
Multi-Consistency Transactional Support for
Function-as-a-Service

Rafael Soares
INESC-ID,

Instituto Superior Tecnico, Universidade de Lisboa
Lisboa, Portugal

joao.rafael.pinto.soares@tecnico.ulisboa.pt

Luı́s Rodrigues
INESC-ID,

Instituto Superior Tecnico, Universidade de Lisboa
Lisboa, Portugal

ler@tecnico.ulisboa.pt

Abstract—We propose to design and implement a framework
to support the concurrent execution of transactions with different
consistency levels in Function-as-a-Service (FaaS) environments.
The goal is to allow functionalities that have weak consistency
requirements to execute efficiently, with minimal coordination,
while, at the same time, allow functionalities that have strong
consistency requirements to access the same data. We wish to
explore what techniques may be leveraged to implement such a
framework, what consistency levels should be supported, and how
they can be supported efficiently in existing FaaS environments.

Index Terms—FaaS, Data-Consitency, Transactions

I. INTRODUCTION

Function-as-a-Service (FaaS), also known as Serverless

Computing, has emerged as a key paradigm to support the

execution of applications in the cloud. A significant advantage

of FaaS is that users are not required to reserve resources

explicitly: these are automatically provisioned by the cloud

provider as needed. This paradigm requires programmers to

develop their applications in the form of compositions of

stateless functions that can be organized into workflows, such

as directed acyclic execution graphs (DAGs), to implement

complex functionalities. In run-time, the provider assigns

the computational nodes required to execute these functions:

different functions, or even different instances of the same

function, can be executed by different nodes.

Functions cannot preserve state across invocations or share

state in memory. Applications that require state persistence

must execute in stateful serverless functions (SSFs) [1], allow-

ing functions to preserve and share state on external storage

services. However, even if the external storage service is

shared across SSFs [2] and is able to offer strong guarantees

to each individual function, it may be hard to offer strong

consistency for a composition of SSFs, because functions from

the same composition may be executed by different nodes

and, therefore, can be observed as different clients (that are

not part of the same “session”) by the storage service. For

instance, it may not be trivial to ensure the atomicity of the

writes performed by a composition, if parts of the write-set

are persisted by different functions. Also, when reading from

the persistent storage, functions from the same instance of a

given composition can read versions that belong to different

snapshots. In most cases, functions from a composition only

have Eventual Consistency (EC) [3] guarantees.

Due to these limitations, a number of recent works have pro-

posed to extend FaaS frameworks with support for consistent

access to persistent storage, including different forms of trans-

actional guarantees. Examples of supported models include

Transactional Causal Consistency (TCC) [4] and Opacity [1].

To the best of our knowledge, all of these system assume

that all compositions run under the same consistency level:

the one provided by the middleware. This can be overly

restrictive, and impose a performance penalty for compositions

that can operate under weak consistency. For example, a social

media application may require Strict Serializability (SS) for

login, TCC for adding new contacts, and EC for making

a post visible, while these functionalities may be using the

same functions or key-space in different transactional contexts.

Compositions that only require EC should not have their per-

formance penalized by others that require Strict Serializability.

II. RESEARCH OBJECTIVES AND QUESTIONS

We propose to design and implement a framework to

support the concurrent execution of transactions with different

consistency levels in Function-as-a-Service (FaaS) environ-

ments. More specifically, we wish to answer the following

research questions:

• Is it possible to create a coordination protocol for the con-

current execution of multiple consistency levels without

affecting the performance of each consistency level?

• What consistency levels should be supported by this

protocol?

• If such protocol exists, is it possible to implement it in an

efficient and scalable manner in the FaaS environment?

III. BACKGROUND AND CHALLENGES

Multi-consistency protocols have been proposed in different

seetings. [5] supports the execution of different operations

with different consistency levels in geo-replicated scenarios,

allowing the reordering of weakly consistent operations in

different sites while ensuring the total ordering of strongly

consistent operations across all sites. However, [5] requires

existing operations to be rewritten into at least two sub-

operation, a generator operation and a shadow operation,

194

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)

979-8-3503-2545-4/23/$31.00 ©2023 IEEE
DOI 10.1109/DSN-S58398.2023.00053

20
23

 5
3r

d
A

nn
ua

l I
EE

E/
IF

IP
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ep

en
da

bl
e

Sy
st

em
s a

nd
 N

et
w

or
ks

 -
Su

pp
le

m
en

ta
l V

ol
um

e
(D

SN
-S

) |
 9

79
-8

-3
50

3-
25

45
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
SN

-S
58

39
8.

20
23

.0
00

53

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2024 at 15:56:31 UTC from IEEE Xplore. Restrictions apply.

requiring developers to rewrite their existing FaaS functionali-

ties. [6] supports multi-consistency in the context of distributed

databases with transactional support, by allowing eventually

consistent (EC) transactions to concurrently execute with each-

other, while ensuring that strictly serializable (SS) transactions

execute isolated from all other conflicting transactions (SS

and EC). However, [6] requires EC transactions to block

until conflicting SS transactions terminate, which may hamper

the performance of EC transactions. These systems only

consider a limited number of consistency criteria (such as

Strict Serializability and Eventual Consistency) and do not

support other consistency levels currently used in FaaS, such

as Transactional Causal Consistency.

Different strategies can be considered to adopt previous

works to FaaS environments. The first relies on the coordi-

nation between a caching layer and storage [4]. While this

approach is efficient, it requires modifications to the storage

system to manage the metadata required for coordination. This

would require clients to host, deploy, and maintain their own

storage to support such a system, going against the simplicity

and pay-per-use nature of FaaS. A second approach would

be to rely on an intermediate layer, positioned between the

computation and storage layers of FaaS, operating as a trans-

actional manager to functions [7]. While this technique is com-

patible with current FaaS infrastructures, it still requires clients

to deploy a specialized service that executes the intermediate

layer. A third approach consists in relying on some existing

strongly consistent storage service to maintain a shared log

that is used to coordinate the execution of transactions [1].

This approach avoids the deployment of custom services, but

forces all functions to read and write the log to perform

coordination, which can impair the performance. Finally, one

may also implement a shared log in a FaaS environments [8],

but its usage requires changes to the FaaS engine, becoming

incompatible with existing FaaS solutions.

With this background, we identify two main challenges:

• Challenge 1: How do we coordinate transactions of

different consistency levels without affecting the perfor-

mance of weakly consistent transactions (in particular, the

latency of weakly consistent transactions should not be

impaired by complex coordination procedures).

• Challenge 2: How do we efficiently implement our multi-

consistency protocol while supporting compatibility with

existing FaaS offers.

IV. RESEARCH DIRECTIONS

We now provide some insight on how we aim to address

the aforementioned challenges.

Addressing Challenge 1. Contrary to previous works, we focus

our attention on the performance of read operations, as most

weakly consistent workloads are read-intensive. We want read

operations of each transactional level to have only the minimal

overhead required to ensure its consistency criteria: SS must

read the last committed values at the time the transaction is

initiated, TCC should read a set of causally consistent values

(not necessarily the last committed), and EC should read

directly from storage without any additional coordination. This

support should be seamless, without requiring modifications to

the provided application code to provide better portability.

We propose a multi-layered approach to provide to each

transactional level the required amount of coordination to sup-

port its guarantees. As the bottom layer we would have a EC

storage layer, allowing EC transactions to directly contact the

storage and obtain results in an efficient manner. We then add

a TCC protocol layer on top of the storage system, allowing

TCC transactions to obtain a causally consistent snapshot.

Finally, for SS, we will augment existing TCC protocols to

provide a snapshot that respects external consistency. Systems

like Cure [9], which rely on physical clocks to causally order

transactions, can be leveraged to request the freshest snapshot

at the transaction start time.

Regarding write operations, two properties must be main-

tained to respect the consistency guarantees of each transac-

tional level. First, causal dependencies should be maintained

to allow TCC read transactions to obtain causally consistent

snapshots. Second, SS transactions must be able to detect

write conflicts. Regarding the first property, we propose that

all write transactions should follow a TCC commit protocol

to ensure causal dependencies are maintained regardless of

consistency levels. While it penalizes the performance of

EC write transactions, it will allow efficient performance of

TCC read transactions. It does not affect the performance of

SS transactions, as most TCC write protocols follow a 2PC

protocol, which can be included in the SS commit protocol.

Regarding the second property, we plan to use optimistic

concurrency control (OCC) approach to detect write conflicts.

For this purpose, before committing, SS transactions need to

check for conflicts. EC and TCC are not required to validate

their write-set, as they do not impose any restriction regarding

conflicting transactions, but they must ensure that they are

serialized after any conflicting SS transaction to not break the

consistency of the stronger consistency model.

Consistency is defined at the function composition granular-

ity. Different functions may belong to multiple compositions

with different consistency levels. Objects itself do not have

any associated consistency level.

Addressing Challenge 2. Implementing these layers in a

compatible way with existing FaaS providers is an important

step to allow the wide adoption of these techniques. We plan to

build on top of a weakly consistent storage systems available

from existing FaaS providers. The TCC and SS conflict detec-

tion tasks can then be implemented by an intermediate layer,

similar to AFT [7], executing the read and write protocols of

each transactional level. While clients must incur the costs of

maintaining this intermediate layer, we consider a worth while

trade-off for the compatibility with existing FaaS providers.

Acknowledgments: The authors are grateful to the anonymous reviewers for their
comments on an early version of this paper. This work was partially funded by Fundação
para a Ciência e Tecnologia (FCT) under grant UI/BD/153590/2022 and via project
UIDB/50021/2020 and DACOMICO (via OE withref. PTDC/CCI-COM/2156/2021).

195

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2024 at 15:56:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. Zhang, A. Cardoza, P. Chen, S. Angel, and V. Liu, “Fault-tolerant and
transactional stateful serverless workflows,” in OSDI ’20, Banff, Canada,
Nov. 2020.

[2] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov, “Cloudburst: Stateful functions-as-
a-service,” VLDB, vol. 13, no. 12, p. 2438–2452, Jul. 2020.

[3] T. Ward, R. Mehta, and R. Tewani. (2020) Implement
the serverless saga pattern by using AWS Step Functions.
[Online]. Available: https://docs.aws.amazon.com/prescriptive-
guidance/latest/patterns/implement-the-serverless-saga-pattern-by-using-
aws-step-functions.html

[4] T. Lykhenko, R. Soares, and L. Rodrigues, “FaaSTCC: efficient transac-
tional causal consistency for serverless computing,” in Middleware ’21,
Virtual Event, Canada, Dec. 2021.

[5] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues,
“Making geo-replicated systems fast as possible, consistent when neces-
sary,” in OSDI ’12, Hollywood (CA), USA, Oct. 2012.

[6] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan, “SALT: Combining ACID and BASE in a distributed
database,” in OSDI ’14, Broomfield (CO), USA, Oct. 2014.

[7] V. Sreekanti, C. Wu, S. Chhatrapati, J. Gonzalez, J. Hellerstein, and
J. Faleiro, “A fault-tolerance shim for serverless computing,” in EuroSys
’20, Heraklion, Greece, Apr. 2020.

[8] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared
logs,” in SOSP ’21, Virtual Event, Germany, Oct. 2021.

[9] D. Akkoorath, A. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets high
availability and low latency,” in ICDCS ’16, Nara, Japan, Jun. 2016.

196

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2024 at 15:56:31 UTC from IEEE Xplore. Restrictions apply.

