Xufan Lu Email : luxufan@tecnico.ulisboa.pt

EDUCATION

]
ZheJiang University of Technology HangZhou, China
Bachelor of Computer Science Sep. 2017 — June. 2021
Instituto Superior Técnico / University of Lisbon Lisbon, Portugal
PhD of Computer Science Seq. 2023 -

PUBLICATIONS

Link-Time Optimization of Dynamic Casts in C++ Programs

Xufan Lu, Nuno Lopes. PLDI, 2025.

EXPERIENCE
Institute of Software Chinese Academy Of Sciences Remote, China
LLVM Compiler Engineer July 2021 - Present

o Improve and optimize LLVM middle-end Analysis and Transforms passes:
The middle-end performs optimizations that are independent (to the degree that this is
possible) from both the input language and the output target. I have contributed code to
the following modules:

- IPSCCP Improve implementation and increase the number of instructions deleted
by IPSCCP pass
- MemorySSA Relax conditions to make MemorySSA give more precise results

- CorrelatedValuePropagation and LazyValuelnfo Fix bugs, make LVI give
more precise result so that CVP can optimize out more instructions.

- InstCombine and InstructionSimplify Combine and simplify more patterns.

- PoisonValue and UndefValue Fix bugs that caused by abusing Undef and Poison
value.

- Loop optimization and ScalarEvolution Improve loop optimization and fix bugs
that caused by forgetting clear loop disposition and block dispositon information.

o Improve and optimize LLVM RISC-V backend: The RISC-V backend performs
target-specific optimizations and emits RISC-V machine code. In these two years, I have
done these things:

- Optimize FrameLowering: improve frame layout and decrease the number of mv
instructions to handle stack stuff.
- Support .option directive: .option can be used to enable code snippet.

- Optimize instruction selection: reduce the number of machine code instructions
generated for specific pattern.



- Support RISC-V instruction set extensions: vector zvlsseg extension, zfinx, zdinx,
zhinx extensions.

o Solve LLVM part issues arise during porting Android to RISC-V: Currently,
the latest Android NDK version only has clang/llvin compiler available. In the process of
porting Android to RISC-V, there are many LLVM related toolchain issues out there. As
a LLVM compiler engineer, I solved part of these issues. Here are some patches that I
upstreamed:

- \Generate correct ELF EFlags when .1l file has target-abi attribute
- Pass -mno-relax to assembler when -fno-integrated-as specified
- Support fe_getround and fe_raise_inexact in builtins

o Add RISCYV backend support for LLVM JITLink: JITLink is a library for JIT
Linking. It was built to support the ORC JIT APIs and is most commonly accessed via
ORC’s ObjectLinkingLayer API. It is depended on by many projects like BOLT,
llvm-pipe, Julia. I contributed the following functional support:

- Relocate all of the RISCV ELF relocations
- Handle GOT and PLT table in PIC mode
- Add platform and runtime support for riscv64

o Add native ELF TLS support for JITLink x86-64 ELF platform: JITLink is a

new JIT backend to replace MCJIT, and there is no TLS related support in MCJIT. I

implemented the x86-64 ELF TLS support for JITLink. And improved the ELF TLS
support framework in JITLink

Institute of Software Chinese Academy Of Sciences Remote, China

LLVM Compiler Engineer Intern May 2020 - July 2021

o Support RISC-V Vector extension in LLVM: Support RISC-V Vector intrinsics in
clang and code generation it to RISC-V Vector version 0.8 instructions in an internal
project with other team members.

- Write tablegen files to create all of the vector ¢ intrinsics and make clang frontend
codegen to the corresponding llvm ir intrisics.

- Write tablegen files to define all of the RISC-V Vector extension instructions. Hack
the RISC-V backend framework to make backend generate correct machine codes for
program that has vector intrinsics

- Handle vector stack object. RISC-V vector is a kind of scalable vector. Hack to
RISC-V backend FrameLowering part to support such scalable vector objects in
stack. I also proposed a new Stack Frame layout to support the scalable vecotr stack
object. And I have contributed this part to LLVM upstream and accepted.

SKILLS
e Languages: C++, C, Python, Shell script

e Technologies: Compilation Principle, LLVM IR, RISC-V Instruction Set, Operating
system and computer architecture


https://reviews.llvm.org/D121183
https://reviews.llvm.org/D120639
https://reviews.llvm.org/D128240

Most of the time, I program by C++. I also have previous experiences with RISC-V
assembly language, Python and Shell script language, and functional programming
languages. It is not a challenge for me to pick up a new language.

I am familiar with compiler optimizations and llvm ir design. I have contributed some
patches to the LLVM middle-end optimizer, backend target-specific optimizations, and
language frontend.

Most of my knowledge about operating system and computer architecture was learned
when I was in the university.



	Education
	Publications
	Experience
	Skills

