Manual da RTS: Difference between revisions

From Wiki**3

Root (talk | contribs)
No edit summary
Root (talk | contribs)
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Library Routines ==
{{TOCright}}
== Funções ==


File <tt>lib.asm</tt> contém, além das rotinas de arranque (\verb|_start|) e de terminação (\verb|_exit|), um conjunto de rotinas de biblioteca que poderá utilizar, com nomes auto-explicativos e semelhantes aos da biblioteca de C:
Os ficheiros da RTS contêm, além das rotinas de início ('''_start''') e fim ('''_exit'''), um conjunto de funções semelhantes às da biblioteca de C:


* <tt>void println()</tt> -- Imprime o caráter de mudança de linha (\verb|\n|).
=== Writing to stdout ===
* <tt>void printsp(int n)</tt> -- Imprime \verb|n| espaços brancos.
* '''void println()''' -- Imprime o caráter de mudança de linha ('''\n''').
* <tt>void prints(const char *s)</tt> -- Imprime a cadeia de caracteres \verb|s|, terminada em NULL (\verb|\0|).
* '''void printsp(int n)''' -- Imprime '''n''' espaços brancos.
* <tt>void printi(int i)</tt> -- Imprime o valor inteiro \verb|i|, em decimal.
* '''void prints(const char *s)''' -- Imprime a cadeia de caracteres '''s''', terminada em NULL ('''\0''').
* <tt>void printd(double d)</tt> -- Imprime o valor real em precisão dupla num formato equivalente ao \verb|%g| da função \verb|printf| da linguagem C.
* '''void printi(int i)''' -- Imprime o valor inteiro '''i''', em decimal.
* <tt>char *readln(char *buf, int size)</tt> -- Equivale a \verb|fgets(buf, size, stdin)| em C.
* '''void printd(double d)''' -- Imprime o valor real em precisão dupla num formato equivalente ao '''%g''' da função '''printf''' da linguagem C.
* <tt>int readb()</tt> -- Lê um byte do terminal.
 
* <tt>int readi()</tt> -- Lê um inteiro decimal, isolado numa linha, do terminal.
=== Reading from stdin ===
* <tt>int readd()</tt> -- Lê um valor real em precisão dupla, isolado numa linha, do terminal.
* '''char *readln(char *buf, int size)''' -- Equivale a '''fgets(buf, size, stdin)''' em C.
* <tt>int strlen(const char *s)</tt> -- Equivalente à rotina homónima em C.
* '''char readb()''' -- um byte do terminal.
* <tt>int atoi(const char *s)</tt> -- Equivalente à rotina homónima em C.
* '''int readi()''' -- um inteiro decimal, isolado numa linha, do terminal.
* <tt>double atod(const char *s)</tt> -- Converte uma cadeia de caracteres ASCII, terminada em NULL (\verb|\0|) no valor real em precisão dupla que representa.
* '''double readd()''' -- um valor real em precisão dupla, isolado numa linha, do terminal.
* <tt>const char *itoa(int i)</tt> -- Converte um valor inteiro para uma cadeia de caracteres ASCII, terminada em NULL (\verb|\0|), situada num bloco de memória fixo (é reutilizado em chamadas subsequentes), em decimal.
 
* <tt>const char *dtoa(double d, int ndig, char *s)</tt> -- Converte um valor real em precisão dupla para uma cadeia de caracteres ASCII com \verb|ndig| dígitos significativos, terminada em NULL (\verb|\0|), num formato equivalente ao \verb|%g| da linguagem C. O resultado é guardado na cadeia \verb|s| que deverá ter dimensão suficiente ou, caso seja um ponteiro nulo, num bloco de memória fixo reutilizado em chamadas subsequentes.
=== Other ===
* '''int strlen(const char *s)''' -- the same as in C.
* '''int atoi(const char *s)''' -- the same as in C.
* '''double atod(const char *s)''' -- Converte uma cadeia de caracteres ASCII, terminada em NULL ('''\0''') no valor real em precisão dupla que representa.
* '''const char *itoa(int i)''' -- Converte um valor inteiro para uma cadeia de caracteres ASCII, terminada em NULL ('''\0'''), situada num bloco de memória fixo (é reutilizado em chamadas subsequentes), em decimal.
* '''const char *dtoa(double d, int ndig, char *s)''' -- Converte um valor real em precisão dupla para uma cadeia de caracteres ASCII '''s''' com '''ndig''' dígitos significativos, terminada em NULL ('''\0'''), num formato equivalente ao '''%g''' da linguagem C. O resultado é guardado na cadeia '''s''' que deverá ter dimensão suficiente ou, caso seja um ponteiro nulo, num bloco de memória fixo reutilizado em chamadas subsequentes.
 
== Operações sobre Tensores ==
 
{{CollapsedCode|tensor.h -- data structure|<source lang="c">
/**
* Tensor data structure
* Contains dimensions information and data storage
*/
typedef struct Tensor {
  size_t n_dims;            // Number of dimensions
  size_t *dims;            // Size of each dimension
  double *data;            // Actual data storage
  size_t size;              // Total size (number of elements)
} Tensor;
</source>
}}
 
 
{{CollapsedCode|tensor.h -- functions|<source lang="c">
/**
* Creates a new tensor with variable number of dimensions
* @param n_dims number of dimensions
* @param ... dimension sizes (one integer for each dimension)
* @returns pointer to newly allocated tensor, 0 on failure
*/
Tensor* tensor_create(size_t n_dims, ...);
 
/**
* Frees memory allocated for a tensor
* @param tensor pointer to tensor to be deallocated
*/
void tensor_free(Tensor *tensor);
 
/**
* Gets the total number of elements in a tensor
* @param tensor pointer to tensor
* @returns number of elements
*/
size_t tensor_size(const Tensor *const tensor);
 
/**
* Creates a tensor initialized with zeros
* @param n_dims number of dimensions
* @param ... dimension sizes (one integer for each dimension)
* @returns pointer to newly allocated zero-filled tensor, 0 on failure
*/
Tensor* tensor_zeros(size_t n_dims, ...);
 
/**
* Creates a tensor initialized with ones
* @param n_dims number of dimensions
* @param ... dimension sizes (one integer for each dimension)
* @returns pointer to newly allocated one-filled tensor, 0 on failure
*/
Tensor* tensor_ones(size_t n_dims, ...);
 
/**
* Creates a tensor initialized with specific value
* @param n_dims number of dimensions
* @param value value to use as initializer
* @param ... dimension sizes (one integer for each dimension)
* @returns pointer to newly allocated one-filled tensor, 0 on failure
*/
Tensor* tensor_full(size_t n_dims, double value, ...);
 
/**
* In-place fills a tensor with a specific value
* @param tensor pointer to tensor to be filled
* @param value the value to fill the tensor with
*/
void tensor_fill(Tensor *tensor, double value);
 
/**
* Gets an element position from a tensor at the specified indices
* @param tensor pointer to tensor
* @param ... indices: one for each dimension
* @returns value at the specified indices
*/
double *tensor_getptr(const Tensor *tensor, ...);
 
/**
* Gets an element from a tensor at the specified indices
* @param tensor pointer to tensor
* @param ... indices: one for each dimension
* @returns value at the specified indices
*/
double tensor_get(const Tensor *const tensor, ...);
 
/**
* Sets an element in a tensor at the specified indices
* @param tensor pointer to tensor
* @param value value to set at the specified indices
* @param ... indices: one for each dimension
*/
void tensor_set(Tensor *tensor, double value, ...);
 
/**
* Sets an element in a tensor at the specified indices.
* This is like tensor_set, but more convenient in addressing terms.
* @param value value to put at the specified indices
* @param index linear index for the memory region
* @param tensor pointer to tensor
*/
void tensor_put(double value, size_t offset, Tensor *tensor);
 
/**
* Adds two tensors element-wise: result in new tensor
* @param a pointer to first tensor
* @param b pointer to second tensor
* @returns pointer to new tensor, nullptr if shapes don't match or on failure
*/
Tensor* tensor_add(const Tensor *const a, const Tensor *const b);
 
/**
* Subtracts two tensors element-wise: result in new tensor
* @param a pointer to first tensor
* @param b pointer to second tensor
* @returns pointer to new tensor, nullptr if shapes don't match or on failure
*/
Tensor* tensor_sub(const Tensor *const a, const Tensor *const b);
 
/**
* Multiplies two tensors element-wise: result in new tensor
* @param a pointer to first tensor
* @param b pointer to second tensor
* @returns pointer to new tensor, nullptr if shapes don't match or on failure
*/
Tensor* tensor_mul(const Tensor *const a, const Tensor *const b);
 
/**
* Divide two tensors element-wise: result in new tensor
* @param a pointer to first tensor
* @param b pointer to second tensor
* @returns pointer to new tensor, nullptr if shapes don't match or on failure
*/
Tensor* tensor_div(const Tensor *const a, const Tensor *const b);
 
/**
* Adds scalar to each tensor tensor element: result in new tensor
* @param tensor pointer to tensor
* @param scalar value to add
* @returns pointer to new tensor, nullptr on failure
*/
Tensor* tensor_add_scalar(const Tensor *const tensor, double scalar);
 
/**
* Subtract scalar from each tensor element: result in new tensor
* @param tensor pointer to tensor
* @param scalar value to add
* @returns pointer to new tensor, nullptr on failure
*/
Tensor* tensor_sub_scalar(const Tensor *const tensor, double scalar);
 
/**
* Multiply scalar by each tensor element: result in new tensor
* @param tensor pointer to tensor
* @param scalar value to add
* @returns pointer to new tensor, nullptr on failure
*/
Tensor* tensor_mul_scalar(const Tensor *const tensor, double scalar);
 
/**
* Divide scalar by each tensor element: result in new tensor
* @param tensor pointer to tensor
* @param scalar value to add
* @returns pointer to new tensor, nullptr on failure
*/
Tensor* tensor_div_scalar(const Tensor *const tensor, double scalar);
 
/**
* Performs tensor multiplication (contraction) between two tensors
* Contracts the last dimension of the first tensor with the first dimension of the second tensor
* @param a pointer to first tensor
* @param b pointer to second tensor
* @returns pointer to new tensor, nullptr on failure
*/
Tensor* tensor_matmul(const Tensor *const a, const Tensor *const b);
 
/**
* Reshapes a tensor to new dimensions with the same total number of elements
* @param tensor pointer to tensor to reshape
* @param new_n_dims number of new dimensions
* @param ... new dimension sizes (one integer for each dimension)
* @returns pointer to newly allocated reshaped tensor, nullptr on failure
*/
Tensor* tensor_reshape(const Tensor *const tensor, size_t new_n_dims, ...);
 
/**
* Gets the number of dimensions in a tensor
* @param tensor pointer to tensor
* @returns number of dimensions
*/
size_t tensor_get_n_dims(const Tensor *const tensor);
 
/**
* Gets the dimensions array of a tensor
* @param tensor pointer to tensor
* @returns pointer to dimensions array
*/
const size_t *tensor_get_dims(const Tensor *const tensor);
 
/**
* Gets the size of a specific dimension
* @param tensor pointer to tensor
* @param dim dimension index
* @returns size of the specified dimension, -1 if invalid
*/
size_t tensor_get_dim_size(const Tensor *const tensor, size_t dim);
 
/**
* Prints a tensor to stdout
* @param tensor pointer to tensor to be printed
*/
void tensor_print(const Tensor *const tensor);
 
/**
* Compares two tensors element‑wise for exact equality.
* @param a  pointer to the first tensor
* @param b  pointer to the second tensor
* @returns true (non‑zero) if they have the same shape and all elements compare equal, false (0) otherwise
*/
bool tensor_equals(const Tensor *const a, const Tensor *const b);
 
</source>
}}
 
== Gestão de Memória ==
 
{{CollapsedCode|memory.h|<source lang="c">
/**
* Initializes the memory management system
* Must be called before any other memory functions
* (e.g. at the start of the _main function)
* @returns 0 on success, -1 on failure
*/
int mem_init(void);
 
/**
* Allocates memory of the specified size
* @param size number of bytes to allocate
* @returns pointer to allocated memory, 0 on failure
*/
void* mem_alloc(unsigned long size);
 
/**
* Frees previously allocated memory
* @param ptr pointer to memory to be freed
*/
void mem_free(void *ptr);
 
/**
* Changes the size of the memory block pointed to by ptr
* @param ptr pointer to the memory block to resize
* @param size new size in bytes
* @returns pointer to the resized memory block, 0 on failure
*/
void* mem_realloc(void *ptr, unsigned long size);
 
/**
* Reports memory usage statistics
* Prints information about the heap to stdout
*/
void mem_stats(void);
</source>
}}


== System Calls ==
== System Calls ==


File \verb|sys.asm| contém as chamadas ao sistema que pode realizar em programas escritos em NX6. Uma explicação das chamadas ao sistema pode ser obtida através de:
O ficheiro '''kernel.asm''' contém as chamadas ao sistema que podem ser realizadas em programas escritos na linguagem em implementação. Uma explicação das chamadas ao sistema pode ser obtida através de:
\begin{verbatim}
 
   prompt$ man 2 intro
   prompt$ man 2 intro
   prompt$ man 2 syscalls
   prompt$ man 2 syscalls
\end{verbatim}


Algumas destas chamadas não existem na biblioteca de C, outras têm um comportamente diferente da rotina C homónima.
Algumas destas chamadas não existem na biblioteca de C, outras têm um comportamente diferente da rotina C homónima.
 
[[category:Compiladores]]
[[category:Ensino]]
[[en:RTS Manual]]

Latest revision as of 23:22, 9 June 2025

Funções

Os ficheiros da RTS contêm, além das rotinas de início (_start) e fim (_exit), um conjunto de funções semelhantes às da biblioteca de C:

Writing to stdout

  • void println() -- Imprime o caráter de mudança de linha (\n).
  • void printsp(int n) -- Imprime n espaços brancos.
  • void prints(const char *s) -- Imprime a cadeia de caracteres s, terminada em NULL (\0).
  • void printi(int i) -- Imprime o valor inteiro i, em decimal.
  • void printd(double d) -- Imprime o valor real em precisão dupla num formato equivalente ao %g da função printf da linguagem C.

Reading from stdin

  • char *readln(char *buf, int size) -- Equivale a fgets(buf, size, stdin) em C.
  • char readb() -- Lê um byte do terminal.
  • int readi() -- Lê um inteiro decimal, isolado numa linha, do terminal.
  • double readd() -- Lê um valor real em precisão dupla, isolado numa linha, do terminal.

Other

  • int strlen(const char *s) -- the same as in C.
  • int atoi(const char *s) -- the same as in C.
  • double atod(const char *s) -- Converte uma cadeia de caracteres ASCII, terminada em NULL (\0) no valor real em precisão dupla que representa.
  • const char *itoa(int i) -- Converte um valor inteiro para uma cadeia de caracteres ASCII, terminada em NULL (\0), situada num bloco de memória fixo (é reutilizado em chamadas subsequentes), em decimal.
  • const char *dtoa(double d, int ndig, char *s) -- Converte um valor real em precisão dupla para uma cadeia de caracteres ASCII s com ndig dígitos significativos, terminada em NULL (\0), num formato equivalente ao %g da linguagem C. O resultado é guardado na cadeia s que deverá ter dimensão suficiente ou, caso seja um ponteiro nulo, num bloco de memória fixo reutilizado em chamadas subsequentes.

Operações sobre Tensores

tensor.h -- data structure
/**
 * Tensor data structure
 * Contains dimensions information and data storage
 */
typedef struct Tensor {
  size_t n_dims;            // Number of dimensions
  size_t *dims;             // Size of each dimension
  double *data;             // Actual data storage
  size_t size;              // Total size (number of elements)
} Tensor;


tensor.h -- functions
/**
 * Creates a new tensor with variable number of dimensions
 * @param n_dims number of dimensions
 * @param ... dimension sizes (one integer for each dimension)
 * @returns pointer to newly allocated tensor, 0 on failure
 */
Tensor* tensor_create(size_t n_dims, ...);

/**
 * Frees memory allocated for a tensor
 * @param tensor pointer to tensor to be deallocated
 */
void tensor_free(Tensor *tensor);

/**
 * Gets the total number of elements in a tensor
 * @param tensor pointer to tensor
 * @returns number of elements
 */
size_t tensor_size(const Tensor *const tensor);

/**
 * Creates a tensor initialized with zeros
 * @param n_dims number of dimensions
 * @param ... dimension sizes (one integer for each dimension)
 * @returns pointer to newly allocated zero-filled tensor, 0 on failure
 */
Tensor* tensor_zeros(size_t n_dims, ...);

/**
 * Creates a tensor initialized with ones
 * @param n_dims number of dimensions
 * @param ... dimension sizes (one integer for each dimension)
 * @returns pointer to newly allocated one-filled tensor, 0 on failure
 */
Tensor* tensor_ones(size_t n_dims, ...);

/**
 * Creates a tensor initialized with specific value
 * @param n_dims number of dimensions
 * @param value value to use as initializer
 * @param ... dimension sizes (one integer for each dimension)
 * @returns pointer to newly allocated one-filled tensor, 0 on failure
 */
Tensor* tensor_full(size_t n_dims, double value, ...);

/**
 * In-place fills a tensor with a specific value
 * @param tensor pointer to tensor to be filled
 * @param value the value to fill the tensor with
 */
void tensor_fill(Tensor *tensor, double value);

/**
 * Gets an element position from a tensor at the specified indices
 * @param tensor pointer to tensor
 * @param ... indices: one for each dimension
 * @returns value at the specified indices
 */
double *tensor_getptr(const Tensor *tensor, ...);

/**
 * Gets an element from a tensor at the specified indices
 * @param tensor pointer to tensor
 * @param ... indices: one for each dimension
 * @returns value at the specified indices
 */
double tensor_get(const Tensor *const tensor, ...);

/**
 * Sets an element in a tensor at the specified indices
 * @param tensor pointer to tensor
 * @param value value to set at the specified indices
 * @param ... indices: one for each dimension
 */
void tensor_set(Tensor *tensor, double value, ...);

/**
 * Sets an element in a tensor at the specified indices.
 * This is like tensor_set, but more convenient in addressing terms.
 * @param value value to put at the specified indices
 * @param index linear index for the memory region
 * @param tensor pointer to tensor
 */
void tensor_put(double value, size_t offset, Tensor *tensor);

/**
 * Adds two tensors element-wise: result in new tensor
 * @param a pointer to first tensor
 * @param b pointer to second tensor
 * @returns pointer to new tensor, nullptr if shapes don't match or on failure
 */
Tensor* tensor_add(const Tensor *const a, const Tensor *const b);

/**
 * Subtracts two tensors element-wise: result in new tensor
 * @param a pointer to first tensor
 * @param b pointer to second tensor
 * @returns pointer to new tensor, nullptr if shapes don't match or on failure
 */
Tensor* tensor_sub(const Tensor *const a, const Tensor *const b);

/**
 * Multiplies two tensors element-wise: result in new tensor
 * @param a pointer to first tensor
 * @param b pointer to second tensor
 * @returns pointer to new tensor, nullptr if shapes don't match or on failure
 */
Tensor* tensor_mul(const Tensor *const a, const Tensor *const b);

/**
 * Divide two tensors element-wise: result in new tensor
 * @param a pointer to first tensor
 * @param b pointer to second tensor
 * @returns pointer to new tensor, nullptr if shapes don't match or on failure
 */
Tensor* tensor_div(const Tensor *const a, const Tensor *const b);

/**
 * Adds scalar to each tensor tensor element: result in new tensor
 * @param tensor pointer to tensor
 * @param scalar value to add
 * @returns pointer to new tensor, nullptr on failure
 */
Tensor* tensor_add_scalar(const Tensor *const tensor, double scalar);

/**
 * Subtract scalar from each tensor element: result in new tensor
 * @param tensor pointer to tensor
 * @param scalar value to add
 * @returns pointer to new tensor, nullptr on failure
 */
Tensor* tensor_sub_scalar(const Tensor *const tensor, double scalar);

/**
 * Multiply scalar by each tensor element: result in new tensor
 * @param tensor pointer to tensor
 * @param scalar value to add
 * @returns pointer to new tensor, nullptr on failure
 */
Tensor* tensor_mul_scalar(const Tensor *const tensor, double scalar);

/**
 * Divide scalar by each tensor element: result in new tensor
 * @param tensor pointer to tensor
 * @param scalar value to add
 * @returns pointer to new tensor, nullptr on failure
 */
Tensor* tensor_div_scalar(const Tensor *const tensor, double scalar);

/**
 * Performs tensor multiplication (contraction) between two tensors
 * Contracts the last dimension of the first tensor with the first dimension of the second tensor
 * @param a pointer to first tensor
 * @param b pointer to second tensor
 * @returns pointer to new tensor, nullptr on failure
 */
Tensor* tensor_matmul(const Tensor *const a, const Tensor *const b);

/**
 * Reshapes a tensor to new dimensions with the same total number of elements
 * @param tensor pointer to tensor to reshape
 * @param new_n_dims number of new dimensions
 * @param ... new dimension sizes (one integer for each dimension)
 * @returns pointer to newly allocated reshaped tensor, nullptr on failure
 */
Tensor* tensor_reshape(const Tensor *const tensor, size_t new_n_dims, ...);

/**
 * Gets the number of dimensions in a tensor
 * @param tensor pointer to tensor
 * @returns number of dimensions
 */
size_t tensor_get_n_dims(const Tensor *const tensor);

/**
 * Gets the dimensions array of a tensor
 * @param tensor pointer to tensor
 * @returns pointer to dimensions array
 */
const size_t *tensor_get_dims(const Tensor *const tensor);

/**
 * Gets the size of a specific dimension
 * @param tensor pointer to tensor
 * @param dim dimension index
 * @returns size of the specified dimension, -1 if invalid
 */
size_t tensor_get_dim_size(const Tensor *const tensor, size_t dim);

/**
 * Prints a tensor to stdout
 * @param tensor pointer to tensor to be printed
 */
void tensor_print(const Tensor *const tensor);

/**
 * Compares two tensors element‑wise for exact equality.
 * @param a  pointer to the first tensor
 * @param b  pointer to the second tensor
 * @returns true (non‑zero) if they have the same shape and all elements compare equal, false (0) otherwise
 */
bool tensor_equals(const Tensor *const a, const Tensor *const b);

Gestão de Memória

memory.h
/**
 * Initializes the memory management system
 * Must be called before any other memory functions
 * (e.g. at the start of the _main function)
 * @returns 0 on success, -1 on failure
 */
int mem_init(void);

/**
 * Allocates memory of the specified size
 * @param size number of bytes to allocate
 * @returns pointer to allocated memory, 0 on failure
 */
void* mem_alloc(unsigned long size);

/**
 * Frees previously allocated memory
 * @param ptr pointer to memory to be freed
 */
void mem_free(void *ptr);

/**
 * Changes the size of the memory block pointed to by ptr
 * @param ptr pointer to the memory block to resize
 * @param size new size in bytes
 * @returns pointer to the resized memory block, 0 on failure
 */
void* mem_realloc(void *ptr, unsigned long size);

/**
 * Reports memory usage statistics
 * Prints information about the heap to stdout
 */
void mem_stats(void);

System Calls

O ficheiro kernel.asm contém as chamadas ao sistema que podem ser realizadas em programas escritos na linguagem em implementação. Uma explicação das chamadas ao sistema pode ser obtida através de:

 prompt$ man 2 intro
 prompt$ man 2 syscalls

Algumas destas chamadas não existem na biblioteca de C, outras têm um comportamente diferente da rotina C homónima.