
Optimization of a Synthetic-Aperture Radar Image
Processing Algorithm for SoC-FPGAs

Abstract—SAR image generation is done by very computa-
tionally intensive algorithms. Hence, it is a challenge to create
systems capable of real-time on-board operation. This work looks
into the optimization of one SAR image generation algorithm,
the Backprojection algorithm, which optimizes each signal indi-
vidually. The improvement of this methodology reveals that we
are able to optimize the circuit design to consume less resources
and minimize the impact on the quality of the resulting image.

Index Terms—Backprojection algorithm, SAR, wordlength
optimization, approximate computing

I. INTRODUCTION

The Backprojection (BP) algorithm is widely used for
Synthetic-Aperture Radar (SAR) image generation. With the
growing adoption of SAR for several applications, such as
monitoring traffic, crops, deforestation, natural disasters such
as earthquakes, volcanos and hurricanes, for topographic imag-
ing of planets and ocean floor, among many others [1], a
wide variety of algorithms have been developed and modified
to meet the requirements of each individual application [2].
The BP algorithm is considered the standard for high quality
images, however, it is also known for its high computational
complexity, in the order of N3, making it an inadequate choice
for real-time applications [3].

Since image processing algorithms can tolerate some pre-
cision loss or error in some of the pixels, as long as most of
the values are correct, or close enough, it is possible to make
a custom implementation of an algorithm in hardware with
smaller, and faster, arithmetic units.

In this work, the BP algorithm was studied to understand
the physical meaning of its variables, and a novel optimization
methodology to determine which variables need more preci-
sion and the ones that could be represented with less bits,
while still producing very high-quality images.

The paper is organized as follows: section VI presents re-
lated work done on hardware accelerators for the BP algorithm
and section II introduces the BP algorithm. The proposed
methodology starts with the analysis on the algorithm, pre-
sented in section III, section IV details the developed architec-
ture and section V discusses the results of the developed work,
which are compared to related work in section VI. Section VII
discusses future work and provides final remarks.

II. BACKPROJECTION ALGORITHM

The BP algorithm is based on the projection of the echoes
received by the radar which is performed for each of the image
pixels [4]. For every pulse, the contribution is given by Eq. 1.

s(m, τn) = Nfft · fftshift {ifft(S(fk, τn))} ·

· exp
(
j2πf1(m− 1)

Nfft∆f

)
(1)

where Nfft is the Fast Fourier Transform (FFT) length,
S(fk, τn) is the phase history, fk is the frequency sample per
pulse, τn is the transmission time of each pulse, f1 is the
minimum frequency for every pulse, m is the range bin and
∆f is the frequency step size. The value of each pixel, at
location r, is the sum of the interpolated value of s(m, τn),
represented in the following equation as sint(r, τn), is given
by [3]

I(r) =

Np∑
n=1

sint(r, τn) (2)

Since the calculation of each pixel is independent, the
algorithm is extremely parallelizable.

III. BP ALGORITHM OPTIMIZATION METHODOLOGY

The BP algorithm is an algorithm with high computational
complexity, O(N3), or X×Y ×P , where X is the number of
pixels in the x-axis, Y is the number of pixels in the y-axis and
P is the number of pulses. To understand how the algorithm
can be optimized, it is important to analyse it considering
different aspects. The following analysis were performed:

• precision analysis, to understand the impact of each
variable in the quality of the resulting image;

• data dependency, to reduce the number of memory trans-
fers necessary during the execution of the algorithm.

The BP algorithm implementation used in this work was
done in C programming language, and it was based on the
MATLAB implementation [3]. The C implementation of the
algorithm is presented in Listing 1. The algorithm iterates over
every pulse and every pixel, calculating the contribution of
each pulse and accumulating it in the image variable, as seen
in Equation 1.

The algorithm was implemented using double-precision
floating-point variables, because it is the best numerical rep-
resentation normally used. However, the question lies on
whether that precision is really necessary to achieve high-
quality images. The precision analysis aims to answer this
question.

Sections III-A and III-B detail the analysis performed on
the BP algorithm.



1 void backprojection()
2 {
3 // Calculate the range to every bin in the range profile (m)
4 linspace(- (float) half_nfft, ((float) half_nfft) - 1, input_data.nfft, r_vec);
5

6 for (p = 0; p < input_data.np; p++) {
7 memset(rc, 0, NFFT_DEFAULT * sizeof(struct complex_d));
8 for (i = 0; i < input_data.k; i++) {
9 // rc is filled with values, rest is 0

10 rc[i].re = input_data.phdata[p][i].re;
11 rc[i].im = input_data.phdata[p][i].im;
12 }
13

14 ifft_transform(rc, input_data.nfft, nfft_inv);
15 fftshift(rc, input_data.nfft);
16

17 for (x = 0; x < NX; x++) {
18 for (y = 0; y < NY; y++) {
19

20 x_value = (input_data.ant_x[p] - input_data.x_mat[x][y]);
21 x_dist = x_value * x_value;
22

23 y_value = (input_data.ant_y[p] - input_data.y_mat[x][y]);
24 y_dist = y_value * y_value;
25

26 z_value = (input_data.ant_z[p] - input_data.z_mat[x][y]);
27 z_dist = z_value * z_value;
28

29 dR = sqrt(x_dist + y_dist + z_dist) - input_data.r0[p];
30

31 value = pi4C * input_data.min_f[p] * dR;
32 phCorr.re = cos(value);
33 phCorr.im = sin(value);
34

35 interp_index = (int) ((dR + 2048.f * maxWr_nfft) / maxWr_nfft);
36

37 if (interp_index >= 0 && (interp_index < input_data.nfft - 1)) {
38

39 t = (dR - r_vec[interp_index]) / (r_vec[interp_index + 1] - r_vec[interp_index]);
40 interp_result.re = (1.0 - t) * rc[interp_index].re + t * rc[interp_index + 1].re;
41 interp_result.im = (1.0 - t) * rc[interp_index].im + t * rc[interp_index + 1].im;
42

43 image[x][y].re += (interp_result.re * phCorr.re - interp_result.im * phCorr.im);
44 image[x][y].im += (interp_result.re * phCorr.im + interp_result.im * phCorr.re);
45

46 }
47 }
48 }
49 }
50 }

Listing 1: BP algorithm implementation in C.

A. Precision Analysis

A precision study was performed, with the objective of
understanding what variables influence the most the quality of
the image and what variables can be represented with inferior
wordlengths.

The precision study performed on the BP algorithm con-
sisted of two steps:

• Range evaluation: provides the minimum integer bits
necessary to represent each variable.

• Fixed-point testing: each variable was represented with
the minimum integer bits necessary, as described in the
first step, and the fractional bits varied between 0 and
64 − integer bits. That is, the algorithm was executed
and an image was generated for every possible fixed-point
configuration for each variable. This was done using a
Python script that changed the configuration for each of
the variables, executed the algorithm, generated an image
and, finally, assessed the quality of the generated image.

This study provides important information regarding the
algorithm: which variables have a greater impact on the image
quality and which variables can be represented with few bits
and still render a high quality image. To evaluate the quality
of the images, Structural Similarity (SSIM) is used and values
above 0.99 are considered acceptable. Figure 1 shows the data
dependencies of the algorithm, where each node represents a
variable. Each of these variables was subjected to the precision
study. It is important to note that the precision study has more
variables than the dependency graph, since these additional
variables are auxiliary.

Figure 2 shows the image generated using the same dataset,
with one difference: the number of fractional bits in the
complex_image variable, the variable that stores the con-
tributions of each pulse. As can be observed, to obtain full
precision only 45 fractional bits are necessary, however, it
is possible to obtain an SSIM of 0.99 with 26 fractional
bits, 19 bits less. Similarly to this variable, all variables in



TABLE I: Minimum number of fractional bits necessary to
represent each variable in order to generate an image with a
SSIM of 1.0 and a SSIM of 0.99.

Variable Integer
bits

Minimum fractional
bits for

SSIM = 1.0

Minimum fractional
bits for

SSIM ≥ 0.99

ant x 14 11 10
ant y 14 11 10
ant z 14 11 11

dR 7 32 12
image 1 45 26

interp res 1 41 23
ph corr 2 25 4
ph data 1 34 14

r0 15 10 10
rc 1 41 23

r vec 7 26 7
t 2 19 2

value 16 23 3
x dist 26 14 13
y dist 26 19 0
z dist 27 16 0
x mat 7 25 5
y mat 7 23 5
z mat 1 1 0

x value 14 23 13
y value 14 21 10
z value 14 11 11

the algorithm share this feature. The SSIM values for the
complex_image variable are presented in Table II.

Table I shows the number of fractional bits each variable
needs to achieve a SSIM of 1.0 and 0.99. From the twenty-
two variables in the table, only three need over 40 fractional
bits, only two needed over 30 fractional bits, seven needed
over 20 fractional bits and only nine needed 10 fractional bits
to achieve 1.0 of SSIM. If the objective is an SSIM of over
0.99, only three variables require over 20 fractional bits, ten
variables require over 10 fractional bits and nine variables only
required under 10 fractional bits.

Given the high quality that is possible to achieve even with
considerably smaller wordlengths, it is clear the algorithm can
benefit from approximate computing. This is the key idea
of this work, reducing the precision of the data throughout
the algorithm, leading to its optimization, even with slight
degradation of the resulting image.

As previously mentioned, the precision study was applied
to all variables of the algorithm and input data. SSIM values
above 0.99 are considered acceptable, however, taking into
consideration the dependency graph in Figure 1, severely
reducing the wordlength in, for instance, ant_x would lead
to error propagation throughout the algorithm. For instance,
taking into consideration ph_corr variable, according to
Table I, the variable needs at least 25 fractional bits to generate
an image with a SSIM of 1.0, but only 4 fractional bits to
generate an image with an SSIM of 0.99. The same hap-
pens for other variables, such as ph_data, x_mat, y_mat,
among others. Choosing the smaller number of bits works
for one variable, but does not work when every variable of
the algorithm is represented by smaller wordlengths. For this

final image

complex image

interp result

rc

ph data

t

r vec

ph corr

exp

dR

x dist

ant x x mat

y dist

ant y y mat

z dist

ant z z mat

min f

Fig. 1: Data dependency graph of the BP algorithm. Each node
represents a different variable.

(a) The accumulator is represented
as a fixed-point variable in Q1.45.
Has a SSIM of 1.0.

(b) The accumulator is represented
as a fixed-point variable in Q1.26.
Has a SSIM of 0.99.

(c) The accumulator is represented
as a fixed-point variable in Q1.22.
Has a SSIM of 0.72.

Fig. 2: Images generated using the BP algorithm and the
Gotcha Volumetric SAR dataset. The accumulator of the pulse
contributions varies in the precision of the fixed-point variable.

reason, the smallest number of fractional bits that originates
an image with a SSIM of 1.0 is the criteria chosen to decide
the wordlength of each variable, reducing the error propagated.
The final wordlength configurations are presented in Table III.

B. Data Dependency Study

The BP algorithm has a complexity of X×Y ×P , where X
is the number of pixels in the x-axis, Y is the number of pixels
in the y-axis and P is the number of pulses. This algorithm
has the following input data: x_mat, y_mat, z_mat, rc,



TABLE II: Results of the precision study of the image
variable, or accumulator variable. The quality of the image is
1.0 up to 46 fractional bits and over 0.99 up to 26 fractional
bits. The chosen configuration was 45 fractional bits, the
smallest number with a SSIM value of 1.0, and a total of
46 bits.

Total Bits Integer Bits SSIM

64 – 46 1 1.0

45 – 27 1 [0.9944260789199652,
0.9999999792437367]

26 1 0.9834842368999309
25 1 0.9480179848032538
24 1 0.8616897829956542
23 1 0.7245506273387262

22 – 1 1 <= 0.6231567802348613

TABLE III: Final wordlength used for each variable used in
the implementation.

Variable Total Bits Integer Bits Fractional Bits

ant x 25 14 11
ant y 25 14 11
ant z 25 14 11
dR 39 7 28
image 46 1 45
interp res 42 1 41
ph corr 27 2 25
r0 25 15 10
rc 32 1 31
r vec 33 7 26
t 21 2 19
value 39 16 23
x dist 40 26 14
y dist 45 7 23
z dist 43 27 16
x mat 32 7 25
y mat 30 7 23
z mat 1 1 1
x value 37 14 23
y value 35 14 21
z value 25 14 11

r_vec, min_f, r0, ant_x, ant_y and ant_z. In this
study, we consider the GOTCHA input dataset [5]. The
GOTCHA dataset is a real data dataset for Spotlight SAR
with 117 pulses and 424 frequency samples per pulse, which
is used to generate a 501 × 501 image. In order to optimize
the data communication between the memory and the IP, we
analysed the loops in the algorithm [3], finding the sequence
of loops that requires less data transmissions. There are two
possible sequences, Listing 2 and Listing 3.

1 for (p = 0; p < input_data.np; p++) {
2 // ...
3 for (x = 0; x < NX; x++) {
4 for (y = 0; y < NY; y++) {

Listing 2: Loops in the BP algorithm, where p is the outer
loop variable.

TABLE IV: Memory occupied by the variables that depend
on p.

Variable Dimensions Memory

min f 117 * 35bits 0.5KB
r0 117 * 25bits 0.36KB
ant x 117 * 25bits 0.36KB
ant y 117 * 25bits 0.36KB
ant z 117 * 25bits 0.36KB
rc 117 * 4096 * 32bits * 2 3744KB
r vec 4096 * 33bits 16.5KB

Total 3762.44KB

TABLE V: Memory occupied by the variables that depend
on x and y.

Variable Dimensions Memory

x mat 501 * 501 * 32bits 980KB
y mat 501 * 501 * 30bits 919KB
z mat 501 * 501 * 1bit 30KB
image 501 * 501 * 46bits * 2 2818.9KB
rc[p] 4096 * 32bits * 2 32KB

r vec 16.5KB

Total 4796.4KB

1 for (x = 0; x < NX; x++) {
2 for (y = 0; y < NY; y++) {
3 for (p = 0; p < input_data.np; p++) {
4 // ...

Listing 3: Loops in the BP algorithm, where p is the inner
loop variable.

In Listing 2, the variables that iterate over p are the
following: min_f, r0, ant_x, ant_y, ant_z, rc and
r_vec. Taking into consideration the wordlength configura-
tions chosen in the previous section, the memory occupied by
these data is 3.8MB, as can be observed in Table IV.

In listing 3, the variables that iterate over x and x are the
following: x_mat, y_mat, z_mat, image, rc and r_vec.
Taking into consideration the wordlength configurations cho-
sen in the previous section, the memory occupied by these
data is 4.8MB, as can be observed in Table V.

The second option, Listing 3 requires an additional 1MB.
Also, rc variable is accessed randomly, depending on the
interpolation results, unlike the other variables, making it
impossible to load only smaller batches of the variable. For
these reasons, the chosen implementation is Listing 2, with p
as the outer loop variable.

IV. BP HARDWARE DESIGN

The results of the analysis described in the previous section
are used to design the accelerator. The circuit was synthe-
sized using Vivado High-Level Synthesis (HLS), from a C++
hardware specification, allowing the development of hardware
in a faster and easier way compared to traditional hardware
development.

Vivado HLS also facilitated the study mentioned above, with
Arbitrary Precision Fixed-Point Data Types, or ap_fixed
types. These data types allow the definition of arbitrary pre-
cision integer or fixed-point values, as seen in Listing 4.



1

2 #define IMAGE_TBITS 46 // number of total bits
3 #define IMAGE_IBITS 1 // number of integer bits
4

5 ap_fixed<IMAGE_TBITS, IMAGE_IBITS> image;

Listing 4: Definition of the image variable using the
ap_fixed types from Vivado HLS with the chosen
configuration after the study.

ap_fixed types are used to represent the input data of the
hardware accelerator, with the wordlengths already defined as
seen in Section III-A and Table III.

The following alterations were applied to the code in
Listing 1:

• the pixel calculation is performed in blocks, with the
order decided in section III-B, as seen in Listing 5, to
prevent the transfer of large quantities of data to the ac-
celerator. The functions read_rc() and read_x_mat
transfer data as needed.

• the Inverse Fast Fourier Transform (IFFT) is performed
in fixed-point using the IP developed by Xilinx.

1 void bp(/* ... args in ap_fixed format ...*/)
2 {
3 // aux variables declaration
4

5 for (int b = 0; b < NR_BLOCKS; b++) {
6 init_block(image);
7 for (int p = 0; p < NP; p++) {
8 read_rc(p, data_rc, rc);
9 for (int x = 0; x < NX; x++) {

10 read_x_mat(x, data_x_mat, x_mat);
11 for (int y = b * BLOCK_SIZE; (y < (b + 1) *

BLOCK_SIZE) && (y < NY); y++) {
12 // content of the loop,
13 // as seen in Listing 1
14 }
15 }
16 }
17 write_block(b, image, data_image);
18 }

Listing 5: BP algorithm implementation in C.

V. RESULTS

The precision analysis performed on every variable of the
BP algorithm allowed the reduction of the wordlength at a
variable-level. In other words, instead of choosing a fixed size
for all variables, every variable has the minimum number of
bits it requires to generate a high-quality image. Variables
were originally represented by double-precision floating-point
variables, that is, 64-bit variables. The custom approach de-
veloped and used in this work resulted in an average of 31.8
bits per variable, a reduction of 49.7%. The smallest variable
has 21 bits and the largest 46 bits. The image generated
using the results of this study has a SSIM value of 0.99, the
value we considered high-quality. A comparison of the original
image with full-precision with the image generated using the
optimized BP algorithm implementation is presented in Figure
3. To the naked eye, there is no discernible difference between
the original image, Figure 3a, and the image generated using
the optimized architecture, Figure 3b.

The developed accelerator was synthesized, simulated and
fully validated in Vivado HLS. The resource consumption
reports were obtained considering the target device, a Zynq

(a) Original image generated using
the BP algorithm implementation in
C with double-precision variables.

(b) Image generated using the op-
timized algorithm with customized
wordlength. Has a SSIM of 0.99.

Fig. 3: Original image, generated using the algorithm with
double-precision images compared with the image generated
using the optimized algorithm with customized wordlength.
There is no discernible difference between these two images.

TABLE VI: Resources estimation according to Vivado HLS.

BRAMs URAMs LUTs DSPs

Used % Used % Used % Used %
44 7 39 40 74827 32 63 3

UltraScale+ MPSoC ZCU104. The estimate clock frequency
for the accelerator is 114 MHz, and the resource estimates are
presented in Table VI. The data transferred from memory to
the accelerator, the variables in Table IV, is stored in BRAMs
and URAMs and is used to generate the image. The low
percentage of used LUTs and DSPs, 32% and 3%, respectively,
also indicates it that there are enough resources available for
parallel units.

VI. RELATED WORK

Several works have addressed the implementation of the BP
algorithm in hardware. These works target different technolo-
gies, and employ different design methodologies to achieve
different end goals.

An area efficient implementation of the BP algorithm has
been described in [6], where the algorithm is divided into
blocks. The precision necessary for each of these blocks is then
evaluated, by modifying the mantissa width between 1 and 52
bits. The minimum exponent width is also determined. The
quality of the image is evaluated using two different metrics,
Peak Signal-to-Noise Ratio (PSNR) (in dB) and SSIM (value
between 0 and 1). The main difference between these two
metrics is that while PSNR measures the ratio between the
maximum signal power and the noise corrupting the image,
SSIM is based on the human visual perception of an image
and how similar two images appear to the naked eye. In [6]
it was considered that images with a SSIM above 0.99 were
acceptable, which was able to achieve with mantissa widths
between 6 to 27 bits. This work targeted Application-Specific
Integrated Circuit (ASIC) technology and its main concern is
area reduction. There is no reference to the execution times
of the algorithm or power consumption. Contrary to [6], the
work described in this paper uses custom wordlengths for each



variable, offering a more fine-tuned solution. Instead of fixed-
point, this work also uses fixed-point values.

An optimized software implementation of the BP algorithm
was developed in [7], where the cosine and sine operations are
replaced with approximations. The approximations are used
as a reduced-precision redundancy mechanism, however, they
could be used to optimize the algorithm, introducing slight
degradation. The approximations are used only in the sine
and cosine operations, representing a subset of the operations
targeted in this work.

A work regarding custom floating-point units is described
in [8], where custom arithmetic units were developed and
tested with several benchmark programs. For the majority
of benchmark programs, the accuracy of the result was not
affected when the width of the mantissa was reduced by half.

Real-time BP implementations have also been presented
already [9]–[11], however they target Graphical Processing
Unit (GPU) clusters or many-core processors, which do not
meet the requirements for power and size that an on-board
system requires.

All in all, there are many works dedicated to optimized
implementations of the BP. However, none of these works has
employed any optimization methods such as the one described
in this paper.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an optimization methodology for the
development of custom signal processing architectures. While
we used the BP algorithm as an example for the methodology,
other algorithms can benefit from it, to generate optimized
architectures for hardware. The optimization methodology lead
to a reduction of 49.7% of the wordlength of the variables used
in the algorithm while still producing high-quality images.
Besides custom wordlength optimization, the data dependency
study provided crucial information for the implementation
of the architecture, minimizing data transfers between the
accelerator and memory.

Future work will involve further optimization of the archi-
tecture, such as parallelization of the algorithm, especially
considering the low resource estimation occupied by the
accelerator, and the data transferred to the accelerator can be
used by many units simultaneously.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with ref-
erences UIDB/50021/2020 and PTDC/EEI-HAC/31819/2017
(SARRROCA). Helena Cruz would like to acknowledge
Fundação para a Ciência e a Tecnologia for the support
through grant SFRH/BD/144133/2019.

REFERENCES

[1] M. Soumekh, Synthetic Aperture Radar Signal Processing with
MATLAB Algorithms, J. W. t. Sons and Inc., Eds. New York: John
Wiley & Sons, 1999. [Online]. Available: https://www.wiley.com/en-
pt/Synthetic+Aperture+Radar+Signal+Processing+with+MATLAB+Algorithms-
p-9780471297062

[2] I. G. Cumming and F. Wong, “Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation.” Artech House, 2005.

[3] L. A. Gorham and L. J. Moore, “SAR image formation toolbox
for MATLAB,” vol. 7699, 2010, pp. 46 —- 58. [Online]. Available:
https://doi.org/10.1117/12.855375

[4] D. Pritsker, “Efficient Global Back-Projection on an FPGA,” 2015 IEEE
Radar Conference (RadarCon), pp. 0204—0209, 2015.

[5] C. H. C. Jr., L. A. Gorham, M. J. Minardi, S. M. Scarborough,
K. D. Naidu, and U. K. Majumder, “A challenge problem for
2D/3D imaging of targets from a volumetric data set in an urban
environment,” vol. 6568, 2007, pp. 97 —- 103. [Online]. Available:
https://doi.org/10.1117/12.731457

[6] J. J. Pimentel, A. Stillmaker, B. Bohnenstiehl, and B. M. Baas, “Area
efficient backprojection computation with reduced floating-point word
width for SAR image formation,” 2015 49th Asilomar Conference on
Signals, Systems and Computers, pp. 732—726, 2015.

[7] H. Cruz, “On-Board Multi-Core Fault-Tolerant SAR Imaging Architec-
ture,” 2018.

[8] J. Tong, D. Nagle, and R. Rutenbar, “Reducing power by optimizing
the necessary precision/range of floating-point arithmetic,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 273—286, 2000.

[9] M. Gocho, N. Oishi, and A. Ozaki, “Distributed Parallel Backprojection
for Real-Time Stripmap SAR Imaging on GPU Clusters,” 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 619—
620, 2017.

[10] T. M. Benson, D. P. Campbell, and D. A. Cook, “Gigapixel Spotlight
Synthetic Aperture Radar Backprojection Using Clusters of GPUs and
CUDA,” 2012 IEEE Radar Conference, pp. 0853—0858, 2012.

[11] J. Park, P. T. P. Tang, M. Smelyanskiy, D. Kim, and T. Benson, “Efficient
backprojection-based synthetic aperture radar computation with many-
core processors,” 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1—11, 2012.


