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Chapter 1

Introduction

The Earth is the cradle of humanity, but mankind cannot stay in the cradle forever.

Konstantin E. Tsiolkovsky

This first chapter presents the motivation for studying satellite systems and navigation, followed by

an overview of the current state-of-the-art. It then highlights the objectives, deliverables, and work plan,

concluding with a report outline that previews the topics covered.

1.1 Motivation

Over the last few decades, multi-agent systems, i.e., networks of multiple singular nodes with local

data gathering, processing, and communication capabilities [1], have attracted considerable interest,

particularly in the realm of space exploration, namely, the concept of spacecraft Formation Flying (FF).

Also, a great focus has been given to the goal of reducing the cost of space exploration missions, for

which, among all the new concepts and developments being studied for this purpose, FF may prove to

be one of the most important technological shifts. FF enables the division of payload and distribution

of processing tasks among multiple smaller and more cost-effective units, effectively lowering the size

and cost of the devices [2]. By transitioning from a single, large monolithic satellite to an assembly of

smaller satellites, FF not only aims to cut costs but also enhances mission reliability, as the malfunction

or loss of a single satellite does not necessarily lead to the collapse of the system [3]. Moreover, FF

broadens the scope of potential scientific missions, enabling endeavors that would be impractical with

just one spacecraft [4]. However, a key challenge in FF lies in designing a robust navigation system [5],

which is critically dependent on accurate Orbit Determination (OD) techniques.

OD is essential for accurately estimating the orbits of space objects, such as Earth-orbiting satellites,

in terms of position, velocity, or other equivalent state spaces, based on the available measurements

[6, 7]. The history of OD is deeply rooted in the field of astronomy, particularly in the prediction of

planetary and cometary motions. Notable early contributors to this field include Copernicus (1473 –

1543), Kepler (1571 – 1630), Newton (1642 – 1727), Lagrange (1736 – 1813), and Gauss (1777 –

1855), whose pioneering work laid the foundation for the techniques and methods used in modern OD

[8]. The technological advancements in recent decades, particularly in computational power and sensor

technology, have significantly enhanced OD’s precision. This evolution is exemplified by the tracking

of Sputnik in 1957, initially achieved with visual observations limited to a few kilometers in accuracy,

progressing to contemporary OD solutions achieving sub-centimeter accuracy [7]. Furthermore, the

efficacy of space missions often hinges on a satellite’s ability to adhere to a specified nominal orbit,
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necessitating corrective maneuvers when deviations occur, thereby underlining the crucial role of OD in

orbit control strategies.

As the number of satellites in an FF grows, the classical OD estimation solutions, which are devel-

oped under a centralized framework, eventually become infeasible to implement in practice – a phe-

nomenon often referred to as the curse of dimensionality. These traditional centralized frameworks

require: i) an infrastructure dedicated to centralized coordination; ii) transmission of substantial amounts

of data between each satellite and a central node; and iii) significant computational power for real-time

processing at this central node. With the expansion of the network, this approach faces increasing

challenges, including heavier loads on communication links, longer communication delays, more com-

plex protocols, and greater demands on the central unit’s computational capacity. These issues make

centralized implementation impractical in larger FFs and also expose vulnerabilities, such as reduced

robustness to failures in the central processing node or communication systems. [9]

Recognizing these limitations, there has been a shift towards decentralized and distributed estima-

tion frameworks for OD, to mitigate the curse of dimensionality. In such setups, no central computing unit

is required, and no single entity within the FF possesses complete knowledge of the network’s global

state. Decentralized estimation frameworks emphasize local computations and communications while

utilizing the same physical data transmission infrastructure as a centralized framework where the key

distinction lies in the data management at the protocol level. Here, only locally pertinent information is

transmitted, preventing the data overload that plagues centralized frameworks as the FF size increases.

On the other hand, distributed estimation frameworks involve a higher degree of cooperation and in-

formation sharing among satellites. Each satellite in a distributed network contributes to the overall

processing task, collaboratively working towards a common goal. This collaborative nature often results

in more robust and efficient processing, as data and computational responsibilities are shared across

the network, leading to optimized resource utilization and potentially higher resilience against failures

on individual satellites. For instance, if an estimation solution employs local estimation methods in each

satellite, but the parameters for these estimation algorithms have to be computed in real time by a single

satellite or replicated across every satellite in the constellation, the estimation solution is decentralized

but not distributed. Thus, the inevitable paradigm change towards large-scale FF calls for distributed

and decentralized OD algorithms.

1.2 Literature Review

Research into the development and testing of spacecraft Guidance, Navigation, and Control (GNC)

systems has been highly active since its inception in the early 1960s, so this section is dedicated to

showcasing significant literature and studies that focus on navigation systems, and OD and FF tech-

niques. The state-of-the-art technologies established within this section form the basis upon which

novel navigation algorithms can be proposed. Thus, before diving into the objectives for this work, it is

essential to first examine the historical and contemporary strategies in this field, along with their inherent

challenges.

In recent times, there has been a surge in literature studies of spacecraft FF. Notably, a survey by
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Di Mauro et al. [5] presents an overview that includes 233 FF missions scheduled from 2000 to 2025.

In a similar vein, a survey by Bandyopadhyay et al. [10] categorize several missions involving small

satellites, specifically those with a wet mass under 10 kg. These comprehensive reviews serve as a solid

foundation for understanding the evolution and variety of FF missions. The remainder of this section

addresses particular aspects of the spacecraft navigation problem and OD algorithms for spacecraft FF.

The Evolution of Orbit Determination Techniques

Historically, spacecraft position and velocity determination primarily relied on methods focusing on

individual spacecraft. These methods aimed to estimate the spacecraft’s state concerning Earth referred

to as the absolute spacecraft state. These OD processes traditionally utilized statistical or regression-

based methods for post-processing on-ground observations over extended periods. This methodology,

often known as batch processing [11], typically employs algorithms like Least-Squares and its variants.

These algorithms deduce the spacecraft’s orbit parameters based on a series of measurements. The

spacecraft’s known position is then propagated forward in time using a dynamics model until sufficient

data is acquired for the next batch estimation. However, this approach has limitations: the extended

duration required for data collection leads to incremental errors from the dynamics model during state

propagation, reducing confidence in real-time state estimates until the subsequent batch is processed.

Additionally, batch processing demands substantial computational resources at the terrestrial central

node. Despite its limited real-time state estimates, batch processing’s accuracy remains high, as exem-

plified by the GRACE mission (2002) [5]. In this early two-satellite FF example, neither spacecraft had

onboard navigation systems, and all navigation computations were ground-based, using GPS measure-

ments. The mission did not require autonomous navigation due to the separation distance between the

spacecraft (170− 270 km).

Conversely, on-board processing in FF at least necessitates a “leader” spacecraft, sometimes re-

ferred to as the chief, equipped with more advanced capabilities, such as a Global Navigation Satellite

System (GNSS) receiver for absolute state estimation. The remaining FF spacecraft, termed follow-

ers or deputies, possess less expensive sensing capabilities and depend on relative range measure-

ments to the leader for position estimation. This configuration is evident in forthcoming missions like

NASA’s Helioswarm nine-spacecraft mission (2028) [12]. These missions present complex navigation

or localization challenges due to the scale of the estimation problem – the curse of dimensionality. Con-

sequently, implementing an agent-specific on-board localization system that distributes the workload

becomes essential. This approach balances computational costs among all FF agents and manages

inter-spacecraft communications. Moreover, an on-board OD algorithm providing real-time data with

lower computational demands is necessary. The TanDEM-X and TerraSAR-X missions (2010) [5] ex-

emplify this, utilizing real-time state estimates and incorporating sequential estimation methods in their

navigation systems. This method provided immediate data for guidance and control, with more accu-

rate batch processing performed later on the ground to refine the baseline separation distance critical

for their scientific instruments. Among various sequential estimation techniques, the Extended Kalman

Filter (EKF) is the predominant choice for real-time navigation in spacecraft.
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Kalman Filter-based Orbit Determination Techniques

The theoretical details of the Kalman Filter (KF) will be presented in a subsequent chapter of this

work, so a review of several high-profile FF missions that used EKF-based navigation systems is given

here to demonstrate the flight heritage and on-orbit performance capabilities of the EKF. Firstly, one of

the most promising demonstrations of autonomous FF technologies to date has been the dual-satellite

PRISMA mission (2010) [5]. PRISMA consists of a leader/follower coordination approach for which

on-orbit experiments demonstrated relative navigation accuracy on the centimeter level for minimum

separations of 150m using an EKF [5, 13]. An experiment entitled Formation Flying In-Orbit Ranging

Demonstration (FFIORD) [5] utilized the PRISMA spacecraft to validate an FF radio frequency sensor

package. An EKF was used during the FFIORD testing to provide estimates of the relative spacecraft

positions and velocities; furthermore, several onboard dynamics models were tested within the EKF.

The CanX mission [5] launched a dual spacecraft formation in 2014, consisting of the Can-X4 and Can-

X5 spacecraft, respectively the chief and the deputy. The deputy uses a relative navigation algorithm

based on an EKF that uses carrier phase differential GPS techniques to estimate the relative state of the

deputy concerning the chief. The MMS mission (2015) [5] developed by NASA launched four spacecraft

into a tetrahedral formation. Precise formation-keeping control was required during science-collection

operations, which required knowledge of the spacecraft separation to within 100m. This accuracy was

accomplished by onboard navigation software that used Global Positioning System (GPS) measure-

ments, an EKF, and a high-fidelity onboard dynamics model.

Although the EKF has proven to be quite effective in spacecraft applications, there are still limitations

that can compromise the accuracy of the final state estimates. Deficiencies in the mathematical model

used internally by the filter to describe the real-world system can lead to filter divergence over time if

the modeling mismatch is too large and will further degrade the performance of the EKF if left unad-

dressed. A subset of Kalman filtering research has thus investigated ways to modify the performance

of the standard EKF in real-time based on observations of the filter performance. Fraser [14] proposed

two novel adaptive Kalman filtering techniques: one uses maximum likelihood estimation techniques

to derive analytical adaptation laws for the filter, which are then improved through the novel inclusion

of an intrinsic smoothing routine and the second uses an embedded fuzzy logic system based on a

covariance-matching analysis of the filter residuals, where the fuzzy system has been specifically de-

signed for the spacecraft navigation problem at hand. These demonstrated to be appreciably more

robust to filter initialization errors, dynamics modeling deficiencies, and measurement noise than the

centralized EKF. Also, Oliveira [15] introduces the Extended Semi-analytical Kalman Filter and a novel

Unscented Semi-analytical Kalman Filter, integrating semi-analytical propagation with Kalman filtering

techniques.

Another challenge arises with the use of EKF for OD in spacecraft FF — as the state size of the

network to be estimated increases, the computational demands on the leader spacecraft escalate signif-

icantly. To address this, research has shifted towards reducing this computational burden by leveraging

the communication systems among spacecraft in the FF, leading to the development of distributed local-

ization algorithms.
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Decentralized and Distributed Orbit Determination Techniques

In the realm of spacecraft orbit determination and navigation, decentralized and distributed estimation

strategies are increasingly gaining prominence. A significant breakthrough in this field is the consensus

EKF for distributed state estimation. This approach, as detailed in references [16] and [17], utilizes the

concept of consensus in networked nonlinear dynamical systems to fuse prior and novel information

across nodes. This methodology has shown promising results in enhancing system observability and

mitigating the convergence on ambiguous orbits, thereby improving the overall performance of relative

motion estimation in spacecraft. Another pivotal contribution to this field is the Distributed Kalman Filter,

as outlined in references [18] and [19]. These papers discuss the decomposition of a central Kalman filter

into micro-Kalman filters across a network, where consensus filters play a crucial role in facilitating the

average consensus of time-varying signals. This approach not only simplifies the computational process

but for systems described by linear state-space models it also maintains the estimation accuracy akin to

that of a central Kalman filter. These algorithms demonstrate comparable efficiency and accuracy with

established algorithms, highlighting their potential in satellite ephemeris1 determination.

A novel perspective on decentralized parameter estimation is provided in [20]. The proposed al-

gorithm merges local stochastic approximation methods with a global consensus strategy, effectively

reducing measurement noise and enhancing estimation accuracy. This is particularly beneficial in multi-

agent systems where communication noise can significantly impact the system’s performance. Refer-

ence [21] introduces an integrated approach to GNC of spacecraft FF. This approach amalgamates a

decentralized filter with Covariance Intersection, thereby efficiently estimating the full relative state of

spacecraft formations while avoiding the divergence issues commonly associated with EKF. The scal-

ability of localization algorithms in spacecraft swarms is addressed in [22]. The Decentralized Pose

Estimation algorithm presented here takes into account both communication and relative sensing net-

works, allowing each spacecraft to localize a subset of the formation. This approach ensures that the

complexity of the algorithm does not increase with the number of spacecraft, making it highly scalable

and efficient for large swarms.

In the Bayesian framework of estimation, the work presented in [23] introduces a distributed state

estimator based on the consensus on Kullback-Leibler averages of local probability density functions.

This method guarantees mean-square boundedness of the state estimation error, ensuring stability un-

der minimal network connectivity and system observability requirements. References [24, 25] explore

consensus-based algorithms for distributed filtering, combining Consensus on Information (CI) and Mea-

surements (CM) to form Hybrid (HCMCI) consensus filters. These filters capitalize on the strengths of

both CI and CM, providing a stable and effective solution for distributed state estimation in linear sys-

tems. The hybrid approach is validated through simulation case studies, demonstrating its applicability in

various sensor network scenarios. Lastly, [26] discusses the Kalman-Consensus Filter (KCF), highlight-

ing its optimal decentralized structure and scalability in sensor networks. The KCF algorithm efficiently

estimates the state of dynamic targets and reaches a consensus with neighboring estimator agents,

1The set of data broadcast by a satellite that provides detailed information about its position and trajectory in orbit relative to
the Earth, including its location, velocity, and timing information, essential for accurate navigation and positioning systems.
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exemplifying a significant advancement in sensor networks with variable topology.

To date, however, there have been no widely accepted or reported distributed techniques imple-

mented on spacecraft in orbit, and the development and demonstration of distributed methods ha-

ve therefore been restricted to simulation environments, hardware-in-the-loop testing, and theoretical

propositions.

Other Orbit Determination Techniques

Recent advancements in orbit determination techniques have emphasized the need for efficient com-

munication and computational strategies, particularly in small-satellite formations. Cordeiro’s work [27]

introduces a distinctive distributed state estimation framework for such formations. It addresses the lim-

itations in inter-satellite communication by adopting a leader-follower topology. Here, the leader satellite

accesses absolute position measurements, while the followers rely on relative range measurements.

The Consider Covariance (CC) technique is used to include the leader state uncertainty in the follower’s

filter; more on this technique later in this work. This framework, notably distinct for its decoupling of the

leader’s state estimation from the followers’, showcases reduced communication requirements and en-

hanced robustness, particularly in high-leader uncertainty scenarios. This technique will be flight-tested

on an upcoming NASA small-satellite mission consisting of four coffee mug-sized satellites based on

open-source PyCubed flight hardware, each containing high-accuracy GPS and time-of-flight ranging.

In the domain of distributed estimation algorithms, Lopes, Cattivelli and Sayed [28–30] have made

significant contributions. Lopes [28] delves into diffusion protocols in adaptive networks, demonstrating

their superiority in terms of mean-square error over non-cooperative schemes. Cattivelli [29] presents

diffusion LMS strategies for distributed estimation, introducing algorithms that show improved perfor-

mance and robustness. Further extending this work, Cattivelli [30] focuses on distributed Kalman fil-

tering and smoothing, proposing algorithms for collaborative estimation that leverage the strengths of

diffusion strategies.

Lastly, Jia’s research [31] introduces the DeCiSpOT filter, a novel approach to cooperative space ob-

ject tracking. This filter balances computational complexity and communication needs between sensors,

effectively enhancing track accuracy in challenging measurement scenarios. The DeCiSpOT algorithm

employs innovative strategies like the global nearest neighbor and probabilistic data association, proving

its effectiveness in simulated space object tracking scenarios.

1.3 Objectives, Deliverables, and Work Plan

The main objective of this thesis is to implement a diffusion technique on a scalable flying formation

as a way to improve the accuracy of the orbit determination procedures for big constellations, after

exploring the pre-existing ones. To achieve this, a list of objectives was defined:

• Develop a 3D satellite dynamics simulator in Python (here), capable of simulating the most relevant

orbital perturbations. This simulator should be able to handle multiple satellites simultaneously and

include an animation feature using a MATLAB graphical interface.
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• Develop and implement both a centralized and a consensus-based solution for the orbit determi-

nation problem in Python, to be used as benchmarks.

• Interpret, implement, and validate the concept of Consider Covariance, as introduced in the solu-

tion for this problem in [27]. Use this also as a benchmark.

• Design an algorithm that is not redundant in terms of computational and communication resources,

scalable, avoids the inner loop of consensus, and primarily leverages the distribution and exchange

of information among formation flying elements through communication.

To achieve such goals a Gantt chart with the proposed work split is presented in Table 1.1.

Table 1.1: Gantt Chart of the Work Plan.

2024 2025

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Thesis

Implement Python simulator

Validate the concept of “Consider Covariance” in a simpler scenario

CERN Intership

Implement the batch least-squares algorithm for benchmarking

Design and implement of a diffusion technique

Analyze robustness and consistency

Analyze sensor activations, and communication and computational

resources used
Conduct accuracy analysis for additional simulation scenarios and

with larger formations
Evaluate potential improvements to the dynamics model and include

visibility and range constraints

Write the Dissertation

Review, finalize, and prepare for presentation

End

1.4 Report Outline

This document is organized as follows. Chapter 2 provides background information, including space-

craft formation flying, orbital mechanics covering the theoretical foundations for this work, and estimation

algorithms for orbit determination. Chapter 3 discusses the implementation details, such as the problem

statement and the modeling of dynamics and observations, along with the formulation of a fully central-

ized solution, a consensus-based solution, and a consider covariance-based one. Finally, preliminary

results for the implementation of the previously described orbit determination algorithms are presented

in Chapter 4.
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Chapter 2

Background

That’s one small step for man, one giant leap for mankind.

Neil Armstrong

This chapter focuses on the theoretical principles that support the concepts explored in the disserta-

tion. Firstly, several orbital mechanics ground concepts are introduced and discussed. Following this, the

studied estimation techniques are presented, as well as the specific case of consider covariance. Finally,

the chapter delves into diffusion approaches and how they can be integrated into orbit determination and

parameter estimation.

2.1 Spacecraft Formation Flying

The concept of spacecraft FF lacks a precise or universally accepted definition. However, a widely

recognized description, as proposed by NASA’s Goddard Space Flight Center and mentioned in [2],

describes FF as “The tracking or maintenance of a desired relative separation, orientation or position

between or among spacecraft”.

Since the 1990s, numerous missions have utilized FF in fields like astronomy, communications, and

weather observation. These missions have not only showcased the practicality of FF but also corrobo-

rated its advantages and significance when compared with the existing advantages. Key advantages of

this approach are outlined in a survey by Liu (2018) [3]:

• System Cost Reduction: Using small, networked satellites for space missions significantly lowers

costs. Standardized production processes make these smaller spacecraft cheaper to design and

manufacture than larger ones. Their reduced size and weight also decrease launch expenses.

Furthermore, if a satellite malfunctions, its replacement is both cost-effective and swift, further

reducing overall system maintenance costs.

• System Performance Improvement: The use of multiple satellites in a networked formation en-

hances system robustness and efficiency through resource redundancy. This setup promotes

autonomous navigation and control, reduces reliance on ground stations, and improves the overall

autonomy and intelligence of the system. Additionally, distributing and parallelizing tasks across

the formation boosts efficiency.

• System Reliability Enhancement: The modular design of a networked satellite formation, fea-

turing standardized communication and control components, ensures system stability. This design

allows for continued operation even if individual satellites fail, as only the links to those specific

satellites are affected, preventing a complete system collapse.
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2.2 Orbital Mechanics

As a fundamental aspect of this work, it is imperative to introduce and discuss key concepts of orbital

mechanics. This will provide the reader with essential background information on the dynamic interaction

between a central body and an orbiting satellite. In this context, the central body, namely planet Earth,

and the satellite are denoted as masses m1 = M⊕
1 and m2, respectively, as illustrated in Figure 2.1.

Initially, it’s essential to define an inertial reference frame. Due to their proximity, satellites orbiting

Earth are subject to similar solar acceleration as the Earth itself. This similarity allows for the neglection

of solar acceleration effects on both the Earth and the satellite, rendering the system effectively inertial

in terms of translation. The reference frame used to describe this condition is termed the Earth-Centered

Inertial (ECI) frame [32].

m1

m2b

a

ae

a (1− e)

p
r

ṙ

θ0

Ô

(a) 2D representation.

X ≡ à

Y

Z

Node lineΩ

ϖ

h

i

PerigeeÔ

r

ṙ

Equator R⊕

(b) 3D representation.

Figure 2.1: 2D and 3D representations of a satellite orbit around Earth and its classical orbital elements.

The subsequent step involves determining the rotation of the reference frame and establishing the

orientation of its coordinate axes. Given the assumption that the Universe does not rotate, the orientation

of the reference frame’s axes can be fixed based on observations of distant stars. Accordingly, the Z

axis aligns with Earth’s rotational axis, extending from south to north. The X axis is oriented towards

the Vernal Equinox, marking the point where the ecliptic intersects the equator and the Sun transitions

from the Southern to the Northern Hemisphere. The Y axis, orthogonal to both X and Z, forms a right-

handed coordinate system and lies in the equatorial plane. Historically, the X axis was aligned with the

constellation Aries, known as the First Point of Aries, and is denoted as à. This reference frame will be

used throughout this work. [8, 32–35]

2.2.1 Classical Orbital Elements

To specify an orbit in space, two key vectors are essential: the satellite’s position vector, denoted

as r, and its velocity vector, denoted as ṙ. These vectors must be known at a specific moment in

1The symbol ⊕ is commonly used to refer to Earth.
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time. However, specifying the set {r, ṙ}, which comprises 6 parameters, is not practically efficient for

delineating the satellite’s orbit. Instead, within an ECI frame, it is more convenient to describe the

satellite’s orbit using a different set of 6 parameters. These are known as the classical orbital elements.

They effectively determine the satellite’s trajectory and its orientation in space. [32]

They are divided into two subsets, those that specify the orbit’s orientation in space (see Figure 2.1b):

• The Inclination i of the orbit, is the angle between the orbit plane’s normal h and the polar axis Z.

It is limited to the interval i ∈ [0, π] rad to ensure a bi-univocal correspondence.

• The Right Ascension of the Ascending Node Ω, the angle between the X-axis and the inter-

section of the orbit with the equator, on the side where the satellite passes from the Southern

Hemisphere to the Northern Hemisphere. It is limited to the set Ω ∈ [0, 2π] rad.

• The Argument of Perigee ϖ, the angle measured from the ascending node, in the orbital plane,

until reaching the perigee, which is the nearest orbital point from the Earth on the semi-major axis.

As Ω it is also limited to the set ϖ ∈ [0, 2π] rad.

The remaining three elements of the second subset relate to the type of orbit and the satellite’s

location in it, (see Figure 2.1a):

• The orbit is completely determined by the Semi-major Axis a and the Eccentricity e.

• The satellite’s position in the orbit can be calculated at any instant by knowing the Time of Passage

at Perigee T0. It serves to relate the orbit to the passage of calendar time and allows for the

calculation of the position in the orbit.

The classical orbital elements {i,Ω, ϖ, a, e, T0} are much easier and more naturally interpreted than

specifying {r, ṙ} for a given time. Note that the true anomaly θ0 (see Subfigure 2.1a) will be used instead

of T0, since it directly relates to the spacecraft’s position in its orbit.

2.2.2 The Two-Body Problem

The most important contribution influencing the equations that govern the evolution of a satellite’s

velocity over time is encapsulated by the central force term of the Earth’s gravitational attraction, repre-

sented by

r̈grav = −µ⊕

r3
r, (2.1)

where r = ||r||2 represents the magnitude of r, and ∥ · ∥2 denotes the ℓ2-norm. (2.1) is famously

known as the two-body equation of relative motion whose solution is a conic section [32], in which

µ⊕ = 3.986× 105 km3 s−2 [36] is known as Earth’s gravitational parameter.

Remark that for (2.1) to be valid, the following assumptions must be met [14]: Assumption 1 – The

Massive Primary) The mass of the orbiting satellite is much smaller and therefore negligible when com-

pared to the mass of the central body; Assumption 2 – Newtonian Dynamics) The motion of the two

bodies is described exclusively by the mutually attractive Newtonian gravitational forces; Assumption
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3 – Spherical Bodies) Both bodies are treated as particle point masses, following the assumption that

they are spherically symmetric. However, several approximations need to be made to consider these

assumptions. This will be approached in Subsection 2.2.3.

Now, using the general relation

∂rn

∂r
=

∂
(
x2 + y2 + z2

)n/2
∂r

= nrn−2rT , (2.2)

which yields a row vector, it follows that the partial derivative

∂r̈grav
∂r

= −µ⊕
∂

∂r

(
r
1

r3

)
= −µ⊕

(
1

r3
I3 − 3

rrT

r5

)
. (2.3)

Here the factor rrT in the second term is an outer product, which yields a matrix and should not be

confused with the dot product rT r.

2.2.3 Orbital Perturbations

The two-body equation (2.1) offers a basic understanding of spacecraft motion but relies on assump-

tions not true in reality. Earth isn’t a perfect sphere but has the form of an oblate spheroid with an equa-

torial diameter that exceeds the polar diameter by about 20 km [35], and spacecraft often have complex

shapes due to components like solar panels. Consequently, real spacecraft motion doesn’t strictly follow

Keplerian models due to various external forces like atmospheric drag (in case of sufficiently low orbits),

solar radiation, and gravitational influences from the Earth, Moon, Sun and other bodies. This leads to

perturbed or non-Keplerian motion. Table 2.1 represents the most important orbital perturbations for a

Low Earth Orbit (LEO) satellite.

Table 2.1: Orbital perturbations’ orders of magnitude for a LEO spacecraft (r ∈ [160, 2000] km) with a
perpendicular area to the acceleration A⊥ and mass m. [35]

Zonal harmonics Third-body
Orbital Perturbation 2-body J2 J3 Drag Solar radiation Moon Sun

(max) (max) (max) (max) (max) (mean) (mean)

Acceleration [km s−2] 10−3 (2.1) 10−5 (2.6) 10−8 [37] 10−7A⊥
m 10−9A⊥

m 10−9 10−10

The two-body acceleration not surprisingly dominates the system, with the effects of the Earth’s

oblateness J2 term contributing the largest perturbation, as described below in more detail. Similarly,

the influence of drag contributes noticeably to the acceleration of a spacecraft. Since this research

focuses on formations In LEO conditions, it is pertinent to incorporate both into the model.

Earth’s Oblateness

The most significant perturbation in this scenario arises from Earth’s non-spherical shape, which

is represented by modeling the gravitational potential with an infinite series of Legendre polynomials.

Though the most comprehensive expression is beyond the scope of this work, a simplified version will
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be provided. This version considers only the zonal harmonics, which account for variations in latitude

and are valid when the mass distribution still has axial symmetry. This is sufficient to demonstrate the

primary effect, which is the flattening of the poles. Thus, if the mass distribution has axial symmetry, the

gravitational potential can be described by the series [8, 38]:

U(r, ϕ) =
µ⊕

r
− µ⊕

r

∞∑
k=2

Jk

(
R⊕

r

)k

Pk (sinϕ) , (2.4)

where ϕ represents the latitude with respect to the Equator, Jk contains the zonal harmonics of the

planet, and Pk(·) are the Legendre polynomials. In (2.4), the first term is equivalent to the distribution

with spherical symmetry and the second

UJ2
(r, ϕ) = −µ⊕

r
J2

(
R⊕

r

)2

P2 (sinϕ) = −3J2µ⊕

2r

(
R⊕

r

)2 (
sin2 ϕ− 1

3

)
= −

3J2µ⊕R
2
⊕

2r3

(z
r

)2

+
J2µ⊕R

2
⊕

2r3

(2.5)

describes the flattening of the body, since J2 = 0.00108262545 [36] is over a thousand times larger than

the next largest term. Remind that UJ2
was rewritten as a function of (r, z), since sinϕ = z/r. Now,

evaluating the gradient of (2.5), we can write the perturbing acceleration due to the oblateness of the

Earth as [8]:

r̈J2
= −

3J2µ⊕R
2
⊕

2r5


(
1− 5 z2

r2

)
x(

1− 5 z2

r2

)
y(

3− 5 z2

r2

)
z

 . (2.6)

For later use, the partial derivatives of the acceleration due to the Earth’s oblateness with respect to

the position vector are given by (computed with SymPy and confirmed with [27]):

∂r̈J2

∂r
= −

3J2µ⊕R
2
⊕

2r9
×

×


−4x4 − 3x2y2 + 27x2z2 + y4 − 3y2z2 − 4z4 −5x3y − 5xy3 + 30xyz2 −15x3z − 15xy2z + 20xz3

−5x3y − 5xy3 + 30xyz2 x4 − 3x2y2 − 3x2z2 − 4y4 + 27y2z2 − 4z4 −15x2yz − 15y3z + 20yz3

−15x3z − 15xy2z + 20xz3 −15x2yz − 15y3z + 20yz3 3x4 + 6x2y2 − 24x2z2 + 3y4 − 24y2z2 + 8z4


.

(2.7)

Atmospheric Drag

Until now, the discussion has focused on gravitational perturbations affecting spacecraft, which are

conservative forces, that is, they can alter a spacecraft’s orbit shape or orientation but not its overall

energy [39]. In LEO, however, non-conservative atmospheric drag forces reduce the orbit’s energy and

semi-major axis, potentially leading to de-orbiting if not considered in mission design, especially below

altitudes of 1000 km [40].

For a body moving with some relative velocity ṙrel concerning the atmosphere, the drag force is given

by [35]:

r̈drag = −1

2
CD

A⊥

m
ρatmṙrelṙrel, with ṙrel = ṙ− ω⊕ × r and ω⊕ =

[
0 0 ω⊕

]T
, (2.8)

13



where a first-order approximation of the relative velocity of the spacecraft concerning the atmosphere

can be made by assuming that the atmosphere co-rotates with the Earth at an angular velocity ω⊕ =

7.292 115 146 7 × 10−5 rad s−1 [36]. Atmospheric drag opposes a spacecraft’s motion, its force propor-

tional to the frontal area A⊥ and scaled by a drag coefficient CD ≈ 2.2 (using a flat plate model [8]),

considering factors like fluid composition and temperature. The spacecraft’s mass m and design also

influence drag effects and additionally, atmospheric density ρatm significantly affects drag forces.

To model ρatm, the exponential model described in [8] is used. This simple, static model assumes the

density of the atmosphere decays exponentially with increasing altitude. It also assumes a spherically

symmetrical distribution of particles, in which the density varies exponentially according to

ρatm(h) = ρ0 exp

(
−h− h0

H

)
, (2.9)

where ρ0 is the reference density, h0 is the reference altitude, h = r − R⊕ is the actual altitude, above

the ellipsoid, and H is the scale height2. This model, while approximating a significant portion of the

atmosphere, lacks the precision required for highly accurate studies. To address this shortcoming, we

have segregated the different altitude levels into closely related bands. This segregation enhances the

model’s accuracy, as the choice of bands plays a crucial role in determining the level of precision. The

atmospheric parameters for these bands are detailed in Table 2.2.

Table 2.2: Exponential atmospheric model presented in [8].

h [km] h0 [km] ρ0 [kgm−3] H [km] h [km] h0 [km] ρ0 [kgm−3] H [km]

[0, 25) 0 1.225 7.249 [150, 180) 150 2.070× 10−9 22.523

[25, 30) 25 3.899× 10−2 6.349 [180, 200) 180 5.464× 10−10 29.740

[30, 40) 30 1.774× 10−2 6.682 [200, 250) 200 2.789× 10−10 37.105

[40, 50) 40 3.972× 10−3 7.554 [250, 300) 250 7.248× 10−11 45.546

[50, 60) 50 1.057× 10−3 8.382 [300, 350) 300 2.418× 10−11 53.628

[60, 70) 60 3.206× 10−4 7.714 [350, 400) 350 9.518× 10−12 53.298

[70, 80) 70 8.770× 10−5 6.549 [400, 450) 400 3.725× 10−12 58.515

[80, 90) 80 1.905× 10−5 5.799 [450, 500) 450 1.585× 10−12 60.828

[90, 100) 90 3.396× 10−6 5.382 [500, 600) 500 6.967× 10−13 63.822

[100, 110) 100 5.297× 10−7 5.877 [600, 700) 600 1.454× 10−13 71.835

[110, 120) 110 9.661× 10−8 7.263 [700, 800) 700 3.614× 10−14 88.667

[120, 130) 120 2.438× 10−8 9.473 [800, 900) 800 1.170× 10−14 124.636

[130, 140) 130 8.484× 10−9 12.636 [900, 1000) 900 5.245× 10−15 181.065

[140, 150) 140 3.845× 10−9 16.149 (1000,∞) 1000 3.019× 10−15 268.000

For later use, the partial derivatives of the acceleration due to atmospheric drag with respect to the

velocity vector, using (2.2), are given by [35]:

∂r̈drag
∂ṙ

= −1

2
CD

A⊥

m
ρatm

(
ṙrelṙ

T
rel

ṙrel
+ ṙrelI3

)
. (2.10)

The partial derivatives concerning the position involve a direct term describing the atmospheric density
2Scale height is the fractional change in density with height. It can be useful in determining numerical partial derivatives. [8]
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variation as well as a minor contribution resulting from the changing atmospheric wind velocity [35]:

∂r̈drag
∂r

= −1

2
CD

A⊥

m
ṙrelṙrel

∂ρatm
∂r

− 1

2
CD

A⊥

m
ρatm

(
ṙrelṙ

T
rel

ṙrel
+ ṙrelI3

)
∂ṙrel
∂r

, (2.11)

where
∂ρatm
∂r

= −ρ0
H

exp

(
−h− h0

H

)
∂r

∂r
= −ρ0

H
exp

(
−h− h0

H

)
rT

r
(2.12)

and

∂ṙrel
∂r

= − ∂

∂r
(ω⊕ × r) = − ∂

∂r




0 −ω⊕ 0

ω⊕ 0 0

0 0 0

 r

 =


0 ω⊕ 0

−ω⊕ 0 0

0 0 0

 . (2.13)

2.3 Estimation Algorithms for Orbit Determination

This work will focus on the specific class of sequential methods for OD. These methods are forward-

time recursions that repeat patterns of state prediction (orbit propagation) and measurement updates

and are typically associated with real-time applications [6].

So, to effectively integrate measurements with a dynamic model for precise OD using relative sensing

and non-linear dynamics, a filtering method like the EKF is essential. Moreover, to achieve a completely

distributed system, it is necessary to enhance these estimates through mutual communication among

spacecraft in the same formation. This can be accomplished by using consensus or diffusion strategies.

2.3.1 Extended Kalman Filter

The classic KF is the optimal recursive estimation algorithm that minimizes the expected value of

the squared norm of the estimation error for linear dynamic system under Gaussian perturbations [41]

and EKF corresponds to an extension (and approximation) of the KF for nonlinear systems, which is the

case of satellite trajectories.

A nonlinear discrete-time system with no external actuation will be first considered in which the

dynamics and observation models are respectively

xk+1 = f(xk) +w, (2.14)

yk = h(xk) + v, (2.15)

where w and v are their respective zero-mean white Gaussian noise components with covariance ma-

trices E
[
wwT

]
= Q and E

[
vvT

]
= R.

Given a set of system measurements Y1:k = {y1, . . . ,yk}, the objective of the filter is to derive a

refined estimate of the system’s state by integrating these measurements with the dynamic propagation

of the state vector. Unlike the standard KF, which computes the conditional mean of the Probability

Density Function (PDF) of xk given Y1:k, in the presence of nonlinear dynamics, these conditional PDFs

cease to be Gaussian. This alteration introduces significant computational challenges in propagating
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the entire PDF. The EKF addresses this issue by offering an approximation of the optimal estimate. It

achieves this by linearizing the system’s nonlinearities around the most recent state estimate. The EKF

process involves linearization of the sequentially-predicted and filtered state estimates, as outlined in

Algorithm 2.1.

Algorithm 2.1 Extended Kalman Filter. [41]

Require: Prior state x̂k and covariance Pk estimates obtained in the previous temporal step given

observations up to, Y1:k, that will be corrected using the observation yk+1 of the current time step.

Ensure: Novel state x̂k+1 and covariance Pk+1 estimates.

Algorithm: EKF(x̂k,Pk,yk+1) return x̂k+1, Pk+1

1: x̂k+1|k = f (x̂k) , Fk = df(x̂k)
dx and Hk+1 =

dh(x̂k+1|k)
dx ▷ Prediction:

2: Pk+1|k = FkPkF
T
k +Q

3: Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 +R

)−1
▷ Kalman Gain

4: x̂k+1 = x̂k+1|k +Kk+1

[
yk+1 − h

(
x̂k+1|k

)]
▷ Correction:

5: Pk+1 = (I−Kk+1Hk+1)Pk+1|k

6: return x̂k+1, Pk+1

In this algorithm, Pk+1|k and Pk+1 represent the a priori and novel covariance matrices, respec-

tively. Furthermore, Fk = df(x̂k)
dx and Hk+1 =

dh(x̂k+1|k)
dx correspond to the Jacobians of the dynamics

and measurement models, respectively. It is crucial to acknowledge that the EKF is not an optimal

filter; it is based on a series of approximations. These approximations become particularly significant

when the dynamic model is highly nonlinear, and the linearization around the previous estimate does not

provide an accurate representation. Consequently, unlike the KF, the EKF might diverge if the succes-

sive linearizations do not adequately approximate the nonlinear model across all associated uncertainty

domains.

2.3.2 Consider Covariance

Parameter errors in dynamic and measurement models of dynamic systems can result in poor state

estimates when using a traditional KF structure. In dealing with these parameter errors it is possible to: 1)

Ignore them completely; 2) Add the parameters as additional states to be estimated; or 3) “Consider” the

error in the state covariance matrix by introducing additional parameter covariance matrices. To consider

errors means to not estimate them directly, but instead update the state estimates and covariance based

on an estimated error covariance. [42]

The consider covariance analysis technique helps evaluate the impact of omitting these unknown

or potentially inaccurately modeled parameters on the state estimate’s accuracy. This approach offers

a more realistic assessment of the system’s accuracy without the additional computational burden of

including these parameters in the state model. In order to implement this, (2.14) and (2.15) need to be
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modified to include the consider parameters ck as follows:

xk+1 = fx(xk) + fc(ck) +w, (2.16)

yk = hx(xk) + hc(ck) + v. (2.17)

Consider the augmented state
[
xT cT

]T
. Following this notation, the augmented covariance ma-

trices, dynamic and measurement models Jacobians and augmented gain are

P =

Pxx Pxc

Pcx Pcc

 , Q =

Q 0

0 0

 , R = R, F =

Fx Fc

0 I

 , H =
[
Hx Hc

]
, K =

Kx

0

 .

(2.18)

Since the consider parameters are not updated, the bottom right sub-Jacobian of F corresponds to the

identity matrix and K is no longer the Kalman gain because some values were replaced with zeros. As a

consequence, the general formula for the covariance update stage (see line 5 from Algorithm 2.1) needs

to be remodeled with the Joseph form, which is a more general form of the covariance update equation.

The Joseph form is given by [43]:

Pk+1 ≜ (I−KkHk)Pk+1|k (I−KkHk)
T
+KkRKT

k . (2.19)

For implementation purposes, it is convenient to not create the augmented state, but instead maintain

the consider parameter as an external variable and store both Pxx and Pxc separately with separate

update equations. Therefore, the general Consider Covariance Extended Kalman Filter (CCEKF) imple-

mentation can be found in Algorithm 2.2. The reader can find this algorithm by inputting the matrices

(2.18) into the equations (2.19), and also in lines 2 and 3 of Algorithm 2.1.

Algorithm 2.2 Consider Covariance Extended Kalman Filter. [42, 44]

Require: Prior state x̂k and covariance matrices {Pxx
k ,Pxc

k } estimates obtained in the previous tem-

poral step given observations up to, Y1:k, that will be corrected using the observation yk+1 of the

current time step and the estimates
{
ĉk,P

cc
k , ĉk+1,P

cc
k+1

}
externally computed.

Ensure: Novel state x̂k+1 and covariance
{
Pxx

k+1,P
xc
k+1

}
estimates.

Algorithm: CCEKF
(
x̂k, ĉk, ĉk+1,P

xx
k ,Pxc

k ,Pcc
k ,Pcc

k+1,yk+1

)
return x̂k+1, Pxx

k+1, Pxc
k+1

1: x̂k+1|k = fx (x̂k) + fc (ĉk) , Fx
k = dfx(x̂k)

dx , Fc
k = dfc(ĉk)

dc ▷ Prediction:

2: Pxx
k+1|k = Fx

kP
xx
k (Fx

k)
T
+ Fc

kP
cx
k (Fx

k)
T
+ Fx

kP
xc
k (Fc

k)
T
+ Fc

kP
cc
k (Fc

k)
T
+Q

3: Pxc
k+1|k = Fx

kP
xc
k + Fc

kP
cc
k , Pcx

k+1|k =
(
Pxc

k+1|k

)T

4: Kx
k+1 =

[
Pxx

k+1|k
(
Hx

k+1

)T
+Pxc

k+1|k
(
Hc

k+1

)T ]× ▷ Kalman Gain

×
[
Hx

k+1P
xx
k+1|k

(
Hx

k+1

)T
+Hc

k+1P
cx
k+1|k

(
Hx

k+1

)T
+Hx

k+1P
xc
k+1|k

(
Hc

k+1

)T
+Hc

k+1P
cc
k+1

(
Hc

k+1

)T
+R

]−1

5: x̂k+1 = x̂k+1|k +Kx
k+1

[
yk+1 − hx

(
x̂k+1|k

)
− hc (ĉk+1)

]
▷ Correction:

6: Pxx
k+1 =

(
I−Kx

k+1H
x
k+1

)
Pxx

k+1|k −Kx
k+1H

c
k+1P

cx
k+1|k, Hx

k+1 =
dhx(x̂k+1|k)

dx

7: Pxc
k+1 =

(
I−Kx

k+1H
x
k+1

)
Pxc

k+1|k −Kx
k+1H

c
k+1P

cc
k+1, Hc

k+1 = dhc(ĉk+1)
dc

8: return x̂k+1, Pxx
k+1, Pxc

k+1
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In this estimation tool, it is assumed that the consider parameters are constant throughout one it-

eration in the sense that they will not be estimated and that their a priori estimated and associated

covariance matrix is known. In conclusion, a consider covariance implementation in a filtering proce-

dure attempts to quantify the effects of [44]: 1) Non-estimated parameters, c, whose uncertainty would

otherwise be neglected in the estimation procedure; 2) Incorrect a priori covariance for the a priori

estimate of x; 3) Incorrect a priori covariance for the measurement noise.

2.3.3 Consensus Filter

Consensus filtering has become a cornerstone within the realm of robotics for enabling a group of

agents to converge to a global consensus estimate. The integration of the Consensus Filter (CF) with

navigational systems is pivotal for the decentralization of formations and computational power distribu-

tion, empowering individual robots to process and share their estimations with neighboring agents.

The attainment of a consensus state typically unfolds through iterative average consensus methods.

During these iterations, agents engage in local averaging processes on a specified state. A seminal

strategy for combining the CF with the KF, mindful of communication constraints, involves the syn-

chronization of state estimates by comparing the i-th agent’s state prediction x̂
(i)
k+1 with those of its

in-neighbors ∀j ∈ Ni : x̂
(j)
k+1|k, as [17, 26]:

x̂
(i)
k+1 = x̂

(i)
k+1|k +K

(i)
k+1

[
y
(i)
k+1 − hi

(
x̂
(i)
k+1|k

)]
+ γ

P
(i)
k+1|k

1 +
∥∥∥P(i)

k+1|k

∥∥∥
F

∑
j∈Ni

(
x̂
(j)
k+1|k − x̂

(i)
k+1|k

)
, (2.20)

thus honing a more refined state estimate x̂
(i)
k+1. Here, Ni denotes the in-neighborhood for the i-th node,

that is, all the node which can undirectly communicate with the latter, ∥ · ∥F symbolizes the Frobenius

norm, while γ > 0 represents a user-defined constant that indicates the degree of reliance on the

consensus-based estimate.

This rudimentary CF implementation is recognized as a less-than-ideal solution, heavily reliant on

approximations within covariance update protocols, specifically concerning the intricacies associated

with solving Riccati equations. This method has subsequently been superseded by a CI strategy [26].

Through recurrent consensus cycles, agents collectively converge towards a locally averaged consensus

state [16], a topic that will receive further elucidation in Chapter 3.

2.3.4 Diffusion Techniques

Adaptive networks consist of a collection of spatially distributed nodes that are linked together

through a topology and that cooperate through local interactions. Adaptive networks are well-suited

to perform decentralized information processing and inference tasks and to model complex and self-

organized behavior encountered in biological systems.

For instance, we can identify two main categories of fully decentralized methods: consensus strate-

gies and diffusion strategies. Original implementations of the consensus strategy relied on the use of two

timescales: one timescale for the collection of measurements across the nodes and another timescale
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to iterate sufficiently enough over the collected data to attain agreement before the process is repeated.

Unfortunately, two timescale implementations hinder the ability to perform real-time recursive estimation

and adaptation when measurement data keeps streaming in and the network is of high complexity. For

this reason, in this subsection, we focus instead on consensus implementations that operate in a sin-

gle timescale. Such implementations appear in several recent works and are largely motivated by the

procedure developed earlier for the solution of distributed optimization problems. [45]

The main motivation for the introduction of diffusion strategies in this work was the desire to develop

distributed schemes that can respond in real-time to the continuous streaming of data at the nodes

by operating over a single timescale. Since their inception, diffusion strategies have been applied to

model various forms of complex behavior encountered in nature; they have also been adopted to solve

distributed optimization problems advantageously; and have been studied under varied conditions. Dif-

fusion strategies are inherently single-timescale implementations and are therefore naturally amenable

to real-time and recursive implementations. It turns out that the dynamics of the consensus and diffu-

sion strategies differ in important ways, which in turn impact the mean-square behavior of the respective

networks in a fundamental manner. [45]

The best known diffusion strategies are Adapt Then Combine (ATC) and Combine Then Adapt (CTA)

strategies [30], both represented by the following expressions

ψ
(i)
k+1 = x̂

(i)
k+1|k +

∑
j∈Ni

K
(j)
k+1

[
y
(j)
k+1 − hj

(
x̂
(i)
k+1|k

)]
x̂
(i)
k+1 =

∑
j∈Ni

aijψ
(j)
k+1 ATC

ψ
(i)
k+1 =

∑
j∈Ni

aijx̂
(j)
k+1|k CTA

x̂
(i)
k+1 = ψ

(i)
k+1 +

∑
j∈Ni

K
(j)
k+1

[
y
(j)
k+1 − hj

(
ψ

(i)
k+1

)]
where aij are the elements of the combination matrix A, which sums to one in every row. The ATC

strategy consists of an incremental step followed by a diffusion step, while the CTA strategy consists of

the reverse.

The analysis in [45] confirms that under constant step sizes, diffusion strategies allow information to

diffuse more thoroughly through networks and this property has a favorable effect on the evolution of

the network. It shows that diffusion networks converge faster and reach a lower mean-square deviation

than consensus networks, and their mean-square stability is insensitive to the choice of the combination

weights. In comparison, and surprisingly, it also shows that consensus networks can become unstable

even if all the individual nodes are stable and able to solve estimation tasks on their own. In other words,

the learning curve of a cooperative consensus network can diverge even if the learning curves for the

non-cooperative individual nodes converge. When this occurs, cooperation over the network leads to

a catastrophic failure of the estimation task. This behavior does not occur for diffusion networks: the

stability of the individual nodes is sufficient to ensure the stability of the diffusion network regardless

of the combination weights. The analysis also suggests that diffusion strategies provide a proper way

to enforce cooperation over networks; their operation is such that diffusion networks will always remain

stable irrespective of the combination topology.

Due to time constraints, these strategies haven’t been included in this report. However, they will be

further explored in the upcoming Master’s Thesis document.

19



Chapter 3

Implementation

Exploration is wired into our brains. If we can see the horizon, we want to know what’s beyond.

Buzz Aldrin

The objective of this chapter is to state the problem to solve and explain the implementation of the

algorithms presented in the previous Chapter, how to specifically apply them to this problem and some

particular features they have. In the following sections, the dynamics and observations modeling are

presented for the various types of spacecraft. The algorithms presented here will be used in Chapter 4

to perform the simulations.

3.1 Problem Statement
In this work, we will consider an LEO-satellite FF that follows a chief/deputy coordination approach,

where one spacecraft (the chief) follows a reference orbit, while others (deputies) adjust their positions

relative to the chief. This network can similarly be represented by an undirected communication graph

of nodes and arcs G = (N ,A), where it is assumed that each satellite in the network has processing

and communication capabilities: each satellite has the ability to process their state estimations as well

as exchanging information with their in-neighboring spacecraft. Following a chief/deputy topology, the

set of nodes can also be represented by N = C ∪ D, where C is the set of chiefs that have access to

GPS measurements and only transmit their estimates to their in-neighboring deputies. The deputies are

represented by the set D and only have access to range measurements and communication between all

nodes. A ⊆ N ×N is the set of arcs (connections) between nodes in the formation such that (i, j) ∈ A

if node j can receive data from node i. The in-neighborhood of the i-th satellite is represented by

Ni ≜ {j : (j, i) ∈ A}.

The goal here is to accurately estimate the state vector for every satellite in the FF in an ECI frame,

that is, ∀i ∈ N : xi =
[
rTi ṙTi

]T
, the concatenation of spatial position and velocity vectors, which has

dim(xi) = 6× 1, using the algorithms introduced in Section 2.3.

3.1.1 Dynamics Modelling

As it was previously mentioned in Chapter 2, for LEO orbits the main contributions to the acceleration

of the spacecraft are the Earth’s gravitational attraction (2.1), and the J2 zonal harmonic for the Earth’s

oblateness (2.6) and atmospheric drag (2.8) orbital perturbations.

Therefore, for the i-th satellite in the FF, the dynamics of the spacecraft can be described by the

following:

ẋi = f(xi) =

 ṙi

r̈
(i)
grav + r̈

(i)
J2

+ r̈
(i)
drag

 (3.1)
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where all satellites are considered to be identical and therefore have the same dynamical model. Noting

that the dynamics are defined in the continuous domain, numerically integrating (3.1) from the past time

step tk to the current time step tk+1 (time step ∆t = tk+1 − tk) gives an a priori state estimate through

[46]

x̂
(i)
k+1|k = x̂

(i)
k +

∫ tk+1

tk

f
(
x̂
(i)
k

)
dt (3.2)

which can be solved by a numerical integration method like the classical Runge-Kutta.

Due to the errors in modeling the true dynamics of the system, this propagation will accordingly

introduce some error into the state estimate, which must be quantified in the error covariance matrix

P
(i)
k+1. Contrasting the nonlinear propagation of the state estimate, the error covariance is propagated

using a linearized version of the dynamics. The process of linearization involves evaluating the Jacobian

of f(·) at the best state estimate from the previous time step, namely the a posteriori state estimate x̂
(i)
k

whereby the Jacobian is

F
(i)
k =

df
(
x̂
(i)
k

)
dxi

, where
df(xi)

dxi
=

 03×3 I3
∂r̈(i)grav

∂ri
+

∂r̈
(i)
J2

∂ri
+

∂r̈
(i)
drag

∂ri

∂r̈
(i)
drag

∂ṙi

 , (3.3)

which can be analytically obtained from the sets of equations {(2.3), (2.7), (2.11)} for position partial

derivatives and (2.10) for velocity partial derivatives.

The classic Runge-Kutta (RK4) method [35] can be used to perform the integration from the previous

iteration to the next with an intermediate propagation time step. The same procedure was performed

to take continuous time jacobians and convert them to RK4 discrete jacobians for the dynamics model,

which can be seen in Algorithm 3.1, where the i indentificator was dropped for simplification.

Algorithm 3.1 Runge-Kutta (4th order). [35]

Require: Initial state vector xk, the system’s dynamics function f(·) and the time step ∆t.

Ensure: Next state vector xk+1 and the Jacobian matrix Fk.

Algorithm: RK4(xk, f(·),∆t) return xk+1, Fk

1: k1 = f (xk)

2: k2 = f
(
xk + ∆t

2 k1

)
3: k3 = f

(
xk + ∆t

2 k2

)
4: k4 = f (xk +∆tk3)

5: xk+1 = xk + ∆t
6 (k1 + 2k2 + 2k3 + k4) ▷ New state vector

6: dk1

dxk
= df(xk)

dxk
▷ The following four derivatives we computed using the chain rule

7: dk2

dxk
=

df(xk+
∆t
2 k1)

dxk

(
I6 +

∆t
2

dk1

dxk

)
8: dk3

dxk
=

df(xk+
∆t
2 k2)

dxk

(
I6 +

∆t
2

dk2

dxk

)
9: dk4

dxk
= df(xk+∆tk3)

dxk

(
I6 +∆t dk3

dxk

)
10: Fk = I6 +

∆t
6

(
dk1

dxk
+ 2 dk2

dxk
+ 2 dk3

dxk
+ dk4

dxk

)
▷ Dynamics Jacobian matrix

11: return xk+1, Fk
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3.1.2 Observations Modelling

For chiefs, the observations are given by GPS measurements, which is the position of the spacecraft

in the ECI frame as follows:

∀i ∈ C : yi = hC(xi) =


xi

yi

zi

 , (3.4)

the respective Jacobian matrix is given by

∀i ∈ C : H
(i)
k+1 =

dhC

(
x̂
(i)
k+1|k

)
dxi

=
[
I3 03×3

]
. (3.5)

On the contrary, for deputies, the observations are given by range measurements between them and

their in-neighbors. Therefore, the observations model for deputies is given by:

∀i ∈ D,∀j ∈ Ni : yij = hD(xi,xj) = ∥ri − rj∥2, (3.6)

and the respective Jacobian matrix is given by

∀i ∈ D,∀j ∈ Ni : H
(i)
k+1 =

∂hD

(
x̂
(i)
k+1|k, x̂

(j)
k+1|k

)
∂xi

, where
∂hD(xi,xj)

∂xi
=

[
rTi −rTj

∥ri−rj∥2
01×3

]
. (3.7)

Moreover, the partial derivative of a deputy’s observation model with respect to the state of any of its

in-neighbors is given by
∂hD(xi,xj)

∂xj
=

[
− rTi −rTj

∥ri−rj∥2
01×3,

]
(3.8)

∀i ∈ D and ∀j ∈ Ni.

3.2 Fully Centralized Extended Kalman Filter

For this solution, there is one central entity estimating one big state vector for all the FF using Al-

gorithm 2.1. This state vector is the concatenation of the state vectors of all the spacecraft in the FF,

that is, x =
[
xT
1 xT

2 · · · xT
N

]T
, where N is the number of spacecraft in the FF, in other words, the

cardinality of N . The state vector has dim(x) = 6N × 1.

Firstly, the predicted state vector is obtained by applying Algorithm 3.1 N times, one for each space-

craft in the FF, followed by vertically merging these vectors. Similarly, the dynamics Jacobian is calcu-

lated using the same approach. However, instead of a vertical concatenation, it is assembled diagonally,

resulting in a sparse structure. In this case, the measurement model makes use of (3.8), since the state

is the concatenation of the state vectors of all the spacecraft in the FF.
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3.3 Consensus Extended Kalman Filter

Algorithm 3.2 performs the estimation of the information matrix Ω
(i)
k+1 and vector q

(i)
k for the i-th

spacecraft using the HCMCI architecture. These variables relate to the inverse of the covariance ma-

trix and are specifically used in distributed problems as they decrease the complexity of measurement

processing. This reduction stems from the additive nature of the information form; it allows for new mea-

surements to be incorporated through straightforward addition. This feature is especially beneficial for

efficiently recursively processing multiple sets of measurements. In this solution, each spacecraft has

its estimation of the formation state and performs L consensus rounds to improve this estimate from the

information between the different formation spacecraft.

Algorithm 3.2 Hybrid Consensus on Measurements and Consensus on Information. [16]

Require: Prior state x̂
(i)
k and information matrix Ω

(i)
k estimates, ∀i ∈ N obtained in the previous tempo-

ral step given observations up to time k, that will be corrected using the observation y
(i)
k+1.

Ensure: Novel state x̂
(i)
k+1 and information matrix Ω

(i)
k+1 estimates, ∀i ∈ N .

Algorithm: HCMCI
(
x̂
(i)
k ,y

(i)
k+1,∀i ∈ N

)
return x̂

(i)
k+1,∀i ∈ N

1: for i ∈ N do

▷ Prediction

2: x̂
(i)
k+1|k = f

(
x̂
(i)
k

)
, F

(i)
k =

df
(
x̂
(i)
k

)
dx and H

(i)
k+1 =

dhi

(
x̂
(i)

k+1|k

)
dx

3: Ω
(i)
k+1|k = Q−1

i −Q−1
i F

(i)
k

[
Ω

(i)
k +

(
F

(i)
k

)T

Q−1
i F

(i)
k

]−1 (
F

(i)
k

)T

Q−1
i

4: q
(i)
k+1|k = Ω

(i)
k+1|kx̂

(i)
k+1|k

5: δq
(i)
k+1 =

(
H

(i)
k+1

)T

R−1
i

[
y
(i)
k+1 − hi

(
x̂
(i)
k+1|k

)
+H

(i)
k+1x̂

(i)
k+1|k

]
6: δΩ

(i)
k+1 =

(
H

(i)
k+1

)T

R−1
i H

(i)
k+1

▷ Consensus

7: δq
(i)
k+1(0) = δq

(i)
k+1, δΩ

(i)
k+1(0) = δΩ

(i)
k+1

8: q
(i)
k+1|k(0) = q

(i)
k+1|k, Ω

(i)
k+1|k(0) = Ω

(i)
k+1|k

9: for ℓ = 0, 1, . . . , L− 1 do

10: δq
(i)
k+1(ℓ+ 1) =

∑
j∈Ni

πi,jδq
(j)
k+1(ℓ), δΩ

(i)
k+1(ℓ+ 1) =

∑
j∈Ni

πi,jδΩ
(j)
k+1(ℓ)

11: q
(i)
k+1|k(ℓ+ 1) =

∑
j∈Ni

πi,jq
(j)
k+1|k(ℓ), Ω

(i)
k+1|k(ℓ+ 1) =

∑
j∈Ni

πi,jΩ
(j)
k+1|k(ℓ)

12: end for

▷ Correction

13: q
(i)
k+1 = q

(i)
k+1|k(L) + γ

(i)
k+1δq

(i)
k+1(L)

14: Ω
(i)
k+1 = Ω

(i)
k+1|k(L) + γ

(i)
k+1δΩ

(i)
k+1(L)

15: x̂
(i)
k+1 =

(
Ω

(i)
k+1

)−1

q
(i)
k+1

16: end for

17: return x̂
(i)
k+1,Ω

(i)
k+1,∀i ∈ N

In consensus filtering, there is no direct need for a fully connected graph, the consensus rounds

correspond to L cycles where the satellites exchange information between them to reach a global con-
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sensus on the state. The objective is that if L tends to infinity the filter converges to the results of the

centralized approach.

There are two types of consensus weights, γ(i)
k+1 and πi,j , either one can be optimized to improve

accuracy. The first weight is introduced to counteract the possible underweighting of novel information.

Kamal [47] proposed γ
(i)
k+1 = N , which provides a solution for the decentralized algorithm to converge

to a centralized solution when L tends to infinity. The second consensus weight defines the importance

of each spacecraft in the consensus rounds to the final estimation. The Metropolis Weights [48] provide

convergence to the consensus average, where each arc’s weight corresponds to

πi,j =


1

1+max[deg(i),deg(j)] , if (i, j) ∈ A

1−
∑

j∈Ni
πi,j , if i = j

0, otherwise

, (3.9)

where deg(i) is the cardinality of Ni.

3.4 Consider Covariance Extended Kalman Filter

For this solution, the chiefs just estimate their state only resorting to their GPS measurements, using

the Algorithm 2.1. On the other hand, the deputies filter their state, which is the concatenation of

their state and the states of their in-neighbor deputies, using the Algorithm 3.3 after relative range

measurements to their in-neighbor spacecraft have been taken and after collecting the chiefs’ state,

the consider parameter, and covariance matrix estimates. Since the dynamics of the chief do not have

an impact on the deputies’ dynamics, the function fc(·) as well as the Jacobian Fc
k are zero.

Algorithm 3.3 Deputies CCEKF

Require: Prior deputies state x̂k and covariance matrices {Pxx
k ,Pxc

k } estimates obtained in the previ-

ous temporal step given observations up to, YD
1:k, that will be corrected using the observation yk+1

of the current time step and the consider parameter estimates externally computed by the chiefs.

Ensure: Novel deputies state x̂D
k+1 and covariance

{
Pxx

k+1,P
xc
k+1

}
estimates.

Algorithm: CCEKFD
(
x̂D
k ,P

xx
k ,Pxc

k ,yD
k+1

)
return x̂D

k+1, Pxx
k+1, Pxc

k+1

1: x̂D
k+1|k = fx

(
x̂D
k

)
, Fx

k =
dfx(x̂D

k )
dx ▷ Prediction:

2: Pxx
k+1|k = Fx

kP
xx
k (Fx

k)
T
+Q

3: Pxc
k+1|k = Fx

kP
xc
k , Pcx

k+1|k =
(
Pxc

k+1|k

)T

4: Get ĉk+1 = x̂C
k+1 and Pcc

k+1 = PC
k+1 from chief filter. ▷ Communication with the chiefs.

5: Kx
k+1 = {exactly as in Algorithm 2.2} ▷ Kalman Gain

6: x̂D
k+1 = x̂D

k+1|k +Kx
k+1

[
yD
k+1 − hx

(
x̂D
k+1|k

)
− hc (ĉk+1)

]
▷ Correction:

7: Pxx
k+1 =

(
I−Kx

k+1H
x
k+1

)
Pxx

k+1|k −Kx
k+1H

c
k+1P

cx
k+1|k, Hx

k+1 =
dhx(x̂D

k+1|k)
dx

8: Pxc
k+1 =

(
I−Kx

k+1H
x
k+1

)
Pxc

k+1|k −Kx
k+1H

c
k+1P

cc
k+1, Hc

k+1 = dhc(ĉk+1)
dc

9: return x̂D
k+1, Pxx

k+1, Pxc
k+1

24



Chapter 4

Preliminary Results

Mystery creates wonder and wonder is the basis of man’s desire to understand.

Neil Armstrong

Two distinct formation configurations will be evaluated. Formation I, inspired by the prior V-R3x mis-

sion, features spacecraft trajectories detailed in Table 4.1 and Figure 4.1a, which maintain a maximum

relative distance of approximately 10 km. Formation II, as showcased in Table 4.2 and Figure 4.1b,

involves orbits distinguished by markedly varied classical orbital elements. This work assumes uninter-

rupted communication among all satellites, regardless of their actual visibility or range limitations. These

considerations will be addressed in future work.

Table 4.1: Classical Orbital Elements for the
Formation I.

Satellite i [◦] Ω [◦] ϖ [◦] a [km] e θ0 [◦]

Chief 1 (C1) 97.49 0 0 6903.50 0.0011 0

Deputy 1 (D1) 97.49 0 9.23 6903.98 0.0012 350.76

Deputy 2 (D2) 97.47 0 327.27 6902.67 0.0012 32.72

Deputy 3 (D3) 97.52 0 330.47 6904.34 0.0014 29.52

Table 4.2: Classical Orbital Elements for the Forma-
tion II.

Satellite i [◦] Ω [◦] ϖ [◦] a [km] e θ0 [◦]

Chief 1 (C1) 97.79 1.5× 10−5 303.34 6978 2.6× 10−6 157.36

Deputy 1 (D1) 97.26 272.80 281.15 6978 6.48× 10−3 269.52

Deputy 2 (D2) 97.79 149.99 104.07 6978 6.6× 10−5 206.00

Deputy 3 (D3) 97.79 70 257.43 6978 1.3× 10−5 332.57

(a) Formation I. (b) Formation II.

Figure 4.1: Plot of each simulated satellite formation at t = 50min after orbital initial conditions.

Simulations will serve to verify the feasibility of the three proposed solutions for small-satellite local-

ization systems. These simulations will employ the Monte-Carlo approach, utilizing M = 100 samples.

In each simulation, the initial position estimates will be randomly offset from the actual starting location,

varying in direction for every run. Additionally, a random velocity deviation, corresponding to the state
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uncertainty of this component, will be incorporated. The duration of each simulation will approximate a

real-time span of about T = 6h, which translates to roughly four to five complete orbital revolutions.

4.1 Parameters and Metrics

Each formation will consist of N = 4 spacecraft, 1 chief and 3 deputies, modeled by CD = 2.22 drag

coefficient, a mass of m = 1kg and a frontal area of A⊥ = 1 cm2, and will be simulated for T = 360min,

with a time step of ∆t = 60 s, in M = 100 Monte-Carlo runs. The Earth was simulated using the following

parameters: J2 = 0.00108262545 for its oblateness (second zonal harmonic), R⊕ = 6378.1363m as its

radius and µ⊕ = 3.986× 105 km3 s−2 as its gravitational parameter.

The chosen process and measurement noise covariance matrices, respectively Q = diag
(
q2x, q

2
y, q

2
z ,

q2ẋ, q
2
ẏ, q

2
ż

)
and RGPS = diag

(
r2GPS, r

2
GPS, r

2
GPS

)
or R↔ = diag

(
r2↔, r2↔, r2↔

)
(each deputy takes N−1 = 3

relative-range measurements), are represented in the Table 4.3.

Table 4.3: Process and measurement noise covariance matrix entries (based on [27]).

Standard Deviation C1 D1,D2,D3 GPS Relative-range

qx, qy, qz [km] 1× 10−4 1× 10−3

qẋ, qẏ, qż [km s−1] 1× 10−5 1× 10−5

rGPS [km] 1× 10−4

r↔ [km] 1× 10−3

For the following simulations, the initial state estimate is set to the true state plus random fluctuations.

This initial variation is characterized by a standard deviation of 100m for position and 1m s−1 for velocity.

The initial state’s covariance is a diagonal matrix, where the diagonal elements are the squared values

of these initial deviations.

The performance metric used will be the mean Root-Mean-Square Error (RMSE) of the position

estimates for each Monte-Carlo simulation, mathematically defined as

ε̄
(i)
RMSE =

1

M

M∑
m=1

ε
(i)
RMSEm

, ε
(i)
RMSEm

=

√√√√ 1

T + 1− n

N∑
k=n

(
ε
(i)
k,m

)2

, ε
(i)
k,m =

∥∥∥r̂(i)k,m − r
(i)
k,m

∥∥∥
2

(4.1)

where a burn-in period of n = 300 time steps was used.

4.2 Accuracy Analysis

The set of simulations was performed for each formation, with each filter, and the results for the

average absolute deviation and average RMSE for each satellite are presented in Figures 4.2 and 4.3

and Table 4.4, respectively.

We observed that all algorithms successfully converged for each spacecraft, despite being based on

linear approximations of a highly non-linear model. If divergence had occurred in Formation I, it might

have been attributable to the presence of ambiguous orbits. In Formation I, the simulation starts immedi-
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Figure 4.2: Average position absolute error for Formation I for M = 100 Monte-Carlo simulations.

Figure 4.3: Average position absolute error for Formation II for M = 100 Monte-Carlo simulations.

27



Table 4.4: Average RMSE for the two formations over M = 100 Monte-Carlo simulations.

Formation Filter ε̄C1

RMSE [m] ε̄D1

RMSE [m] ε̄D2

RMSE [m] ε̄D3

RMSE [m]

FCEKF 0.169 13.983 13.925 16.607

I HCMCI 0.172 21.243 22.515 29.403

CCEKF 0.169 13.986 14.249 16.369

FCEKF 0.170 7.590 6.138 7.378

II HCMCI 0.173 10.183 8.152 9.732

CCEKF 0.168 7.630 6.232 7.400

ately after the spacecraft leave the transportation container. This phase is marked by limited observ-

ability, as the satellites begin in the same position. Their only initial differences are in angular and linear

velocities, influenced by their method of container egress. However, the convergence in an ambiguous

orbit situation can be explained in various ways. Notably, maintaining a very tight formation with minimal

relative distance, and starting from nearly identical absolute positions, could justify this occurrence. In

our case, this did not apply.

It was evident that the FCEKF outperformed other methods in terms of convergence speed and

RMSE. This result was anticipated, given that the FCEKF accounts for the cross-correlations between all

spacecraft within the same model. All algorithms demonstrated comparable accuracy, with the CCEKF

ranking as the second-best.

The conducted accuracy tests revealed that the algorithms are more effective in formations with

varied classical orbital elements. The results were notably better for Formation II compared to Formation

I. Beyond accuracy, when comparing the CCEKF with the HCMCI algorithm, the primary advantage lies

in communication efficiencies, which will be addressed in the future.
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[20] S. S. Stanković, M. S. Stankovic, and D. M. Stipanovic. Decentralized parameter estimation by consensus
based stochastic approximation. IEEE Transactions on Automatic Control, 56(3):531–543, 2010.

[21] D. Dumitriu, S. Marques, P. U. Lima, and B. Udrea. Decentralized, low-communication state estimation and
optimal guidance of formation flying spacecraft. In 16th AAS/AIAA Space Flight Mechanics Meetings, 2006.

[22] K. Matsuka, A. O. Feldman, E. S. Lupu, S.-J. Chung, and F. Y. Hadaegh. Decentralized formation pose
estimation for spacecraft swarms. Advances in Space Research, 67(11):3527–3545, 2021.

29

https://science.nasa.gov/mission/helioswarm


[23] G. Battistelli and L. Chisci. Kullback–leibler average, consensus on probability densities, and distributed state
estimation with guaranteed stability. Automatica, 50(3):707–718, 2014.

[24] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano. Consensus-based algorithms for distributed
filtering. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages 794–799. IEEE, 2012.

[25] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano. Consensus-based linear and nonlinear filtering.
IEEE Transactions on Automatic Control, 60(5):1410–1415, 2014.

[26] R. Olfati-Saber. Kalman-consensus filter: Optimality, stability, and performance. In Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
pages 7036–7042. Ieee, 2009.

[27] R. A. A. Cordeiro. A low-communication distributed state-estimation framework for satellite formations. Master’s
thesis, Instituto Superior Técnico, Nov. 2022.
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