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Abstract

We present several simulations of the amplitude scattered by acoustic cracks
in the resonance region. The results are obtained with a boundary element
method applied to a variational formulation derived from the double layer
potential. Simulations on the far field patterns allow to characterize some
information on the shape of the scattering obstacle. We include the case of
non planar cracks in the three dimensional case, presenting several examples
where it becomes clear the good convergence of the method. Moreover, we
show that even with sparse meshes the method is able to give a global
feature of the far field pattern of the scattered wave.

1 Introduction

Acoustic and elastic scattering by cracks is an old issue, with many ap-
plications in industrial problems, for instance, the detection of cracks in
materials. Early works by Bouwkamp[5] and Jones[9], in the acoustic case,
tried to solve this problem. In terms of integral equations, the difficulty is to
express the exterior domain problem in terms of an integral equation with a
non hypersingular kernel. First attempts considered only simple geometries,
mainly penny-shaped flat cracks.

A way to deal with this problem was to use analytical series develop-
ments. This was done only many years later for the elastic penny-shaped
crack by Martin and Wickham [10]. It was only afterwards that some
techniques to regularize the problem (and then use collocation methods)
were applied (eg.[11], [4]), but all numerical simulations available still dealt



with simple geometries and flat cracks. Based on a variational formulation
method and the good numerical properties proved by Ha Duong [7], in [1]
numerical simulations were first presented for plane cracks of arbitrary ge-
ometries and comparisons with previous methods were made. However, in
[1], the method was restricted to flat cracks. Here, based on the variational
formulation of Hamdi [8], we show our first results extending the method
to the case of non flat cracks, but only in acoustic scattering.

The text is organized as follows. In the next section we state the problem
and present the variational formulation, then we roughly describe the nu-
merical procedure which is quite similar to the implementation of the finite
element method in two dimensional problems and it was already used in [1].
In the last section we present several numerical examples and convergence
tests that allow to conclude the good performance of the BFEM (boundary
finite element method).

2 Scattering by acoustic cracks

We consider the time-harmonic scattering problem in the resonance frequen-
cies. Let I' be any sound-hard crack and take an acoustic incident plane
wave of the form

znc(x) _ eikm-d

u
where d € $2, is an unitary direction that determines the direction of prop-
agation of the acoustic wave with any frequency (or wavenumber) k > 0.
Here we are interested in the case of resonance frequencies, that can not be
dealt with the asymptotic behavior on k, here the wavelength has dimen-
sions comparable to the crack itself.

The scattered wave u verifies the Helmholtz equation, and we have the
exterior domain problem

Au+ k?u =0 in R3\T
Opu = —Opuine on T
Opu —iku =o(r~!) when r=|z| — o0
where the last condition is the Sommerfeld radiation condition. It is well

known that the behavior of the scattered wave can be described by the
asymptotic relation

eikr 1
u(x) = Uoo (Z) + o=
(2) = (@) + o(3)
where & = % € S2, and us, is an analytic function with complex values

|
defined on the unitary sphere S2, called far field pattern.
The solution of this problem can be given in terms of a double layer
potential (e.g.[6])

u(z) = / O, ®(x — y)p(y)ds,, (x € RAT) (1)



where @ is the fundamental solution of the Helmholtz equation given by
eik\m|

= drr|z|’

and ¢ € H(%z(l“) is a density called crack opening displacement (COD).
This COD is the jump of the solution on T, ie. ¢ = [u] = v~ — ut, where
u~ and ut are the traces of the solution according to a prescribed normal
orientation. The effect of this arbitrary orientation is cancelled by the sign
of the normal derivative in formula (1).

Remarks:

e Note that the single layer representation presents a problem in the
crack situation, since one assumes the same response in both sides of the
crack and therefore there is no jump using the traces of the normal deriva-
tive. Thus, the unknown density used in single layer formulation, which is
given by the jump of the traces of the normal derivative, is not appropriate.

e On the other hand, the trace of the double layer potential is given by

— 0 () = By, /Fanyq)(x —y)e(y)dsy, (2)

and if one tries to use the collocation method, one should find a way to
avoid the hypersingular kernel, since

1

On.On, (e =9) = O

)
is not integrable in the usual sense.

A way to deal with this problem is to use analytical series developments,
that work only for simple geometries (e.g. [9], [10], [12]), to regularize the
problem and then use collocation methods (e.g.[11], [4]), or to use variational
formulation methods ( [7] and [1]) The first numerical results comparing
these approaches, in the elastic case, were made in [1], for simple geometries
(penny-shaped or elliptical flat cracks, since no other results were available),
showing clearly the advantages of the variational formulation (due to the co-
erciveness of the sesquilinear form). In [1] other geometries were considered,
but the implementation of the method was restricted to flat cracks.

However the variational problem on the boundary (cf. Hamdi [8]) also

holds for non flat cracks, and we must retrieve the density ¢ € HSéQ(F)
such that

/F /F P(z — y) (curlpp(z) - curlpy(y)
—kn,(z) -y (y)e(2)P(y)) dsyds, (3)
= —/Fanumc(x)iz(:z:)dsm



for all test functions 1) € Hééz(l“). Note that curlry stands for the surface
curl given by
curlrp(z) = n, x Vo(z),

where @ is a constant extension of ¢ along the normal direction. Also, the
arbitrary sign of the normal directions n, does not affect the sesquilinear
formula in (3).

In this way it is possible to avoid the hypersingular kernel, because we
only have ®(x — y), since the derivatives were transferred to the density
and to the test functions. Note that V¢ is well defined since ¢ € H/?(T)
and for regular cracks (with no corners) one can extend it locally into a
¢ € H'(w), where w is a 3D-neighborhood of T.

We may proceed with the discretization using a finite boundary element
method (eg. [1]).

3 Boundary Finite Element Method

The procedure is quite similar to the classical finite element method on
2D. As usual we have to take into account two types of errors. The errors
due to the discretization of the geometry and the errors inherent to the
approximation by interpolation in a finite dimensional space.

We will consider cracks defined by a regular function on @), (for simplic-
ity, a square on R?), i.e.:

= {(z", f(z¥)), with f: Q@ = R },

where z* = (z1,72) € R2. The smoothness of the function f defines the
smoothness of the surface I', and we will be only dealing with C! surfaces,
although for the purpose of discretization we will take a piecewise linear
surfaces, defined by the triangles

Ty, = U(IEZ“ f(=g,))

where 7 are points in a 2D triangular mesh defined on ) and k; stands
for the representation in global numeration on the node ¢ in the triangle k.
This way we define a piecewise triangular ', = UyT} surface approxi-
mating I', where h stands for the maximal diameter of the triangles T}.
Note that the mesh on @@ does not export its properties to I'y. For
instance, a steep function f may transform a regular triangle 73, on @) into
a huge, or even almost degenerated, triangle T}, = f(7%).
In the regular mesh we consider linear Lagrange finite elements, vanish-
ing on the boundary of I'j,, therefore these test functions are in the space
1/2
Hoo™(T'n)-



In Figure 1 we plot an example of triangulation for a non flat crack. T’
(remark that each interior node has six adjacent triangles). This triangu-
lation was based on a regular mesh built on @ = [—1,1]? and approaches
I with an error of O(h?). Two of the corners are suppressed, to keep the
convenient feature of having six adjacent triangles per interior node. The
suppression of these two corners has a minimal effect on the approximation,
for non steep f, because the function ¢ vanishes on the border of I', and
therefore that contribution is not quite significant.

Figure 1. .The mesh on a non flat crack, defined by a function f.

We do not go into further details on the discretization procedure, the
reader can find similar techniques in [1], for the case of elastic flat cracks,
that can be adapted to this problem. We just mention that the procedure
consists in calculating the double integral on the sesquilinear form as the
sum of double integrations on the triangles, differentiating two cases:

(i) Non adjacent triangles — we consider simple numerical integration
in both integrals using interior Gauss points.

(ii) Adjacent triangles — we consider a numerical integration on the
first integral and an analytical integration of

/T Bz —yi) (curlpp(e) - curled(y) — Fne (@) -y (y:) ¢(2) b (y:)) dsa

here ¢ and 1 are to be understood as the basis functions, and y; is a Gauss
point on the adjacent triangle. Note that it may be the same and this
implies y; € T}. In fact, since we are considering interior Gauss points, the
only problem arrives when we are integrating on the same triangle. The
other adjacent cases may be calculated numerically. Most of the calculation
time is spent with the non trivial analytical calculation.

Finally, having ¢ approached by the linear combination of the basis
functions (with coefficients given by the solution of the stiff system), we
may calculate an approximation of the far field pattern by the formula

. 1 ikd
Uoo(T) = E/Fanye ik Yo(y)dsy,

using numerical integration with the basis functions.



4 Numerical tests

We considered simple tests to check the performance of the method. First
of all we should state that the results obtained by the method applied for
flat cracks like in [1] coincide with the case cracks in arbitrary planes. This
was a basic, but essential test, since no other results were available for non
flat cracks.

Example 1. We considered an incident plane wave with direction d =
(0,0,—1) and k = 6. The crack is given by f(z1,22) = %x%

Figure 2. The crack (a) and the COD (b) of Example 1.

In Figure 2.a) we plotted the mesh. We used 81 interior points in @ =
[0,1]2, with h¢g = 0.1, noticing that this gives a reasonable system with 81
complex unknowns, but, as pointed out before, most of the computation
time is taken on the analytic evaluation of the singular part of the integrals.
One should also remark that, in wave scattering, we can not expect a good
approximation unless the wavelength is four times bigger than the distance
between the nodes, i.e. usually one should take k& < g-. In our case, since
h ~ 0.17, the value k& = 6 is inside the limit of this empiric criteria. In
Figure 2.b) we plotted the modulus value for the COD, in each interior
node, i.e. we plotted the list of |p(z;)].

In Figure 3, we plotted two different 3D views of the far field pattern
generated by the scattered wave. These pictures were made using the List-
SurfacePlot3D routine of Mathematica®, based on an adequate list of values
given by our Fortran 90 code. We plotted the absolute values of the far field,
i.e. |uoo()], for 36 x 36 points on the surface of the unitary sphere. We may
notice the big lobs produced by the reflection and refraction of the wave on
the crack. The refraction lob is similar to the one that we have in the flat
cracks situation, but a similar reflection lob is no longer present. The reflec-
tion lob seems to be more affected by the shape of the crack, and we remark
the presence of oblique lobs that agrees with geometric ray simplification
for high frequencies.

We also would like to mention that in this situation we no longer have
null far field cuts. This was a particular feature of plane crack scattering.



As it was proved in [2] and [3], the null far field cuts are a unique feature
of cracks and they allow to identify the plane of the crack. However one
notices small far field values in a possible plane approximation of the crack,

as expected.
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Figure 3. Two different views of the far field pattern of Example 1.

Example 2.
We considered a crack defined on Q = [—1,1]x[—0.5,0.5] and f(x1,z2) =

z122 and a plane incident wave with d = \/Li(—l, 0,-1).
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Figure 4. Mesh of the crack and two views of the far field pattern (data

from Example 2).

In Figure 4 we plot the mesh and two views of the far field pattern,
using the same k£ = 6, and the same number of nodes as in Example 1.
With this incidence direction, we may see that the far field pattern has an
influence of the ray trajectories and it is also influenced by the curvatures



of the crack (see the last picture in Figure 4). The far field pattern is much
more complex in the case of non flat cracks, which is perfectly natural since
it should follow the geometry of the shape. Note that it is this feature that
allows the identification of the crack using inverse problem techniques.

Figure 5. The same tests as in Figure 4 but considering a larger h (results
are almost identical).

If in Figure 4 we took a mesh with 81 interior points, which gave h ~
0.27, now, in Figure 5, we plot the same experiment for less points. We
took 25 interior points, corresponding to h ~ 0.47. As one may see the
results are almost identical in visual terms. This puts out the good behavior
of the boundary variational formulation method using finite elements, in
convergence tests.

4.1 Convergence Tests

In Figure 6 we plotted the convergence test for the crack and data prescribed
in Example 1.

We took for approximations

¢ 9 interior points, with A = 0.42 (dashed thin line),

e 25 interior points, with 2 = 0.28 (thin line),

e 49 points, with A = 0.21 (dashed thick line),

e 81 points, with 2 = 0.17 (thick line)

We can clearly see the good convergence rate of the approximations.
Even the first approximation gives a good portrait of the global behavior
of the solution. Of course, if one wants to get detailed profiles, then the
number of points must be increased. This somehow agrees with a possible
rough approximation of the shape of the crack using a regularization of a
noisy far field pattern data. In fact, one may see the far field generated by
this rough approximation as the consequence of regularizing noise that was



added to the far field of the original shape.

Figure 6. Convergence test for Example 1.

In Figure 7 we present the same test, with the single difference that we

used £ = 9 and an incidence direction d = (%, 0, %‘;’ ). The considerations

made for the previous case also apply here - mainly, there is a good conver-

gence rate. Moreover, we can see that there is a connection between small

values of the far field pattern and a possible plane approximation to the non

planar crack, since the shape of the crack could be roughly approximated
1

by the plane defined by z3 = %{L'l — 35 and it is in this direction that the

cut of the far field presents the smaller absolute values.

Figure 7. Convergence test for Example 1 with different data and the asso-
ciated 3D plot.



e Conclusions

We may conclude that a good way of formulating the crack scattering
problem in terms of the double layer potential with continuous Neumann
data on both sides of the boundary is to use a variational formulation on the
surface and afterwards to apply a numerical resolution using a boundary
finite element method on the crack surface. This provides an excellent
method to avoid the hypersingularity which is also stable and converges fast.
Moreover rough approximations with a small number of points allow a fairly
good preview of the global behavior of the far field pattern. Applications
to crack detection follow from the works in [1], [2] and more generally using
the methods described in [6]. An extension of this code to the elastic crack
situation is currently being made.
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