
Reconfigurable Embedded Architectures for
On-Board Synthetic-Aperture Radar Processing

Helena Cruz∗, Mário Véstias†, José Monteiro‡, Horácio Neto§ and Rui Policarpo Duarte¶
∗INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Email: helena.cruz@tecnico.ulisboa.pt
†INESC-ID/Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa

Email: mvestias@deetc.isel.ipl.pt
‡INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Email: jcm@inesc-id.pt
§INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Email: hcn@inesc-id.pt
¶INESC-ID, Lisbon, Portugal

Email: rui.duarte@tecnico.ulisboa.pt

Abstract—SAR systems designed for on-board space envi-
ronments present different challenges when compared to other
systems. Constraints in performance, size, weight, power con-
sumption and image quality are aspects that need to be taken
into consideration when developing on-board systems. This paper
presents an evaluation of two different multi-core embedded
architectures for the Backprojection algorithm suitable for small
satellites. Single and multi-core implementations are discussed,
as well as the computation of approximations for the most time-
consuming operations of the algorithm. Two different commer-
cially available systems were tested: Pynq-Z2 and Ultra96, which
are compared in terms of execution time, power consumption and
efficiency, and image quality.

I. INTRODUCTION

Synthetic-Aperture Radar (SAR) is a technology used to
generate images from objects or landscapes using a moving
radar system. The relevance of SAR has been increasing
throughout the years due to its ability to operate regardless
of weather conditions and without a light source, that is, day
and night. SAR systems are installed onto moving platforms
such as satellites, aircrafts or drones and can cover a large
area due to the movement of the platforms [1]. For space
applications, SAR introduces new concerns in terms of data
availability since data acquired is not immediately visible
and requires offline and off-site processing and an RF link
with high bandwidth capacity and availability. The capacity to
digest the SAR signals on-board and broadcast the processed
images in real-time is of most importance and is yet to
become widely available. This paper presents a comparison
on the evaluation of performance, power, and quality of SAR
images generated by the Backprojection algorithm, on two
different small form-factor computing platforms. To compare
the power efficiency of the different platforms it considers
implementations with single and multi-core, and fixed-point
and floating-point precisions.

II. SAR IMAGE PROCESSING

There are many SAR image generation algorithms, which
can be divided into two large groups: Fast Fourier Transform

(FFT)-based and non FFT-based. FFT-based algorithms, such
as the Range-Doppler [2] or Polar Format [3] algorithms,
are typically more efficient, however, the image has lower
quality. For instance, in the Range-Doppler algorithm, the
energy is not entirely concentrated on the range migration
curve, introducing degradation in the range focus [4]. In the
Polar Format algorithm, the two-dimensional FFT operation
introduces geometrical warping and loss of focus as the dis-
tance increases from the scene center [3], [5], [4]. The Range-
Doppler and the Polar Format algorithms have a computational
complexity of O

(
N2log2 (N)

)
.

Non-FFT-based algorithms, such as the Backprojection
algorithm, generate images with higher quality, however, have
a higher computational complexity. The Backprojection algo-
rithm has a complexity of O

(
N3
)

and was chosen for this
architecture due to the quality of the generated images, even
with the increased complexity.

A. Backprojection Algorithm

The Backprojection algorithm is based on the projection of
the echoes received by the radar on a bitmap [6], [7], [8]. This
projection is calculated for each of the pixels of the image and
the resulting image is the accumulation of the projections. The
steps of the Backprojection algorithm, for each pulse and each
pixel, are as follows:

1) Compute the distance from the platform to the pixel.
2) Use the distance to calculate the position (range) in

the dataset.
3) Using linear interpolation, sample the range calcu-

lated in the previous step.
4) Scale the sampled value using a matched filter to

calculate the pulse contribution.
5) Add the contribution of each pulse to the final image.

The value of each pixel is the accumulation of the pulse
contributions calculated using steps 1-5, therefore, the com-
putation of each pixel is independent and can be easily
parallelized. The pseudocode of the Backprojection algorithm
is in Figure 1.

for all pixels k do
fk ← 0
for all pulses p do
R ← ||ak − vp|| {calculate distance from platform to
pixel (step 1)}
b← b(R−R0)/∆Rc {range bin (integer) (step 2)}
if b ∈ [0, Np− 2] then
w ← b(R−R0)/∆Rc − b {interpolation weight}
s← (1−w) · g(p, b) +w · g(p, b+ 1) {data sample
(step 3)}
fk ← fk + expi·ku·R {add pulse’s contribution
(steps 4 and 5)}

end if
end for

end for

Fig. 1: Pseudocode of the Backprojection algorithm.

The Backprojection algorithm can be applied to different
SAR modes: stripmap, spotlight and circular SAR. In stripmap
mode, the radar moves along the azimuth with a fixed an-
tenna, illuminating a different region with the movement. In
spotlight SAR, a moving antenna is mounted on a moving
platform, illuminating the same region as the platform moves
along the azimuth region. When compared to stripmap, the
covered region is smaller, but the range resolution is superior.
Lastly, circular SAR consists of a platform moving around the
illuminated area in a circular motion, gathering data from all
360 angles. Circular SAR, similarly to spotlight, has superior
resolution, however, the covered area is inferior to stripmap
[2], [9]. In this paper, the Backprojection implementation used
is for spotlight SAR.

B. Image Quality

The quality of the computed SAR images can be measured
using quality metrics such as Peak Signal-to-Noise Ratio
(PSNR), Mean Squared Error (MSE) and Structural Similarity
(SSIM) [10]. PSNR or MSE calculate the absolute error
between the pixel values of the resulting image and a reference,
whereas the SSIM is a perception-based metric based on the
degradation of structural information. Equation 1 calculates the
norm of the resulting pixel value (rk) divided by the norm of
the difference between the values of the resulting pixel and the
pixel from the reference image (tk).

SNRdB = 10 · log10

(∑N
k=1 |rk|2∑N

k=1 |rk − tk|2

)
(1)

SSIM considers that pixels that are spatially close will
have stronger dependencies when compared to other pixels
and takes into consideration three different components: lu-
minance, contrast, and structure. The SSIM of two images
x and y is given by Equation 2, where µx is the mean
intensity of x, µy is the mean intensity of y, σx is the standard
deviation of x, σy is the standard deviation of y, C1 and C2

are constants included to avoid instability when µ2
x + µ2

y and
σ2
x + σ2

y , respectively, is close to zero, C1 = (K1L)
2 and

C2 = (K2L)
2 where L is the dynamic range of the pixel

values, K1 = 0.01 and K2 = 0.03, by default.

SSIM (x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (2)

III. ALGORITHM ACCELERATION

To accelerate the algorithm, two approaches were followed:
parallelization and utilization of approximations to speed the
execution time. The following sections detail each of these
approaches.

A. Wordlength Optimization

The implementations of the Backprojection algorithm con-
siders all variables to be double precision floating-point by
default. However, double-precision floating-point arithmetic
is too time consuming and leads to long execution times.
Because of this, the most time-consuming operations were
implemented using approximations using fixed-point format
from the LIBFIXMATH library. Alternative implementation
such as CORDIC [11] were evaluated but provided worst
results, thus they were not considered for further study.

B. Algorithm Parallelization

From the pseudocode presented in Figure 1 is it easily
identifiable that it is possible to parallelize the Backprojection
algorithm since the pixels can be computed independently. The
parallelization of the algorithm was performed using a static
division of the workload for the available processors.

IV. TARGET RECONFIGURABLE EMBEDDED SYSTEMS

This section presents the details of the processing systems
selected for this research work. Two different Reconfigurable
Systems on-a-Chip with a multi-core processor and reconfig-
urable logic (SoC-FPGA) were considered. Even though the
reconfigurable fabric of the device was not used in this work,
these devices were considered because they have the possibility
to add a custom hardware accelerator in the future. In this work
the following Xilinx SoC-FPGAs boards were used: Pynq-Z2
from TUL and Ultra96 from Avnet.

A. Pynq-Z2

The Pynq-Z2 board has a Zynq XC7Z7020 SoC-FPGA
from Xilinx. This device is populated with reconfigurable logic
and has a hard processor with a Dual-core ARM A9 running
at 650MHz. This board measures 87x140 mm and can be
supplied with 5V from an USB port.

B. ULTRA96

Similarly to the Pynq-Z2, the Ultra96 is also based on
an SoC-FPGA. This board holds a Xilinx Zynq UltraScale+
MPSoC ZU3EG. Inside the device there is a Quad-core ARM
A53 CPU running at 1.2GHz. This board also features 2 GB of
LPDDR4 memory, measures 85x54 mm, and its power supply
provides 12V/3A. It has active cooling.

V. EVALUATION

Each system was evaluated in terms of execution time,
power, and approximation errors. The implementation of the
Backprojection algorithm used in this paper is part of the
PERFECT Suite [12], and was written in C. The Backpro-
jection was tested using a set of synthetic pulses to generate
a 512 × 512px image. To determine which functions could
benefit from the fixed-point approximations, the profiling was
done using gprof1, compiled with GCC2 with the optimization
level -o33. The trigonometric functions (sine/cosine) consume
almost 85% of the execution time, while the rest of the
algorithm required less than 16%. From this analysis, it is
possible to conclude that the trigonometric functions should
be the target of the wordlength optimization and be replaced
with fixed-point approximations.

To reduce the processing time, the trigonometric func-
tions were implemented using fixed-point arithmetic from the
Libfixmath library. However, such approximation impacted
the image quality due to loss of precision. Floating-point
computations were performed using double-precision floating-
point format, and hence are considered as reference. When
comparing with the image compute with approximations the
differences are not visible, Figure 2. The image above is the
original version, calculated using the Backprojection algorithm
implementation available in the PERFECT Suite [12], while
the image below was generated using the LIBFIXMATH
approximation to calculate the sine and cosine functions. To
quantify the the precision loss, the SNR was 100.66dB and the
SSIM was 0.9999973523, which means they are very similar
to each other.

A. System Performance and Power

The system’s performance was assessed by measuring the
time which implementation required to complete the process-
ing of the same image. The power consumption was measured
using a programmable Thurlby Thandar (TTi) PL303QMD-P
power supply. The energy (e) consumed by each implemen-
tation is defined as consumed power(p) × execution time(t).
Table I summarizes the execution times, power and energy
consumed by each implementation on all devices. For each de-
vice, the most energy efficient implementation is highlighted.
As expected, the fixed-point multi-core implementations had
a lower execution time when compared to either the single-
core or the floating-point implementations. Both devices have
potential to further optimize these implementations, since the
FPGA fabric is not being used in this work. Even though the
power consumption of the Ultra96 is superior to the Pynq-Z2,
when the execution time is considered the Ultra96 is the most
efficient device and implementation.

VI. CONCLUSIONS

This work compared the performance of two computing
systems candidates for on-board SAR image processors. Usu-
ally, the performance of a system is the only observed factor in
choosing a computing system. However, on-board systems are
powered via batteries and therefore a high-performance system

1https://ftp.gnu.org/old-gnu/Manuals/gprof-2.9.1/html mono/gprof.html
2https://gcc.gnu.org/
3https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

(a) Image generated using the original implementa-
tion of the Backprojection algorithm. Has a SSIM of
0.9999997399 when compared to the provided with
the dataset and a SNR of 142.75dB.

(b) Image generated using the LIBFIXMATH library
to calculate the cosine and sine functions instead of
the standard version used in the Backprojection algo-
rithm. Has a SSIM of 0.9999973523 when compared
to the reference provided with the dataset and a SNR
of 100.66dB.

Fig. 2: Images generated using the Backprojection algorithm
and the PERFECT Suite dataset. The first image is the original
version and the second was generated using an approximation
for the sine and cosine functions.

TABLE I: Performance and power consumption according to
device and implementation.

SoC-FPGA sin/cos core t [s] p [mW] e [mWh]

Pynq-Z2

float single-core 473 1715 225
fixed-point single-core 125 1720 60
float multi-core 238 1840 122
fixed-point multi-core 63 1810 32

Ultra96

float single-core 273 2035 154
fixed-point single-core 124 2020 69
float multi-core 69 2205 42
fixed-point multi-core 31 2130 18

which demands a lot of current requires heavier batteries than a
more power efficient system. In this case, the Zynq Ultrascale+
SoC-FPGA is the fastest system.

SoC-FPGAs are best suited for fixed-point precision, and
there they have good power efficiencies. Moreover, considering
that the reconfigurable fabric of the FPGA can be configured
to have an accelerator, it opens the possibility to have systems
in the future real-time performance on-board.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT), un-
der grants with references UIDB/50021/2020 (INESC-ID
multi-annual funding) and project SARRROCA (PTDC/EEI-
HAC/31819/2017). Helena Cruz would like to acknowl-
edge FCT for the support through grant with reference
SFRH/BD/144133/2019.

REFERENCES

[1] M. Soumekh, Synthetic Aperture Radar Signal Processing
with MATLAB Algorithms, J. W. t. Sons and Inc., Eds.
New York: John Wiley & Sons, 1999. [Online]. Avail-
able: https://www.wiley.com/en-pt/Synthetic+Aperture+Radar+Signal+
Processing+with+MATLAB+Algorithms-p-9780471297062

[2] I. G. Cumming and F. Wong, “Digital Processing of Synthetic Aperture
Radar Data: Algorithms and Implementation.” Artech House, 2005.

[3] R. Deming, M. Best, and S. Farrell, “Polar format algorithm for SAR
imaging with Matlab,” vol. 9093, 2014, pp. 47 —- 66. [Online].
Available: https://doi.org/10.1117/12.2050681

[4] W. Hughes, K. Gault, and G. Princz, “A comparison of the Range-
Doppler and Chirp Scaling algorithms with reference to RADARSAT,”
IGARSS ’96. 1996 International Geoscience and Remote Sensing Sym-
posium, vol. 2, pp. 1221—1223 vol.2, 1996.

[5] B. D. Rigling and R. L. Moses, “Taylor expansion of the differential
range for monostatic SAR,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 41, no. 1, pp. 60—64, 2005.

[6] D. Pritsker, “Efficient Global Back-Projection on an FPGA,” 2015 IEEE
Radar Conference (RadarCon), pp. 0204—0209, 2015.

[7] M. Desai and W. Jenkins, “Convolution backprojection image recon-
struction for spotlight mode synthetic aperture radar,” IEEE Transac-
tions on Image Processing, vol. 1, no. 4, pp. 505–517, 1992.

[8] L. A. Gorham and L. J. Moore, “SAR image formation toolbox
for MATLAB,” vol. 7699, 2010, pp. 46 —- 58. [Online]. Available:
https://doi.org/10.1117/12.855375

[9] J. Lu, “Design Technology of Synthetic Aperture Radar,” 2019, pp.
75—111. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/9781119564621.ch3

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600—612,
2004.

[11] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334,
1959.

[12] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo, PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, 2013. [Online].
Available: http://hpc.pnnl.gov/projects/PERFECT/

