Top-Down Parsing/Exercise 10: Test 2013/04/03
From Wiki**3
Problem
Consider the following grammar, where S is the initial symbol and {v, w, x, y, z} is the set of terminal symbols:
S → M y S x | L y | ε L → w L | S v M → z | x
- Examine the grammar and rewrite it so that an LL(1) predictive parser can be built for the corresponding language.
- Compute the FIRST and FOLLOW sets for all non-terminal symbols in the new grammar and build the parse table.
- Show the analysis table (stack, input, and actions) for the parsing process of the zyvyx input sequence.
Solution
Singularity M in S:
S → z y S x | x y S x | L y | ε L → w L | S v
Non-terminal left-corner L in S (also: mutual recursion):
S → z y S x | x y S x | w L y | S v y | ε L → w L | S v
Elimination of left recursion in S:
S → z y S x S' | x y S x S' | w L y S' | S' S' → v y S' | ε L → w L | S v
S' in S and S in L:
S → z y S x S' | x y S x S' | w L y S' | v y S' | ε S' → v y S' | ε L → w L | z y S x S' v | x y S x S' v | w L y S' v | v y S' v | v
Identifying common prefixes in L (final grammar form):
S → z y S x S' | x y S x S' | w L y S' | v y S' | ε 1|2|3|4|5 S' → v y S' | ε 6|7 L → w L L' | z y S x S' v | x y S x S' v | v L' 8|9|10|11 L' → y S' v | ε 12|13
FIRST and FOLLOW sets for the transformed grammar:
FIRST(S) = { v, w, x, z, ε } FOLLOW(S) = { $, x }
FIRST(S') = { v, ε } FOLLOW(S') = { $, v, x }
FIRST(L) = { v, w, x, z } FOLLOW(L) = { y }
FIRST(L') = { y, ε } FOLLOW(L') = { y }
Parse table (note the ambiguities):
| v | w | x | y | z | $ |
-------+-------+-------+-------+-------+-------+-------+
S | 4 | 3 | 2/5 | | 1 | 5 |
S' | 6/7 | | 7 | | | 7 |
L | 11 | 8 | 10 | | 9 | |
L' | | | | 12/13 | | |
Input analysis:
STACK | INPUT | ACTION
---------------------------
S$ | zyvyx$ | 1
zySxS'$ | zyvyx$ | (z)
ySxS'$ | yvyx$ | (y)
SxS'$ | vyx$ | 4
vyS'xS'$ | vyx$ | (v)
yS'xS'$ | yx$ | (y)
S'xS'$ | x$ | 7
xS'$ | x$ | (x)
S'$ | $ | 7
$ | $ | ACCEPT