: Results of RPR with Agressive Fault-Injection.
Optimization libfixmath 5-coe�cient

Ganssle
7-coe�cient
Ganssle

#1 55.4 37.9 -62.3
#2 63.4 79.8 103.3
#3 -inf 82.1 94.7

4.2 Solution Evaluation

To test the developed architecture, a set of tests were performed. The fault
injection was implemented in software and at compile-time by introducing bit-
�ips according to a speci�c distribution. Measurements performed in the L2
space were reported in 8 and on average there is one SEU per day. However,
other locations in space induce more bit-�ips.

Regarding the Reduced-Precision Redundancy mechanism, the objective was
to observe the �nal quality of the generated images, using the SNR, in the pres-
ence of faults. To test the this mechanism, the following tests were implemented.
To inject faults, a fault injection function was called after every statement and
a bit-�ip could or not a�ect the last modi�ed variable. The frequency of the
bit-�ips depends on the test.

� Test RPR With Aggressive Fault Injection The average occurrences
of bit-�ips in space is 1 per day. To evaluate the mechanism on a more ag-
gressive scenario, with worse conditions, this fault injection follows a normal
distribution with a mean value of 40 and a standard deviation of 5. The
results of this test are presented in Table 6.

� Test RPR With 1440, 2880 and 8640 Bit-Flips per Day Considering
the average of bit-�ips, a worse-case scenario was tested: an average of 1440
bit-�ips per day, or one every 60, 30 and 10 seconds, respectively. The bit-
�ip a�ects a random bit in a random variable. The results of this test are
presented in Table 7.

Each of the RPR tests was executed three times for each of the optimizations
implemented: libfixmath, 5-coe�cient and 7-coe�cient Ganssle algorithms.

8 http://herschel.esac.esa.int/Docs/Herschel/html/ch04s02.html

12 H. Cruz et al.

Table 7: Results of RPR with 1440, 2880, and 8640 bit-�ips per day.

Optimization

libfixmath 5-coe�cient Ganssle 7-coe�cient Ganssle

1440 #1 138.9dB 138.8dB 19.9dB
#2 138.6dB 138.5dB 134.8dB
#3 138.8dB 138.8dB 138.8dB

2880 #1 97.8dB 67.9dB 109.9dB
#2 8.3dB 129.1dB 34.4dB
#3 90.3dB 101.1dB 83.3dB

5 Discussion

The overall results for the executions with injection of 1440 bit-�ips were close
to the original SNR value of the image, except the �rst execution of the 7-
coe�cient Ganssle algorithm. The other iterations deviated from the original
value a maximum of 4.1dB and an average of 0.65dB, when in the presence
of errors. The low SNR value of the �rst iteration of the 7-coe�cient Ganssle
algorithm is justi�ed by the fault injection in random variables. Certain variables
are more critical than others, for example, the �nal result of the approximation
has a greater impact on the �nal image quality.

Most of the results for very aggressive error rates were not considered ac-
ceptable, since the SNR values are inferior to 100dB. Two iterations, the third
of libfixmath and the �rst of the 7-coe�cient Ganssle algorithm were either
minus in�nite or a negative value, which generate a blank image.

The overall SNR values obtained for 2880 bit-�ips are inferior when compared
to the results of 1440 bit-�ips, which was expected since the rate of bit-�ips
doubled. The 5-coe�cient Ganssle algorithm provided the best results of this
test: two out of three SNR values are considered acceptable and the other has a
SNR almost half of the original value. The results obtained using the 7-coe�cient
Ganssle algorithm generate one acceptable image. For this test, the optimization
which provided the best results was the 5-coe�cient Ganssle algorithm.

The rate of 8640 bit-�ips represents a fault injection of 10 bit-�ips per sec-
ond. At this rate the proposed mechanism was not successful at detecting and
correcting faults. The values in the results table are nan, −∞ or negative values,
which generate a blank image. A SNR equal to nan happens when a bit-�ip
a�ects a �oating-point variable and the resulting value is not considered a valid
�oating-point representation. Regarding the SNR of −∞, the calculation of this
metric involves a logarithm operation, which equals −∞ in C when calculating
the logarithm of 0. The mechanism became ine�ective due to the elevated rate
of bit-�ips, leading to the conclusion the mechanism is only able to tolerate a
certain rate of faults.

Fault-Tolerant Architecture for On-Board Dual-Core SAR Imaging 13

6 Conclusions and Future Work

This work explored the research and development of a fault-tolerant architecture
for SAR imaging systems capable of generating SAR images using the Backpro-
jection Algorithm in a space environment.

The modi�ed RPR mechanism proposed avoids the use of more costly mech-
anisms, such as TMR, while taking advantage of the dual-core processor on the
Zynq device to improve performance. The main drawback of this mechanism, is
the inability to detect or correct control errors.

The �nal architecture consists of a dual-core implementation of the Backpro-
jection Algorithm, protected by the modi�ed Reduced-Precision Redundancy
mechanism. Depending on the optimization used, the overhead of the fault tol-
erance mechanism ranges from 25% to 33% when compared to the dual-core
version of the Backprojection Algorithm.

In spite of the limitations of a software implementation the modi�ed RPR
mechanism, the algorithm was tested under pessimistic conditions, di�erent from
the average use scenario. Furthermore, the developed architecture with an ap-
proach of RPR was demonstrated to be a good alternative for intensive space
applications. Future work involves exploring optimization techniques such as the
ones described in [5, 6, 7].

Bibliography

[1] Barker, K., Benson, T., Campbell, D., Ediger, D., Gioiosa, R., Hoisie, A.,
Kerbyson, D., Manzano, J., Marquez, A., Song, L., Tallent, N., Tumeo,
A.: PERFECT (Power E�ciency Revolution For Embedded Computing
Technologies) Benchmark Suite Manual. Paci�c Northwest National Lab-
oratory and Georgia Tech Research Institute (December 2013), http:

//hpc.pnnl.gov/projects/PERFECT/

[2] Baumann, R.C.: Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability 5(3),
305�316 (Sept 2005). https://doi.org/10.1109/TDMR.2005.853449

[3] Cor Claeys, E.S.: Radiation E�ects in Advanced Semiconductor Materials
and Devices. Springer-Verlag Berlin Heidelberg (2002)

[4] Duarte, R.P., Bouganis, C.: Zero-latency datapath error correction frame-
work for over-clocking dsp applications on fpgas. In: 2014 International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig14). pp. 1�7
(Dec 2014). https://doi.org/10.1109/ReConFig.2014.7032566

[5] Duarte, R.P., Bouganis, C.S.: High-level linear projection circuit design
optimization framework for FPGAs under over-clocking. In: Field Pro-
grammable Logic and Applications (FPL), 2012 22nd International Con-
ference on. pp. 723�726. IEEE (2012)

[6] Duarte, R.P., Bouganis, C.S.: A uni�ed framework for over-clocking linear
projections on fpgas under pvt variation. In: Goehringer, D., Santambro-
gio, M.D., Cardoso, J.M.P., Bertels, K. (eds.) Recon�gurable Computing:

http://hpc.pnnl.gov/projects/PERFECT/
http://hpc.pnnl.gov/projects/PERFECT/
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.1109/ReConFig.2014.7032566

14 H. Cruz et al.

Architectures, Tools, and Applications. pp. 49�60. Springer International
Publishing, Cham (2014)

[7] Duarte, R.P., Bouganis, C.S.: ARC 2014 over-clocking KLT de-
signs on FPGAs under process, voltage, and temperature variation.
ACM Trans. Recon�gurable Technol. Syst. 9(1), 7:1�7:17 (Nov 2015).
https://doi.org/10.1145/2818380, http://doi.acm.org/10.1145/2818380

[8] Fang, W.C., Le, C., Taft, S.: On-board fault-tolerant sar processor for
spaceborne imaging radar systems. In: 2005 IEEE International Sym-
posium on Circuits and Systems. pp. 420�423 Vol. 1 (May 2005).
https://doi.org/10.1109/ISCAS.2005.1464614

[9] Ganssle, J.: The Firmware Handbook. Academic Press, Inc., Orlando, FL,
USA (2004)

[10] Jacobs, A., Cieslewski, G., Reardon, C., George, A.: Multiparadigm com-
puting for space-based synthetic aperture radar. (01 2008)

[11] Maki, A.: Space radiation e�ect on satellites. Joho Tsushin Kenkyu Kiko
Kiho (55(1-4)), 43�48 (2009)

[12] Pratt, B., Fuller, M., Wirthlin, M.: Reduced-precision redundancy on
fpgas (2011). https://doi.org/10.1155/2011/897189, http://dx.doi.org/
10.1155/2011/897189

[13] Pritsker, D.: E�cient global back-projection on an fpga. In: 2015
IEEE Radar Conference (RadarCon). pp. 0204�0209 (May 2015).
https://doi.org/10.1109/RADAR.2015.7130996

[14] Sinclair, D., Dyer, J.: Radiation e�ects and cots parts in smallsats (2013)
[15] Sørensen, J., Santin, G.: The radiation environment and e�ects for future

esa cosmic vision missions. In: 2009 European Conference on Radiation
and Its E�ects on Components and Systems. pp. 356�363 (Sept 2009).
https://doi.org/10.1109/RADECS.2009.5994676

[16] Tambara, L.A.: Analyzing the impact of radiation-induced failures in all
programmable system-on-chip devices (2017)

[17] Ullah, A., Reviriego, P., Pontarelli, S., Maestro, J.A.: Majority
voting-based reduced precision redundancy adders. IEEE Transac-
tions on Device and Materials Reliability PP(99), 1�1 (2017).
https://doi.org/10.1109/TDMR.2017.2781186

[18] Volder, J.: The cordic computing technique. In: Papers Presented at
the the March 3-5, 1959, Western Joint Computer Conference. pp.
257�261. IRE-AIEE-ACM '59 (Western), ACM, New York, NY, USA
(1959). https://doi.org/10.1145/1457838.1457886, http://doi.acm.org/

10.1145/1457838.1457886

[19] Wang, S.J., Jha, N.K.: Algorithm-based fault tolerance for �t net-
works. IEEE Transactions on Computers 43(7), 849�854 (July 1994).
https://doi.org/10.1109/12.293265

[20] Ya'acob, N., Zainudin, A., Magdugal, R., Naim, N.F.: Mitiga-
tion of space radiation e�ects on satellites at low earth orbit
(leo). In: 2016 6th IEEE International Conference on Control Sys-
tem, Computing and Engineering (ICCSCE). pp. 56�61 (Nov 2016).
https://doi.org/10.1109/ICCSCE.2016.7893545

https://doi.org/10.1145/2818380
http://doi.acm.org/10.1145/2818380
https://doi.org/10.1109/ISCAS.2005.1464614
https://doi.org/10.1155/2011/897189
http://dx.doi.org/10.1155/2011/897189
http://dx.doi.org/10.1155/2011/897189
https://doi.org/10.1109/RADAR.2015.7130996
https://doi.org/10.1109/RADECS.2009.5994676
https://doi.org/10.1109/TDMR.2017.2781186
https://doi.org/10.1145/1457838.1457886
http://doi.acm.org/10.1145/1457838.1457886
http://doi.acm.org/10.1145/1457838.1457886
https://doi.org/10.1109/12.293265
https://doi.org/10.1109/ICCSCE.2016.7893545

	Fault-Tolerant Architecture for On-Board Dual-Core Synthetic-Aperture Radar Imaging

