
Performance Trade-offs in Transactional Systems
Rafael Soares

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa

Lisboa, Portugal
joao.rafael.pinto.soares@tecnico.ulisboa.pt

Luís Rodrigues
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa
Lisboa, Portugal

ler@tecnico.ulisboa.pt

Abstract
During the last decade a number of systems supporting dif-
ferent forms of distributed transactions have been proposed, 
each implementing a different performance trade-off in the 
design space. In this paper we collect the performance fea-
tures that have been identified by previous works and offer 
a systematic analysis of known results regarding the im-
possibility of achieving certain combinations of desirable 
properties along these dimensions. We also compare previ-
ous transactional systems in the light of this set of desirable 
performance aspects. Finally we discuss how certain com-
binations of features may be leverage to guide new transac-
tional system designs.

CCS Concepts: • Information systems → Database de-
sign and models; Distributed storage.

Keywords: Distributed Transactions, Freshness, Consistency
ACM Reference Format:
Rafael Soares and Luís Rodrigues. 2023. Performance Trade-offs in 
Transactional Systems. In 10th Workshop on Principles and Practice 
of Consistency for Distributed Data (PaPoC ’23), May 8, 2023, Rome, 
Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/ 
3578358.3591325

1 Introduction
Systems that offer transactional guarantees for partitioned 
storage are often designed to meet different performance 
goals. This makes it hard to compare existing work because, 
typically, one system does not outperform the other in ab-
solute terms; different s ystems make d ifferent trade-offs 
among (sometimes conflicting) performance goals. Ideally, 
one would like to offer the strongest consistency level, namely 
strict serializability, with optimal performance. Although 
this goal is intuitive, defining “optimal" performance in this 
context may be ambiguous, in particular because there are 
multiple criteria that can be used to assess the performance

PaPoC ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0086-6/23/05.
https://doi.org/10.1145/3578358.3591325

of a given system. In practice, a given systemmay favour one
criteria over another criteria and may also opt to relax con-
sistency to achieve better performance. This makes it hard to
compare existing systems and to understand which combi-
nations of consistency properties and desirable performance
goals can be achieved in practice.
In this paper we analyse previous works that support

transactions in distributed partitioned storage systems and
present the set of performance goals that have been ad-
dressed in their design. Several of these works have identified
the impossibility of supporting specific combinations of de-
sirable performance properties; we also aim at offering a
systematic analysis of these known impossibility results. We
then use the full set of performance goals and impossibility
results to compare how previous works embody different
performance trade-offs, identifying some combinations that
are theoretically possible but never were implemented by
any state-of-the-art system.

2 System Model
We consider systems that implement a key-value store that
is partitioned among multiple servers. Servers can be in the
same or in different geographical locations. Servers can be
replicated, but we do not address replication explicitly in
our study. Instead, we simply assume that each partition is
linearizable (this assumption is common among the works
we cite in this study).

Clients read and/or write the key-value store using trans-
actions that may access multiple keys, possibly stored by
different partitions. We consider transactions that can be
read-only or write-only. Note that some surveyed works sup-
port more general read-write transactions, which for some
consistency criteria, can be modelled as a read-only transac-
tion followed by a write-only transaction.
Transactions can be one-shot (when all keys are read or

written in parallel in a single operation) or multi-shot (where
a transaction can execute multiple read or write operations).
Multi-shot write transactions can typically be converted in
a single-shot write transaction by buffering all writes until
commit time. Again, some of the systems surveyed in this
paper only support one-shot transactions. Note that any
impossibility results that applies to one-shot transactions
are also valid for multi-short transactions.

Finally, it is worth mentioning that most systems require
some form of inter-partition coordination to implement write

30

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3578358.3591325
https://doi.org/10.1145/3578358.3591325
https://doi.org/10.1145/3578358.3591325
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578358.3591325&domain=pdf&date_stamp=2023-05-08


PaPoC ’23, May 8, 2023, Rome, Italy Rafael Soares and Luís Rodrigues

transactions. How this coordination is implemented is or-
thogonal to the trade-offs discussed in this paper but most
systems use a 2-phase commit protocol.

3 Performance Goals
In this section, we enumerate the multiple performance goals
that have been addressed by previous work.

3.1 Return Mutually Consistent Values
Transactions that read from multiple partitions should re-
turn mutually consistent values. In this paper we only con-
sider systems that only return versions that have already
been committed, a property known as read committed. Read
committed does not impose any restriction on the possible
combination of returned values. The following criteria can be
used to further restrict the set of values that are admissible:
i) order-preserving visibility ensures that snapshots preserve
some order relation (monotonic writes, causal order, and/ or
total order) and that no gaps are observed in that order rela-
tion (as defined in Tomsic et al [19]), and ii) atomic visibility
prevents the “read skew" phenomenon [4] (if a transaction
reads data written by another transaction it must observe all
the updates written by that transaction).

3.2 Terminate in Two Communication Steps
Any distributed algorithm requires the exchange of mes-
sages among participants. The number of communications
steps is a performance metric that captures the length of
the sequence of message exchanges required to terminate
the algorithm. For instance, a remote invocation takes two
communication steps because it requires the transmission
of a request followed by the transmission of a reply. In a
setting where clients do not locally store copies of all keys,
at least two communication steps are required to terminate
a read or write transaction. Interestingly, it is impossible to
achieve optimal number of communication steps while satis-
fying other performance goals, such as returning mutually
consistent values that are fresh.

Several previous works use more than two communication
steps. For instance, some system require the client to coor-
dinate with the partitions to identify a consistent snapshot
before performing the actual read operation [2, 14, 16–18],
others execute a first round of read request without coordi-
nation but may be required to execute additional rounds if
the results obtained are not mutually consistent [11].

In any case, in general terms, the lower the number of com-
munication steps the better. First because each additional
step adds latency to the operation, which is particularly rele-
vant in geo-partitioned systems, where propagation latency
is the main source of overhead [15]. Additionally, systems
that rely on long multi-shot transactions like Facebook [1]
suffer a cumulative performance penalty for each operation
executed. Second, more steps are associated with additional

CPU and bandwidth utilization, and may negatively affect
the aggregated throughput of the system [8, 13].

3.3 One Version per Read
When reading from multiple partitions, one needs to ensure
that the client observes versions that are mutually consistent.
To increase the odds of obtaining mutually consistent results,
some approaches require the client to read multiple versions
of the same key in a single round. In the extreme case, if all
past versions of an object are returned, it would always be
possible to find mutually consistent versions. Ideally, one
would like to transfer to the client a single version per ob-
ject requested, to avoid spending CPU cycles and network
bandwidth transferring redundant key versions.
An algorithm that is able to terminate reads in two com-

munication steps (therefore, contacting each partition only
once) and that reads one version per read is said to satisfy
the one response per read property [12].

3.4 Supports Non-blocking Replies
We say that a system supports non-blocking replies if a par-
tition can reply to a read or write request as soon as it is
received, without waiting for some predicate to become true.
Systems that use some form of locking do not support

non-blocking replies because the processing of a request
may be blocked until the lock is released. Systems that re-
quire requests to be processed at a given logical (or physical)
time fail to support non-blocking replies, because a request
may be blocked until the time at the server advances. Sys-
tems that require requests to be totally ordered before being
processed also prevent non-blocking replies. In several cases,
the condition that blocks a request may take long to be over-
come (for instance, a lock can take an arbitrarily long time
to be released), adding a latency penalty to the system.

An algorithm that satisfies one response per read and sup-
ports non-blocking replies is said to be latency optimal [12].

3.5 Return Fresh Results
In systems that keep a single version of each key, partitions
always return the most recent version known by the parti-
tion. Unfortunately, when reads are executed concurrently
with write operations, the values returned by different parti-
tions may not be mutually consistent. By keeping multiple
version of each key it becomes easier to find (and return)
a set of mutually consistent versions. However, this opens
the door for returning arbitrarily old values. In the limit, by
absurd, a system could simply discard all the updates and
always return the initial values of each object. Freshness is
an informal property that attempts to capture how “recent"
are the values returned to clients.

The best freshness any system can aim for is to return the
values written by the most recent write transaction that has
committed before the read transaction was initiated (i.e., to
ensure linearizable updates). Systems that do not attempt

31



Performance Trade-offs in Transactional Systems PaPoC ’23, May 8, 2023, Rome, Italy

It is impossible to ensure two communication step termination,
avoid redundant reads, support immediate replies and:

Impossible
PORT [13],

Tomsic et al [19]

Impossible
Didona et al [7]

Impossible
SNOW [12], 

Tomsic et al [19]
Linearizability

Minimal
Progress

Order-preserving Visibility
Atomic
Visibility Const.

Metadata

Atomic Visibility
Order-preserving Visibility

Constant
Metadata

Non-constant
Metadata

Linearizability

Minimal
Progress

Impossible 
(in a fault tolerant

system)
Antoniadis et al [3]

Figure 1. Impossibility results visualized.

to enforce linearizability often use the following metric to
measure freshness: the length of the time interval between
the commit time of the value returned and the commit time of
the last update (the shorter, the better). An implementation
may impose a maximum delay for updates to be become
visible, i.e., state that if an update commits at time 𝑡 , any
read operation starting after time 𝑡 + 𝛿 should not return
versions older than 𝑡 .

The weakest definition of freshness is denoted minimal
progress [7], and states that any write must eventually be-
come visible. Anything weaker, such as reading from indefi-
nitely stale snapshots [13] is considered stale.

3.6 Use Constant-Size Metadata
Different techniques can be used to ensure that mutually con-
sistent versions are returned. One is to use locks, to prevent
versions that may yield inconsistent results to be returned.
Another is to tag versions with metadata that can be used to
check if two versions are mutually consistent. Metadata can
assume many forms, including version numbers, logical or
physical timestamps, vector clocks, or explicitly dependency
lists. There is a well known trade-off between the size of
the metadata and the accuracy of the information that can
be extracted from the metadata [5]. Unfortunately, if more
metadata provides more information, it also consumes more
storage, network, and processing resources. Ultimately, if the
metadata size increases linearly, such as with the number of
partitions (such as when vector clock or explicit dependen-
cies are used), the system becomes inherently non-scalable.
Therefore, one would like to use metadata of constant size.

4 Impossibility Results
One would like to build a transactional system that could
achieve all performance goals listed above. Unfortunately,
some of these goals are conflicting with each other. This has
been captured by a number of impossibility results that can
be found in the literature, that are listed in this section. A
view of the impossibility results is depicted in Figure 1.

It is impossible to design a system that terminates in
two communication steps, returns one version per read,
supports non-blocking replies, returns mutually con-
sistent values that that respect atomic visibility, and
ensures minimal progress.
This result was obtained by Didona et al [7] and it is a

generalization of a previous result, known as the SNOW
theorem [12], that considered linearizability instead of the
minimal progress as the freshness guarantee.

If one relaxes the consistency guarantees, and opt to offer
only order-preserving visibility, the impossibility result no
longer applies. However, any system that attempts to com-
bine these properties may require the use of metadata whose
size is not constant. This is captured by the following result:

It is impossible to design a system that terminates in
two communication steps, returns one version per read,
supports non-blocking replies, returns mutually con-
sistent values that respect order-preserving visibility,
offers linearizability, and uses constant-size metadata.

This impossibility result was first captured in PORT [13].
Tomsic et al [19] obtained a similar result using a slightly
different notion of freshness.

The impossibility results listed above are valid even if the
state maintained by each partition is not replicated. However,
to achieve fault-tolerance, implementations may be required
to replicate the state of each partition, including transient
state. In this case, if a read operation requires some transient
state to be maintained at the server (for instance, a read-lock),
the state needs to be replicated, which prevents termination
from being achieved in two communication steps. This effect
is captured by the following result:

It is impossible to design a system that terminates in
two communication steps, returns one version per read,
supports non-blocking replies, returns mutually consis-
tent values that respect order-preserving visibility and
offers minimal progress without updating partitions on
read transactions.

This result was obtained by Antoniadis et al [3], and shows
it is impossible to obtain all previously mentioned properties
in a fault-tolerant system, as this combination of features
requires clients to update partitions on read transactions
and, in turn, replicating these updates involves additional
communication steps.

Aswewill discuss later, systems such as COPS-SNOW[12],
require a record of each read operation to be maintained by
each partition. This allows to implement non-blocking reads
in two communication steps if one disregards to costs associ-
ated with replicating those records. In any case, any system
that requires read operations to change the state of the parti-
tions may become prohibitively expensive in practice, given
that most workloads are read dominated and, therefore, it is
desirable to have reads be invisible[3].

32



PaPoC ’23, May 8, 2023, Rome, Italy Rafael Soares and Luís Rodrigues

System Read Tx Write Tx Read/Write Tx Transaction Type Consistency
COPS-SNOW [12] ✓ ✗ ✗ Static TCC
Eiger-PORT [13] ✓ ✓ ✗ Static TCC
Eiger [11] ✓ ✓ ✗ Static TCC
Cure [2] ✓ ✓ ✓ Dynamic TCC
Wren [16] ✓ ✓ ✓ Dynamic TCC
PaRiS [17] ✓ ✓ ✓ Dynamic TCC
Clock-SI [9] ✓ ✓ ✓ Dynamic SI
Spanner-RO [6] ✓ ✗ ✗ Dynamic SS
Spanner-RW [6] ✓ ✓ ✓ Dynamic SS
Calvin [18] ✓ ✓ ✓ Static SS
Rococo [14] ✓ ✓ ✓ Static SS

Table 1. Systems transactional models. SS represents Strict
Serializability, SI represents Snapshot Isolation, TCC repre-
sents Transactional Causal Consistency. Static transactions
need to know the entire read set and write set when the
transaction starts.

5 Existing Systems
In this section, we provide a comparison of existing systems
from the point of view of the performance goals enumerated
early. Given the impossibility results, existing systems need
to sacrifice some of the performance goals. This comparison
highlights which sacrifices the designers have made in each
case. This comparison is illustrated in Figure 2 as a directed
acyclic graph (DAG), where each vertex represent a certain
combination of performance goals (each performance goal
is represented by a slice of a circle). Vertexes in the DAG
capture combinations of performance properties that: i) have
been implemented by previous work or, ii) that to the best of
our knowledge, have never been implemented or, iii) that are
impossible, according to the impossibility results discussed
previously. Children of a vertex always add one or more
additional performance goals to the parent vertex: the label
on the edge clarifies which performance goal is added.
Note that in Figure 2 we only focus on the performance

goals and do not consider other features of the systems,
such as if they support read-write transactions, dynamic
transactions, etc. Therefore, the reader must be aware that if
a system 𝐴 satisfies more performance goals than another
system 𝐵, this does not make 𝐴 necessarily strictly superior
than 𝐵. The information in Figure 2 is complemented by
Table 1, that includes some of of these additional features.
Additionally, we consider that all systems should be fault-
tolerant and, as such, are affected by the result presented in
Antoniadis et al [3].

The root of the DAG is a system that only meets the perfor-
mance goal of returning one version per read; all the systems
we review have this property. From this vertex, we consider
three different branches: systems that offer linerizability (i.e.,
where writes become immediately visible as soon as a the
corresponding update transaction terminates), systems that
offer only minimal progress, and a system that sacrifices
progress to ensure all other properties. In the following we
discuss each of these branches separately.

5.1 Systems that Offer Linearizability
Both Calvin [18] and Rococo [14] combine linearizability
and atomic visibility, providing strict serializability, with
constant metadata. Note that providing strict serializability
requires update transactions to be totally ordered.
Calvin uses a distributed set of sequencers to batch and

order transactions. Each sequencer batches transaction re-
quests during a given interval of time. Once complete, each
batch is first replicated, which can be achieved using some
form of Paxos [10], and then each partition is sent their desig-
nated transactional inputs from each batch. Partitions define
the global total order of transactions by merging in a deter-
ministic manner the batches obtained from each sequencer.
Then, in each partition, at the beginning of the execution,
transactions issue requests for all the locks they need; these
requests are scheduled by a single thread in the total order
defined above. Finally, transactions can execute concurrently,
waiting for the lock requests to be satisfied when needed
and releasing all locks upon termination.

Rococo [14] only orders update transactions. Updates are
performed in two steps: first all objects are locked and only
after all locks have been acquired, the new values are writ-
ten (and locks released). Read transactions are not totally
ordered w.r.t write transactions. Thus, read transactions can
read inconsistent versions when reading in a single round.
To ensure that consistent versions are returned, Rococo per-
forms multiple rounds of reads until two rounds return ex-
actly the same values. If two consecutive rounds return the
same values, this means that the read transaction was ex-
ecuted without observing the effects of other (concurrent)
update transactions. Unfortunately, with this protocol, read
transactions are only guaranteed to return in periods where
there no concurrent conflicting update transactions.
Adding additional performance goals to Calvin/Rococo

requires adding either termination in two steps or adding
support for non-blocking replies. Note that adding these two
additional goals is impossible according to the impossibility
results of PORT [13]. Spanner [6] adds termination in two
steps for read-only transactions by relying on synchronized
clocks. A client can read its own clock and select a read
snapshot that is guaranteed to include all update transac-
tions that have terminated in the past. To the best of our
knowledge, no system has added non-blocking replies to the
performance goals achieved by Calvin/ Rococo, although
such combination is not covered by the impossibility result.

5.2 Systems that Offer Minimal Progress
Among the systems that offer only minimal progress, we
distinguish those that offer atomic visibility from those that
offer the weaker order-preserving visibility.
Cure [2] ensures atomic visibility and minimal progress.

Cure uses a vector clock, where each entry is a hybrid clock
that captures the state of a different data center. This allows

33



Performance Trade-offs in Transactional Systems PaPoC ’23, May 8, 2023, Rome, Italy

Add N

Didona et al Impossibility

Add 2ST Add L

Add 2ST 
(with synchronized clocks)

Add NAdd N

Add NAdd 2ST
(with synchronized

clocks)

Add AV

PORT Impossibility Antoniadis et al Impossibility

Spanner-ROUnknown

Eiger Add CM, AV
and L

Add CM

Eiger-PORT

Add MP

CURE COPS-SNOW Calvin/Rococo

Clock-SI

Wren/PaRiS

Add 2ST

Add CM, AV
and L

Add N, CM,
AV and 2ST

Add AV, MP Add N, OPV, MP

One Version per Read

Figure 2. Systems comparison. Slices of the pie capture performance goals: one version per read (1V), non-blocking (N),
constant metadata (CM), order-preserving visibility (OPV), atomic visibility (AV), minimal progress (MP), linearizability (L),
and two-step termination (2ST). Color of the frame captures possibility/impossibility: green borders for existing systems, red
borders for impossible combinations, and blue borders for combinations for which there is no system or impossibility result.

to represent a global snapshot that includes the state of differ-
ent data centers at different points in time. When executing a
read transaction, the client sets the read snapshot as follows.
The entry associated with the local data center is set to the
value of the local loosely synchronized clock. The entries
associated to remote data centers are defined by a global
stabilization procedure that keeps track of which updates

have been applied to all partitions of each data center. Mini-
mal progress is guaranteed because clients always observe
the results of previous update transactions executed in the
local data center. However, two-step termination is sacri-
ficed, as clients must first contact a partition to obtain the
read snapshot. Updates performed at remote data centers can
be arbitrarily delayed if there is a network partition. Read

34



PaPoC ’23, May 8, 2023, Rome, Italy Rafael Soares and Luís Rodrigues

transactions may block due to clock skews, namely when the
clock of the client is ahead of the clocks of some partitions.
COPS-SNOW [12] only supports simple writes and, as

such, only provides order-preserving visibility. It implements
efficient reads, that can be executed in just two steps and
offer non-blocking replies. It achieves this by sacrificing the
performance of write operations, that may need to contact
multiple partitions to complete. Assume two different keys
𝑥 and 𝑦, and two writes 𝑥1 → 𝑦2. A read transaction that
reads 𝑥 before 𝑥1 must read 𝑦 before 𝑦2 (to avoid violating
causality). To ensure that the 𝑦 partition can locally decide,
without blocking, if a read transaction should observe the
new version 𝑦2 or a previous version instead, when 𝑦2 is
written it is tagged with the identifiers of all concurrent read
transactions that must be ordered before 𝑦2 This requires
read transactions to update partitions with a record of the
read operation (in a fault-tolerant setting, the replication of
this state may involve additional communication steps). In
COPS-SNOW, the set of transactions that must be ordered
before 𝑦2 is only computed when 𝑦2 is written; this requires
𝑦’s partition to contact all partitions that have writes in
the causal past of 𝑦2. Note that COPS-SNOW moves part
of the coordination required to provided consistent reads
off-path, embedding it in the writes. Although this makes
reads more efficient, the penalty of the off-path coordination
in the global system performance can still be significant[8].

If one considers to satisfy additional performance goals in
a system similar to Cure, one may either add non-blocking
replies or two step termination. Adding both is not possible,
as it would result into a combination covered by the Di-
dona et al [7] impossibility result. Adding two step termina-
tion could be achieved by resorting to loosely synchronized
clocks, such as in Spanner. Clock-SI [9] uses the local clock
to decide on the read snapshot; on one hand, this allows
to achieve termination in two communication steps but, on
the other hand, requests may be blocked due to the clock
skew. While in Clock-SI only partitions have synchronized
clocks, requiring clients to contact a partition to serve as
transaction coordinator, the client operation could be ex-
tended with synchronized clocks to remove this additional
communication step. Adding non-blocking replies could be
achieved by letting the client read the most recent version
of each object and subsequently check if it was able to read
from a consistent snapshot; if not, the client chooses the
freshest snapshot from the read objects and forces additional
read rounds to obtain the missing mutually consistent val-
ues from that snapshot. This approach is implemented by
Eiger [11]. In order to achieve termination in a limited num-
ber of steps, Eiger requires linearly sized metadata. One may
further improve these optimal goals by adding constantly
sized metadata. Following Cure design, instead of using a
vector clock to define the global state of the system, one
may use a single scalar provided by the global stabilization

procedure, identifying the snapshot with the freshest up-
dates applied by all partitions at all datacenters. Systems
like Wren [16] and PaRiS [17] use this strategy to provide
non-blocking replies and constant metadata.

5.3 Systems That Do Not Offer Freshness Guarantees
One may also sacrifice freshness to maintain all other opti-
mal guarantees. Sacrificing freshness implies risking reading
indefinitely stale values but, on the other hand, permits to
read only from transactions that are known to have com-
pleted at all data-centers and/or partitions. Eiger-PORT [13]
achieves this by running a global stabilization detection pro-
tocol, where each client keeps track of the last transactions
that have been completed on each contacted server. It then
uses this information to read only from update transactions
that have terminated, i.e., whose values are already visible
at all nodes. This can be achieved with constant metadata if
transactions are tagged with a logical clock. Adding fresh-
ness and linearizability or minimal progress to a system such
as Eiger-PORT, while preserving all other goals, was shown
to be impossible.

6 Conclusion
In this work we have discussed some performance trade-offs
in transactional systems. We have compiled a list of perfor-
mance goals that have been addressed by related work and
identified known impossibility results regarding the feasibil-
ity of combining these goals in a different systems. We have
then compared several existing systems from the perspective
of what combinations of performance goals they are able to
achieve. Our analysis shows that there are some combina-
tions of performance goals that have not been satisfied by
previous work but that are also not covered by the known
impossibility results.

7 Future Work
For future work, we will extend our survey to include other
system characteristics like replication and it’s impact on sys-
tem design. We will also include a more detailed explanation
of the costs associated with each performance goal, to bet-
ter guide developers in their choice of system. Furthermore,
we also plan to study if some combinations of properties
that cannot be achieved deterministically may still possi-
ble to achieve with high probability in realistic scenarios of
practical relevance.

Acknowledgments
The authors are grateful to Manuel Bravo and to the anonymous
reviewers for their comments on a early version of this paper.
This work was partially funded by Fundação para a Ciência e
Tecnologia (FCT) under grant UI/BD/153590/2022 and via project
UIDB/50021/2020 and DACOMICO (via OE withref. PTDC/CCI-
COM/2156/2021).

35



Performance Trade-offs in Transactional Systems PaPoC ’23, May 8, 2023, Rome, Italy

References
[1] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and

Kaushik Veeraraghavan. 2015. Challenges to Adopting Stronger Con-
sistency at Scale. In HOTOS’15 (Kartause Ittingen, Switzerland).

[2] Deepthi Akkoorath, Alejandro Z Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. 2016.
Cure: Strong Semantics Meets High Availability and Low Latency. In
ICDCS ’16 (Nara, Japan).

[3] Karolos Antoniadis, Diego Didona, Rachid Guerraoui, and Willy
Zwaenepoel. 2020. The Impossibility of Fast Transactions. In IPDPS
’20 (New Orleans (LA), USA).

[4] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In
SIGMOD ’95 (San Jose (CA), USA).

[5] Manuel Bravo, Nuno Diegues, Jingna Zeng, Paolo Romano, and Luís
E. T. Rodrigues. 2015. On the use of Clocks to Enforce Consistency in
the Cloud. IEEE Data Eng. Bull. 38, 1 (2015), 18–31.

[6] James Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, JJ Furman, Sanjay Ghemawat, AndreyGubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. 2012. Spanner: Google’s Globally Distributed Database. In OSDI
’12 (Hollywood (CA), USA).

[7] Diego Didona, Panagiota Fatourou, Rachid Guerraoui, Jingjing Wang,
and Willy Zwaenepoel. 2019. Distributed Transactional Systems Can-
not Be Fast. In SPAA ’19 (Phoenix (AZ), USA).

[8] Diego Didona, Rachid Guerraoui, Jingjing Wang, and Willy
Zwaenepoel. 2018. Causal Consistency and Latency Optimality: Friend
or Foe? VLDB 11, 11 (2018), 1618–1632.

[9] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI:
Snapshot Isolation for Partitioned Data Stores Using Loosely Synchro-
nized Clocks. In SRDS ’13 (Braga, Portugal).

[10] Leslie Lamport. 1998. The Part-Time Parliament. ACM TOCS 16, 2
(may 1998), 133–169.

[11] Wyatt Lloyd, Michael Freedman, Michael Kaminsky, and David G
Andersen. 2013. Stronger Semantics for Low-Latency Geo-Replicated
Storage. In OSDI ’13 (Lombard (IL), USA).

[12] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt
Lloyd. 2016. The SNOW Theorem and Latency-Optimal Read-Only
Transactions. In OSDI ’16 (Savannah (GA), USA).

[13] Haonan Lu, Siddhartha Sen, and Wyatt Lloyd. 2020. Performance-
Optimal Read-Only Transactions. In OSDI ’20 (Virtual Event).

[14] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.
Extracting More Concurrency from Distributed Transactions. In OSDI
’14 (Broomfield (CO), USA).

[15] Srinivas Narayana, Joe Wenjie Jiang, Jennifer Rexford, and Mung
Chiang. 2012. To coordinate or not to coordinate? wide-area traffic
management for data centers. Dept. Comput. Sci., Princeton Univ.,
Princeton, NJ, USA, Tech. Rep. TR-998-15 (2012).

[16] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2018. Wren:
Nonblocking reads in a partitioned transactional causally consistent
data store. In DSN ’18 (Luxembourg City, Luxembourg).

[17] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2019. PaRiS:
Causally Consistent Transactions with Non-blocking Reads and Partial
Replication. In ICDCS ’19 (Dallas (TX), USA).

[18] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel Abadi. 2012. Calvin: Fast Distributed Trans-
actions for Partitioned Database Systems. In SIGMOD ’12 (Scottsdale
(AZ), USA).

[19] Alejandro Tomsic, Manuel Bravo, and Marc Shapiro. 2018. Distributed
transactional reads: the strong, the quick, the fresh & the impossible.
In Middleware ’18 (Rennes, France).

36


	Abstract
	1 Introduction
	2 System Model
	3 Performance Goals
	3.1 Return Mutually Consistent Values
	3.2 Terminate in Two Communication Steps
	3.3 One Version per Read
	3.4 Supports Non-blocking Replies
	3.5 Return Fresh Results
	3.6 Use Constant-Size Metadata

	4 Impossibility Results
	5 Existing Systems
	5.1 Systems that Offer Linearizability
	5.2 Systems that Offer Minimal Progress
	5.3 Systems That Do Not Offer Freshness Guarantees

	6 Conclusion
	7 Future Work
	Acknowledgments
	References

