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Onboard Processing of Synthetic Aperture Radar
Backprojection Algorithm in FPGA

David Mota, Helena Cruz , Pedro R. Miranda , Rui Policarpo Duarte , José T. de Sousa , Horácio C. Neto ,
and Mário P. Véstias

Abstract—Synthetic aperture radar is a microwave technique to
extracting image information of the target. Electromagnetic waves
that are reflected from the target are acquired by the aircraft or
satellite receivers and sent to a ground station to be processed
by applying computational demanding algorithms. Radar data
streams are acquired by an aircraft or satellite and sent to a ground
station to be processed in order to extract images from the data
since these processing algorithms are computationally demand-
ing. However, novel applications require real-time processing for
real-time analysis and decisions and so onboard processing is neces-
sary. Running computationally demanding algorithms on onboard
embedded systems with limited energy and computational capac-
ity is a challenge. This article proposes a configurable hardware
core for the execution of the backprojection algorithm with high
performance and energy efficiency. The original backprojection
algorithm is restructured to expose computational parallelism and
then optimized by replacing floating-point with fixed-point arith-
metic. The backprojection core was integrated into a system-on-
chip architecture and implemented in a field-programmable gate
array. The proposed solution runs the optimized backprojection
algorithm over images of sizes 512 × 512 and 1024 × 1024
in 0.14 s (0.41 J) and 1.11 s (3.24 J), respectively. The archi-
tecture is 2.6× faster and consumes 13× less energy than an
embedded Jetson TX2 GPU. The solution is scalable and, there-
fore, a tradeoff exists between performance and utilization of
resources.

Index Terms—Field-programmable gate arrays (FPGA), on-
board processing, real-time, synthetic aperture radar (SAR).
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a remote sensing tech-
nique widely used to monitor the surface of the Earth with

application in many different areas, including ships and oil spills
tracking, terrain erosion, drought and landslides, deforestation,
and fires [1]. One of the main features of SAR that makes it
a very attractive technique for remote sensing is its capacity of
operating under adverse whether conditions with clouds, smoke,
or rain and without a light source.

SAR sensors can be installed on satellites, aircrafts, or un-
manned aerial vehicle, depending on the application. Data col-
lected from these sensors must be processed to obtain images
from the Earth surface. The backprojection (BP) [2], [3] time-
domain algorithm is one the most used algorithms for SAR
image formation due to its robustness and quality of results.

SAR algorithms, and BP in particular, are quite computation
and memory intensive and, therefore, processing is usually done
at a ground station. However, running the generation of images
onboard opens a new vast set of applications over recovered
images, such as, for example, image classification and detection.
This would permit to undertake real-time analysis and decisions
onboard.

Using high-performance computing platforms, such as mul-
ticore processors and graphics processing units (GPUs), to run
SAR image formation algorithms is not feasible onboard since
they require high power, while onboard computing systems are
usually low power.

An alternative is to consider dedicated hardware architec-
tures implemented in field-programmable gate array (FPGA) or
application-specific integrated circuit (ASIC). These allow the
design of an optimized hardware architecture, which improves
performance and reduces power. Compared to ASIC, FPGAs are
less performing and require more power. However, they allow
redesigning the algorithm after deployment and are less costly
for medium volume production.

Therefore, FPGAs are attractive devices for onboard process-
ing systems since they offer high performance, compact size,
reduced weight, and low power, while at the same time allow
onboard hardware redesign to cope with the needs of different
missions and algorithmic modifications.

The hardware architecture designed with FPGAs can be
fully optimized for each particular algorithm, such as the BP
algorithm. The data representation and the arithmetic operators
can all be explored and designed to obtain the best archi-
tectures with particular tradeoffs between hardware resources,
performance, and energy. This is particularly true for hardware
accelerators, where operations are preferably implemented using
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fixed-point arithmetic due to the overhead introduced by the
implementation of floating-point units. Therefore, this work con-
siders a full optimization of the representation of the variables
and the arithmetic operators.

Another major aspect of custom-designed hardware architec-
tures is the right balance between computation and communi-
cation. The BP projection algorithm requires memory transfers
of large volume of data. As the parallel computation increases,
the pressure over the available memory bandwidth increases up
to a point where increasing the parallelism leads to no further
performance improvements. To reduce the memory bandwidth
pressure and allow further parallelization, data must be cached
on-chip and reutilized as much as possible. The memory ar-
chitecture is, therefore, a major aspect when designing these
algorithms. The work proposed in this article redesigns the
BP algorithm so that a tradeoff is established between on-chip
memory (OCM) and parallelism, that is, the OCM size deter-
mines the degree of parallelism of the design. The integrated
design of software and hardware, where the software algorithm
is reorganized oriented by the hardware design, further improves
the computing architecture.

The main contribution of this work is, therefore, a novel
hardware architecture for the execution of the BP algorithm
for SAR image generation. The proposed architecture is config-
urable to achieve different tradeoffs between performance and
hardware cost. The project of the architecture integrates several
contributions, namely BP algorithm rescheduling for balanced
computation and communication and data type analysis and
design to improve the efficiency of the architecture.

The proposed core was integrated in a system-on-chip (SoC)
architecture with a soft processor, implemented in a medium-
density FPGA and tested with synthetic and real images obtained
from the ARFL dataset.1 The system was compared to the exe-
cution of the algorithm in a desktop i7 processor, an embedded
GPU with a Jetson TX2 board, a NVIDIA GeForce RTX 2060
GPU, and previous FPGA design for BP processing.

The rest of this article is organized as follows. Section II
describes the related work on algorithms and architectures for
the fast execution of the BP algorithm. Section III presents
the BP algorithm in detail. Section IV describes the design
of the BP in hardware, including algorithm rescheduling, data
type optimization, and hardware design. Section V details the
performance and resources of the proposed system. Finally,
Section VI concludes this article.

II. RELATED WORK

Two types of algorithms are used commonly for SAR image
formation: frequency-domain and time-domain algorithms [4].
Frequency-domain algorithms have a computational complexity
of O(N2 logN), for N pulses of N ×N samples of an image,
lower than the O(N3) complexity of time-domain algorithms.
The disadvantage of the frequency-domain algorithms is that
they are not applicable to all cases and require multiple assump-
tions, including geometric approximations and particular flying
trajectories. Other associated problems include a nonperfect
motion compensation that can lead to some image focusing

1[Online]. Available: https://www.sdms.afrl.af.mil/index.php?collection=
gotcha

problems and interpolation in the frequency domain that can
generate some unexpected elements in the formed image.

In spite of having a bigger complexity, time-domain algo-
rithms are not affected by the limitations associated with the
frequency-domain algorithms. The BP [2], [3] time-domain
algorithm does not require a separate motion compensation and
is not subject to the constraints mentioned before. Besides, it
works with the spotlight, stripmap, and scan imaging modes.
The BP algorithm implementation for circular SAR designed by
LeRoy Gorham and Linda Moore [2] is a ready to use MATLAB
implementation that accepts different dataset formats such as the
Gotcha Volumetric SAR Dataset [5], Backhoe Data Dome [6],
and GMTI Challenge Problem [7]. The PERFECT Suite [8]
provides an implementation of the BP algorithm, among others,
with compute unified device architecture and OpenMP versions.

The BP algorithm is quite computation and memory intensive.
Therefore, it has been modified to speedup the SAR image
formation process. The fast BP algorithm [9], the fast factorized
BP algorithm [10], and the accelerated BP algorithm [11] are
examples of the improved BP algorithm. In [12], the BP algo-
rithm was designed with fixed-point arithmetic and executed in
a CPU, with performance improvements up to 25%, depending
on the image size, with negligible image quality reduction. The
time to process the SAR data was reduced from 84 to 75 s. These
optimizations reduce the computation time of SAR data but they
are still unable to deal with real-time requirements.

To further reduce the computation times of the BP algo-
rithm, multiprocessing computing architectures are used. The
BP algorithm is highly parallelizable, so multiple operations
can be executed in parallel, which reduces the execution time
of the algorithm. GPUs [13]–[18] and multicore processors [19]
are the two most common multicore processing architectures
considered for BP algorithm speedup.

In [19], several approximate strength reduction optimizations,
such as quadratic polynomial approximations, Taylor series
as square root calculation method, and trigonometric function
strength reduction, are used to reduce the computational load of
the algorithm. Large images are processed in one second using a
multicore platform with 16 processors. In [15], the authors note
that in practice not all pulses are going to contribute to every
pixel of a SAR image. This is taken into consideration to reduce
the number of computations.

High-performance computing platforms require high power,
which is not available in onboard computing systems which are
low power. Embedded GPUs can be considered since they have
lower power requirements. In [16], a mobile graphics with a
peak performance close to 1 TFLOPS is used to run the BP
algorithm in about 3 s. The work in [18] reduces the processing
time of the fast factorized BP in a Jetson TX2 GPU for images
of size 2k × 2k from 35 to 5 s, depending on the stage factor of
the algorithm. Embedded GPUs tradeoff power by computing
capacity and are still based on general purpose architectures with
some energy inefficiencies.

FPGAs and ASIC devices allow the design of custom hard-
ware accelerators with better performance and energy. ASICs are
faster and require lower energy than FPGAs but are expensive
and do not allow hardware modifications after fabrication, such
as the FPGAs.

In [20], the BP algorithm is implemented in FPGA with a
mesh of 64 processor cores to provide real-time processing.

https://www.sdms.afrl.af.mil/index.php{?}collection$=$gotcha
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Cholewa et al. [21] developed a BP module to generate one line
of the final image at a time, looping over all pulses for each line.
The results obtained show that the implementation scales almost
linearly with the parallelization factor. David [22] provides an
automatic framework based on OpenCL to map the BP algorithm
in FPGA. The solution explores the available parallelism of the
algorithm and shows good results when compared to designs
generated from hardware description languages. Another imple-
mentation of the BP algorithm in FPGA [23] considers multiple
independent core units that receive raw data and generate a pixel
contribution to be accumulated to the current pixel value. In this
implementation, an Arria-V SoC from Altera is used, which also
integrates an ARM Cortex-A9 dual-core processor. The design
is able to process an image in 120 ms. The work in [18] also
runs the fast factorized BP algorithm in two different FPGAs
reaching execution times for images of size 2k × 2k range from
0.8 to 42 s, depending on the target FPGA and the algorithm
configuration. Data in the FPGA are represented with 16-bits.
In [24], a hardware/software solution is proposed for SAR image
processing. The proposal partitions the solution in hardware and
software, mapping some of the most computation intensive parts
of the algorithm to hardware.

The utilization of 16-bit data in the FPGA design from [18] is
a major design optimization. One of the main concerns when im-
plementing algorithms using accelerators is the tradeoff between
performance and precision. GPUs, for example, tend to use sin-
gle or half-precision instead of double-precision floating-point
either because the devices do not support it or because of the
overhead introduced. However, assuming a constant fixed-point
size for all variables is inefficient. A constant size may not be
enough for some variables, which reduces precision, or may
be too much for some variables, which requires unnecessary
hardware. Instead of a fixed-point representation for the whole
variables of the algorithm, this work considers a full optimization
of the representation of the variables.

Memory organization is another major aspect of any com-
puting platform. Previous FPGA designs rely on a high external
memory bandwidth to feed multiple parallel cores. To reduce the
memory bandwidth requirements as the parallelism increases,
data must be properly cached on-chip and reutilized. The archi-
tecture proposed in this article redesigns the BP algorithm to
allow a scalable architecture without the necessity to increase
the memory bandwidth.

III. BACKPROJECTION ALGORITHM

The BP algorithm is a SAR image formation algorithm
that converts radar echo data in a SAR image. The algorithm
determines the contribution of each reflected pulse for each pixel
on the output SAR image. The BP algorithm takes as input the
location of the image platform for each pulse, the location of the
output pixels, and the SAR dataset. In the description of the BP
algorithm, the following nomenclature is considered.
R Distance from platform location to each pixel.
R0 Distance to the first range bin. This value is con-

stant.
xk, yk, zk Radar platform location in Cartesian coordinates.
x, y, z Pixel location in Cartesian coordinates.
rc Range to center of the swath from radar platform.

Algorithm 1: BP algorithm pseudocode, based on [8].
1: for all Y pixels y do
2: for all X pixels x do
3: acc← 0
4: for all pulses p do
5: R←√

(x− xk)2 + (y − yk)2 + (z − zk)2 − rc
6: b← �(R−R0)/ΔR�
7: w ← (R−R0)/ΔR− b
8: gx,y ← (1− w) · g(p, b) + w · g(p, b+ 1)
9: mf ← cos(2 · ku ·R) + i sin(2 · ku ·R)

10: prod← gx,y ×mf
11: acc← acc + prod
12: end for
13: f(x, y)← acc
14: end for
15: end for

f(x, y) Value of each pixel (x, y).
θk Aperture point.
ω Minimal angular velocity of wave.
gx,y(rk, θk) Wave reflection received at rk at θk [calculated

using the linear interpolation in (3)].
Data(p, n) Wave sample of pulse p and range bin n.

The BP algorithm performs a sequence of steps for each input
point (pixel, pulse) as follows.

1) It computes the distance from the radar platform to the
pixel under analysis

R =
√

(x− xk)2 + (y − yk)2 + (z − zk)2 − rc. (1)

2) It converts the distance to an associated range position
from the dataset of received echoes

b =

⌊
R−R0

ΔR

⌋
. (2)

Assuming that range bins are equally spaced, the factor
1

R(n+1)−R(n) can be replaced by multiplication with a
constant 1/ΔR.

3) It obtains the samples at the computed range via linear
interpolation as [23]

gx,y = (1− w)× g(p, b) + w × g(p, b+ 1) (3)

where w = R−R0
ΔR − b.

4) It computes the complex exponential for the matched filter
from R [see (4)]

eiω2|−→rk | = cos(2 · ω ·R) + i sin(2 · ω ·R). (4)

5) It scales the sampled value by the matched filter to deter-
mine the pixel contribution

prod(x, y, k) = gx,y · ei·ω·2·|R|. (5)

6) It accumulates the contribution into the pixel. The final
value of each pixel is given

f(x, y) =
∑
k

gx,y · ei·ω·2·R. (6)

The BP algorithm with the steps enumerated above is de-
scribed in Algorithm 1, where ku = 2πfc

c represents the wave
number, fc is the carrier frequency of the waveform, and c is the
speed of light.
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The computational complexity of the algorithm for an image
of size iy × ix is proportional to iy × ix× p that increases
quadratically with the size of the image and linearly with the
number of pulses.

To improve the interpolation quality of the BP algorithm, it
is common to upsample data in the range dimension prior to
BP. This work considers 8× upsampling via FFT/IFFT. The
input data are first translated to the frequency domain using an
FFT, the result is zero-padded and then converted back to the
time domain using an IFFT. The BP algorithm operates on the
upsampled data.

IV. DESIGN AND IMPLEMENTATION OF THE HARDWARE

ARCHITECTURE

In this section, the hardware architecture to run the BP
algorithm on FPGA is described. The methodology to design
the system has the following steps.

1) Algorithm rescheduling to improve memory access: The
algorithm was reorganized to improve data accesses
from external memory and to increase OCM reuse.
Loop tiling exploits spatial and temporal locality al-
lowing data to be accessed in tiles permitting to exe-
cute the same operations over a block of data stored in
local memory.

2) Data type optimization: The data type representations
were converted from single- and double-precision floating
point to fixed point. This allows to reduce the complex-
ity of arithmetic operators implemented in hardware and
the memory required to store data. The fixed-point rep-
resentation (number of integer and fractional bits) was
found for each variable in order to achieve an algo-
rithm accuracy close to the signal-to-noise ratio (SNR)
specified by the designer. The fixed-point format deter-
mines the hardware area of the final solution as well
as the performance.

3) Design the upsampling and the BP algorithm in hardware:
A dedicated configurable accelerator is designed to run
both the upsampling and the BP algorithm.

A. Algorithm Rescheduling

The output pixels of the BP algorithm can be calculated inde-
pendently of each other, so the algorithm is highly parallelizable
and the outcome is not affected by the order in which pixels are
calculated.

The two main methods of improving an algorithm execution
in hardware are parallelization of computations and datapath
pipeline. A datapath pipeline achieves a throughput of one output
pixel per clock cycle, but this requires reading a complex data
point from external memory in a single cycle. This is difficult
to achieve in the BP algorithm since in each clock cycle two
complex data points, g(p, b) and g(p, b+ 1), would have to be
retrieved from memory for each pulse p. Since the reading order
of pulses may not be sequential (depends on b), several clock
cycles are needed to read each data point from external memory.
A turnaround solution consists of storing all bins of a pulse
in on-chip random access memory (RAM) memory. This on-
chip allows random cycle access to data which permits pipeline
execution.

Algorithm 2: New scheduling for the BP algorithm where
the contribution of a single pulse is calculated for all output
pixels in a line.

1: for all pixels in Y y do
2: for allpixels in X x do
3: acc(x)← 0
4: end for
5: for all pulses p do
6: for all pixels in X x do
7: R←√

(x− xk)2 + (y − yk)2 + (z − zk)2 − rc
8: b← �(R−R0)/ΔR�
9: w ← (R−R0)/ΔR− b

10: gx,y ← (1− w) · g(p, b) + w · g(p, b+ 1)
11: mf ← cos(2 · ku ·R) + i sin(2 · ku ·R)
12: prod← gx,y ×mf
13: acc(x)← acc(x) + prod
14: end for
15: end for
16: for all pixels in x do
17: f(x, y)← acc(x)
18: end for
19: end for

The execution throughput of the algorithm can further be im-
proved with multiple pipelined datapaths. Using OCM to cache
data permits multiple accesses to data points using multiport
memories. Memory with multiple ports can be implemented on
FPGA using OCM and data replicated in multiple memories to
allow multiple parallel accesses.

The large data volume would require a large OCM to store all
data on-chip that may not be enough even in large FPGA devices.
For example, considering an image with 512 single floating-
point complex pulses upsampled eight times needs 512× 512×
8× 4× 2 = 16MBytes of OCM. Therefore, only a subset of
data can be loaded at a time. Since there are no data dependencies
between the calculation of different output pixels and there are
no constraints over the order with each output pixels can be
produced, input data g(p, b) can be reused by calculating the
contribution of each pulse for a set of pixels (see Algorithm 2).

This scheduling of the algorithm calculates the contribution
of each pulse in all pixels in a line before proceeding to the next
pulse. Therefore, the data associated with a single pulse have
been reused a number of times equal to the number of pixels in a
line. This reduces the pressure over the link to external memory
to retrieve data pulses since the data are cached in OCM and
reused multiple times. It also allows parallel pixel calculation
since data can be easily replicated to offer multiple memory
ports.

Another aspect of this algorithmic organization is that data
loading can be done in parallel with data processing, that is,
data for the next pulse can be loaded while the data of the
present pulse are being processed. The execution time of each
iteration is, therefore, determined by the highest latency between
data transfer and/or upsampling and data processing. The most
efficient solution is the one with a balanced latency between
communication/upsampling and processing.

In case the pipelined data processing is slower, parallel dat-
apaths can be used. Otherwise, data reuse can be augmented to
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Algorithm 3: New scheduling with tiling for the BP algo-
rithm where the contribution of a single pulse is calculated
for all output pixels in a set of lines.

1: for all ik in Y/TL y do
2: for all pixels in X*Lines xl do
3: acc(xl)← 0
4: end for
5: for all pulses p do
6: for all pixels in TL l do
7: for all pixels in X x do
8: R←√

(x− xk)2 + (y − yk)2 + (z − zk)2 − rc
9: b← �(R−R0)/ΔR�

10: w ← (R−R0)/ΔR− b
11: gx,y ← (1− w) · g(p, b) + w · g(p, b+ 1)
12: mf ← cos(2 · ku ·R) + i sin(2 · ku ·R)
13: prod← gx,y ×mf
14: acc(x, l)← acc(x, l) + prod
15: end for
16: end for
17: end for
18: for all pixels in Lines l do
19: for all pixels in x do
20: f(x, l)← acc(x, l)
21: end for
22: end for
23: end for

increase the time available for data transfer and upsampling.
Increasing data reused can be easily achieved with the BP
algorithm by increasing the number of pixels processed for each
pulse (see Algorithm 3).

In the new algorithm rescheduling, each pulse is used for all
pixels in a subset of lines TL, that is, a tiling of TL lines. So, data
pulse reuse is increased TL×, which reduces the pressure over
the external memory access and upsampling calculation by a
proportional amount. The drawback of the solution is that more
OCM is necessary to store partial accumulations for all pixels
under processing.

B. Data Type Optimization

The original implementation of the BP algorithm uses double-
precision floating-point arithmetic. This offers a large dynamic
range of values with high precision. However, it is more com-
putationally intensive and occupies more memory than other
floating-point representations, such as float or half-float, and
fixed-point or integer representations. When implemented in
hardware, the latency and the occupied resources are larger than
the other simpler implementations.

Therefore, the hardware implementation of an algorithm is
usually preceded by an analysis of the dynamic range of all
data so that hardware-friendly data representations can be used.
In this work, fixed-point representations were used to replace
double-precision floating-point with negligible accuracy loss.
To achieve this, the methodology represented in Fig. 1 was
followed.

Fig. 1. Methodology for conversion of floating-point representation to fixed-
point exploring the tradeoff between accuracy and hardware utilization.

The methodology considers two assessment metrics: hard-
ware area and SNR. Other metrics can be considered by ex-
tending the assessment equation. Three metrics can be used
for hardware area: lookup tables (LUTs), DSPs, and BRAMs.
Some modules of the datapath use only LUTs so the number of
occupied LUTs alone is considered as the hardware metric. Of
course, a component can be implemented with a variable number
of DSPs, LUTs, and BRAMs. For example, a multiplier can be
implemented with both LUTs and DSPs, with LUTs only or with
DSPs only. However, to reduce the complexity of the design
exploration problem, a medium DSP usage implementation
was assumed, where the utilization of both LUTs and DSPs
is balanced. Further exploration of this aspect can be considered
in future developments.

Performance is not considered explicitly as a metric be-
cause the circuit is fully pipelined. Changing the bitwidth of
a fixed-point number may influence the critical path and, conse-
quently, the maximum operating frequency. However, reducing
the bitwidth has an impact on both area and performance. Since
the area is being optimized it will also improve the performance.
So, the optimization is guided by the area and the operating
frequency is determined for a final solution. The results of all
architectures assume a fixed frequency for all designs, even
knowing that smaller designs can run at a higher frequency. The
frequency is mostly influenced by the routing when the FPGA
has a high percentage of utilization. These factors are difficult
to include in the design exploration tool, so they are omitted.
Therefore, performance was not considered as an assessment
metric.
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Fig. 2. Hardware datapath of the hardware module that implements the BP algorithm.

The hardware area of the circuit used in the methodol-
ogy is obtained from models of the hardware implementa-
tion of arithmetic operators. A model was considered for
each type of arithmetic unit: addition/subtraction, accumula-
tion, multiplication, square-root, and trigonometric functions,
sin/cos, within the variation range of the operands. For ex-
ample, the number of LUTs in addition equals the operand
sizes, the number of LUTs. For the remaining operations, a
table with the number of LUTs and DSPs was determined for
all operand sizes within the range of the variables involved in
each operation.

Initially, the value range of all variables is determined for
a set of images. Considering the integer part of the highest
values of each variable, the number of necessary bits to represent
the integer part is found. Then, considering each variable at a
time, we find the maximum and minimum number of bits to
represent the fractional part. The maximum number corresponds
to the necessary number of bits to keep the accuracy loss as
small as possible. The minimum number of bits corresponds to
those bits necessary to obtain an accuracy higher than a user
specified value. This value determines the achievable reduction
in hardware resources.

Then, starting with the highest number of fractional bits for all
variables, the number of fractional bits is reduced. The variable
with the lowest ratio Δacc/Totalacc

Δhw/Totalhw
is chosen to reduce one fractional

bit. Here, Δacc and Δhw represent the variations in accuracy
and hardware area estimation, respectively. Totalacc and Totalhw

represent the accuracy and total hardware area estimation, re-
spectively, of the algorithm.

The process is iteratively repeated until achieving the lowest
acceptable accuracy defined by the user. The range of values
for the number of fractional bits determines the range of the
accuracy and the utilization of hardware resources.

C. Hardware Design of the BP Algorithm

This section presents the proposed hardware design of Al-
gorithm 3 described in Section IV-A. The proposed hard-
ware module, SAR_IP, is configurable in the number of frac-
tional bits, the tiling factor, and the number of parallel datap-
aths. The full circuit with a single datapath is represented in
Fig. 2.

The circuit is fully pipelined to increase the throughput
and several on-chip buffers for data reuse and communica-
tion/computation overlap. Fig. 2 identifies the main modules
but they are all connected in a stream-like fully pipelined archi-
tecture. Synchronization only happens at the input and output
of data with valid/ready signals. All operators, including the
upsample, are pipelined.

The module includes one on-chip buffer to store the platform
positions. The contents of this memory are constant throughout
the execution of the algorithm. A second on-chip buffer is used
to store the data points. At each time, all data points of a single
pulse are stored in the buffer and reused. While a set of data
points of a particular pulse is being used, the data points of
the next pulse are loaded to the on-chip buffer. Therefore, this
on-chip buffer is split into memories that work in a ping-pong
fashion.

The pixel accumulation is also implemented with OCM.
Likewise, while the output pixels associated with a set of data
points are being generated, the previous output pixels are being
transferred to external memory. So, this buffer also works in a
ping-pong fashion.

The size of the operators is statically configured before syn-
thesizing the circuit. The tiling factor that determines the degree
of data reuse is also configurable. The larger the tiling block, the
larger size of the on-chip memories to store the accumulations.
The hardware datapath that implements the BP algorithm can be
replicated to allow parallel calculation of output pixels. Algorith-
mically this corresponds to unrolling the X loop of Algorithm 3.
The nested loops of the designed architecture accept continu-
ous dataflow of data with an iteration interval of one. Fig. 3
illustrates the implementation of SAR_IP core with two parallel
datapaths.

Increasing the number of parallel datapaths requires a pro-
portional increase of the hardware resources and memory. The
upsample and the position memories are shared by the parallel
datapaths. Since each datapath needs dual port access to the data
memory, this memory is replicated with the same contents for
each datapath to increase the number of memory ports.

The execution time of the BP algorithm, can be theoretically
estimated for a particular image size ix, iy, number of pulses p,
tiling TL, upsample factor U , and number of parallel datapaths
DP. Since the architecture is fully pipelined and neglecting the
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Fig. 3. Hardware design of the BP algorithm with two parallel datapaths.

initial pipeline filling and final pipeline emptying, the number
of clock cycles BPcycles to execute the whole BP algorithm,
including upsampling, is estimated as

BPcycles =
iy

TL
×max

(
ix× TL× p

DP
,Upsample(p, U)

)
(7)

where Upsample(p, U ) is the number of cycles to execute the
upsample of p pulses by the upsample factor U . The expression
considers the number of cycles to run the BP algorithm and the
cycles to run the upsample. The worst case determines the total
latency of the circuit.

The number of cycles is, therefore, determined by the max-
imum number of cycles between upsampling and BP. The de-
signer must determine the best hardware configuration for a par-
ticular image size, memory bandwidth, and operating frequency
to obtain the most efficient solution, that is, a solution with the
minimal idle times among all processing modules.

Another important aspect of the architecture is the required
OCM. The total OCM in bytes of the proposed architecture is
given by

OCM = ix× size of (PlatPos)

+ 2× U × p× size of (dataIn)×
⌈

DP
2

⌉

+ ix× TL× DP× size of (dataOut). (8)

The maximum tiling factor and the number of parallel datapaths
are constrained by the resources of the target FPGA device.

V. EXPERIMENTAL RESULTS

The SAR_IP core has been described in VHDL, inte-
grated in an SoC architecture and tested on FPGA. The tar-
get device is an Artix-7 XC7A200 T FPGA in the Nexys
Video trainer board. The hardware design and implementation
have been done with Vivado Design Suite 2020.3 and the
power of the circuits has been estimated with Vivado power
estimator tool.

The Nexys video trainer board has 512 MB of DDR3 memory
with a maximum measured 1.2 GB/s of memory bandwidth

to the FPGA. The FPGA has 215 K logic cells with 269 200
registers, 134 600 LUTs, 365 BRAMs, and 740 DSPs.

All architectures were tested with synthetic images of sizes
512× 512 with 512 pulses and 1024× 1024 with 1024 pulses,
and a real image from the AFRL dataset with a size of 512×
512 and 512 pulses. The 1024× 1024 output images are the
same as those with half the size but with half the sampling. Any
other sizes can be considered with a proper configuration of the
architecture.

A. Analysis of the Error With Fixed-Point Design

The proposed methodology for floating-point to fixed-point
conversion was utilized to convert the algorithm to a custom
fixed-point design. Different SNR constraints were considered,
namely, 40 db, 60 db, 80 db, 100 db, 120 db, and the highest
SNR. In all cases, the fixed-point representation for all variables
was determined (see results for images of size 512× 512 in
Table I).

From the table, it is possible to observe the number of bits
considered for the integer part and the range of fractional bits for
each variable of Algorithm 1. The square root is one of the most
critical with a low range of variability of the fractional part. The
SNR with a double-precision floating-point is 138.87 dB. The
highest SNR achieved with fixed precision was 137.65 dB, close
to the floating-point implementation. The upsample operations
were also implemented with fixed-point with the variable range
identified in the table as g(data).

The fixed-point representations are similar for other image
sizes, with a small increase in the number of bits of the integer
part, namely in the R, b, and acc variables with from 1 to 2 bits
more.

The last column shows the results for double-precision
floating-point arithmetic. The difference in accuracy is
negligible.

B. Analysis of the Circuit Area

Algorithm 3 was designed and implemented in the FPGA as
an accelerator in the form of an IP core (SAR_IP). The full
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TABLE I
OUTPUT OF THE FLOAT TO FIXED-POINT TOOL FOR DIFFERENT SNRS

TABLE II
CHARACTERIZATION OF THE PROPOSED SAR_IP FOR IMAGES OF SIZE

512× 512 CONSIDERING THE ALGORITHM WITH DOUBLE FLOATING-POINT

ARITHMETIC

The architecture has a single datapath and a tiling of 8.

precision algorithm was also implemented to obtain a reference
to which the fixed-point implementations can be compared with
(see Table II).

The accelerator is configurable and, therefore, can be de-
signed with custom data-point representations for all variables.
Different architectures (Arq.) were generated and implemented
considering the fixed-point representations reported in Table I
for different SNR (see the occupation of FPGA resources in
Table III for an image of size 512× 512).

The best architecture has an SNR close to the SNR achieved
with double floating-point. Also, the architecture with low-
est SNR is about 30% lower than the architecture with best
SNR.

Considering images of size 1024× 1024, the upsample
module was configured for 1024 points (see results in
Table IV).

The architecture for the larger images mainly differs in the
upsample module since the datapath only differs in the final
accumulators. The architecture with the highest SNR needs
more resources, as expected. Choosing the right architecture will
depend on the acceptable SNR and the resources of the target
device.

Since the proposed architecture is configurable in terms of
parallelism and tiling factor, we have analyzed the occupied

TABLE III
CHARACTERIZATION OF THE PROPOSED SAR_IP FOR IMAGES OF SIZE

512× 512 WITH SIX DIFFERENT SNRS (ARQ. 1: 40.11 DB, ARQ. 2: 60.14 DB,
ARQ. 3: 80.17, ARQ. 4: 100.6, ARQ. 5: 121.29, AND ARQ. 6: 137.65)

The architectures have a single datapath and a
tiling of 8.

resources of the SAR-IP for different configurations of tiling
and the number of datapaths (see Tables V and VI).

The core was configured with up to eight parallel datapaths.
The most balanced solution depends on the correct computation
balance between the upsample and the BP hardware module.
When the number of datapath units increases, the execution
of the BP algorithm reduces proportionally. Since the upsam-
ple always needs the same time to compute, the tiling has to
increase proportionally to the number of datapaths to balance the
execution of both upsample and BP. Assuming that both modules
work at the same frequency, a balanced solution is achieved when
both parallelism and tiling increase proportionally.
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TABLE IV
CHARACTERIZATION OF THE PROPOSED SAR_IP FOR IMAGES OF SIZE

1024× 1024 WITH SIX DIFFERENT SNRS (ARQ. 1: 40.32 DB, ARQ. 2: 60.56
DB, ARQ. 3: 80.05, ARQ. 4: 100.39, ARQ. 5: 120.63, AND ARQ. 6: 136.78)

The architectures have a single datapath and a
tiling of 8.

TABLE V
CHARACTERIZATION OF THE PROPOSED SAR_IP ARCHITECTURE WITH

DIFFERENT TILING FACTORS TL AND DIFFERENT NUMBER OF PARALLEL

DATAPATHS (PARALLELISM: DP) FOR AN ARCHITECTURE WITH SNR = 100.6
DB AND IMAGES OF SIZE 512× 512

C. Performance Analysis of the Hardware/Software
Architecture

The architectures with SNR ≈ 100 dB were considered
for testing in the FPGA with images of size 512× 512 and
1024× 1024. Results can be obtained for other configurations
of the architecture with different SNR and other image sizes by
configuring the SAR_IP and resynthesizing the system.

The core was integrated in a SoC with an embedded RISC-V
CPU (see Fig. 4).

TABLE VI
CHARACTERIZATION OF THE PROPOSED SAR_IP ARCHITECTURE WITH

DIFFERENT TILING FACTORS, TL, AND DIFFERENT NUMBER OF PARALLEL

DATAPATHS (PARALLELISM - DP) FOR AN ARCHITECTURE WITH SNR = 100.39
DB AND IMAGES OF SIZE 1024× 1024

Fig. 4. SoC architecture with an RISC-V CPU designed to integrate and test
the SAR_IP core.

The system uses a low-performance RISC-V soft processor
to control the memory subsystem and peripherals, including the
SAR_IP core. The set of peripherals includes internal memory
to store the firmware, and external memory to store the input and
output images and one UART. The data communication between
the external memory and the core is done with a direct memory
access (DMA) through the DDR memory controller. The DMA
is configured by the CPU and allows direct access between the
core and the memory. The area of individual modules and the
full hardware/software architecture area for a configuration with
DP=8 and tiling = 8 is given in Table VII).

The most used resources for the configuration with DP= 8 are
BRAMs and LUTs. These determine the highest parallel factor.
Other DP factors can be considered above 8 to increase the uti-
lization of the available resources and improve the performance.
However, DP factors, not powers of two, are still not supported
by the configurable core, so they were not considered in this
study. This is left for a future upgrade of the core.
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TABLE VII
CHARACTERIZATION OF THE PROPOSED SOC ARCHITECTURE WITH THE

SAR_IP CORE INTEGRATED WITH THE RISC-V CPU

The core was designed with a tiling of 64 a with 8 parallel
datapaths.

TABLE VIII
EXECUTION TIME OF THE ARCHITECTURE FOR DIFFERENT VALUES OF TILING

TL AND DATAPATHS DP IMAGES OF SIZE 512× 512 AND 1024× 1024 FOR

AN SNR ≈ 100 DB

To test the architecture, the DDR memory available in the
board was utilized to store the input data. The full SoC system
was implemented in the FPGA with a frequency of 125 MHz
considering different configurations of the SAR_IP core. From
these, the execution times were determined (see Table VIII).

The SAR_IP runs the BP algorithm for images of size
512× 512 in a Artix-7 FPGA in 0.14 s. Real-time processing of
images with size 512× 512 is achieved with all configurations,
according to the SAR image capture times referred in [20].
According to Schleuniger et al. [20], real-time processing is
achieved with 60 000 pixels/s. For images of size 1024× 1024,
the core takes 1.11 s to run the BP algorithm using eight parallel
datapaths.

From Table VIII, it is possible to verify the scalability of the
architecture, since the execution time reduces proportionally to
the increase of the number of datapaths.

D. Comparison of SAR_IP With Other Computing Devices

The BP algorithm was executed on a PC desktop with a quad-
core Intel Core i7-4700MQ processor with 16 GB of RAM on
a NVIDIA GeForce RTX 2060 GPU and on the Jetson TX2
module with a 256-core NVIDIA Pascal GPU. The algorithm
was run for both image sizes (see results in Table IX).

The fastest platform is the GPU and the slowest is the CPU.
However, these are not appropriate for embedded computing
since the power is too high. Compared to the embedded GPU,
the proposed FPGA architecture is 2.6× faster for images of size
= 512× 512 and 2.5× faster for images of size 1024× 1024.
Also, the FPGA has an energy consumption 13× smaller than the
embedded GPU. This is an important advantage for embedded
computing.

TABLE IX
EXECUTION TIME OF THE BP ALGORITHM ON FOUR DIFFERENT PLATFORMS:
QUAD-CORE INTEL CORE I7-4700MQ PROCESSOR, NVIDIA GEFORCE RTX

2060 GPU, JETSON TX2, AND ARTIX-7 FPGA, CONSIDERING IMAGES OF SIZE

512× 512 AND 1024× 1024

*core power + DDR3 power [25].

E. Comparison of SAR_IP With Other FPGA-Based Platforms

The execution time and the energy to process an image of
the proposed architecture were also compared with previous
FPGA works. Since different FPGA devices were used in
previous works, efficiency metrics were also considered for a
fair comparison. The efficiency metrics consider the number
of pixels/pulses (PP) per LUTs, DSPs, and BRAMs that are
processed per second. For example, as given in Table IX, the
proposed solution runs 512× 512× 512 pp, in 0.14 s with
80 589 LUTs. In this case, the LUT efficiency equals 512×
512× 512/0.14/80589 = 11, 896 PP/s/LUT. Another metric
was considered to determine the energy efficiency (kPP/Energy),
that is, the number of processed BP pixels per joule. The compar-
ative results with previous implementations on FPGA are given
in Table X.

All previous works consider large FPGAs with high con-
sumption for an embedded system, except the work from Duarte
et al. [24] that was implemented in a ZYNQ7020. However, it
runs partially in the embedded processor, so it takes over 1 min
to run the algorithm.

Considering the area efficiency, the proposed solution is the
most efficient in terms of LUTs (1.8× better) and BRAMs (1.5×
better). Since multiplications can be implemented with DSPs or
LUTs, a design with a lower ratio of DSPs has a higher ratio
of LUTs and vice versa. This means that the proposed solution
achieves the highest pixel processing per second per area. Since
the architecture is scalable, the ratio closely applies to different
picture sizes. The fully optimized pipelined architecture also
achieves the best performance efficiency (PP/Time/kLUT) and
the best energy efficiency (kPP/Energy) by almost 2× and 4×,
respectively, compared to the best previous architecture.

The major improvements in performance and energy achieved
with the proposed architecture are mainly from the fine cus-
tomization of the fixed-point representation and a fully pipelined
and scalable architecture with configurable parallelism.

The proposed methodology for floating- to fixed-point con-
version of the algorithm helped to obtained an architecture with
better performance and energy efficiency. The methodology can
be applied to other algorithms as an initial design step before
hardware design. to improve the final architecture.

The proposed architecture is also scalable, which allows its
custom design for FPGAs with different hardware densities
and for images with different dimensions. It can also be de-
signed with different levels of parallelism and different external
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TABLE X
COMPARISON BETWEEN THE PROPOSED ARCHITECTURE WITH PREVIOUS SOLUTIONS IMPLEMENTED IN FPGA

PP: Pixel/pulses.

memory bandwidths so that the right balance between commu-
nication and computation can be obtained. It also allows the
fine-grain customization of fixed-point formats so that solutions
with different tradeoffs between performance and accuracy can
be generated with high efficiency.

In terms of energy consumption and power, the proposed
accelerator has shown high performance with the highest
efficiencies compared to other embedded processing solutions
and FPGAs. This is particularly relevant for onboard processing
of algorithms with high complexity with low energy.

Another relevant aspect of the proposed solution is the inte-
gration of both upsampling and SAR image formation in a single
custom hardware architecture. This improves the quality of the
generated image while optimizing the performance and energy
efficiency. Previous works do not consider this design aspect.

The work described in this article has, therefore, contributed
to the advance of high-performance onboard processing at low
cost and energy.

VI. CONCLUSION

Onboard processing systems have recently emerged in order
to overcome the huge amount of data to transfer from the
satellite to the ground station. SAR imaging is a remote sensing
technology that can benefit of onboard processing. This article
proposes an FPGA-based hardware core for onboard processing
of SAR images.

The original algorithm was reorganized to improve the ac-
cesses to data stored in external memory. The proposed ar-
chitecture has been designed in a development board with an
Artix-7 FPGA. Experimental results indicate that the proposed
SAR_IP core can fulfill real-time requirements with low re-
sources in a low-cost FPGA. The architecture is more energy
efficient than other computing platforms and previous FPGA
implementations.

The proposed core is configurable and, therefore, can be con-
figured for different performance, area, and power requirements.

REFERENCES

[1] J. C. Trinder, “Editorial for special issue ‘applications of synthetic aperture
radar (SAR) for land cover analysis’,” Remote Sens., vol. 12, no. 15, 2020,
Art. no. 2428. [Online]. Available: https://www.mdpi.com/2072-4292/12/
15/2428

[2] L. A. Gorham and L. J. Moore, “SAR image formation toolbox for
MATLAB,” in Proc. Algorithms Synthetic Aperture Radar Imagery XVII,
2010, pp. 769906–769913. [Online]. Available: https://doi.org/10.1117/
12.855375

[3] Synthetic Aperture Radar (SAR) Imaging Basics. Hoboken, NJ, USA:
Wiley, 2011, ch. 1, pp. 1–22. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9781118116104.ch1

[4] Y. K. Chan and V. Koo, “An introduction to synthetic aperture radar
(SAR),” Prog. Electromagn. Res. B, vol. 2, pp. 27–60, 2008.

[5] C. H. Casteel Jr, L. A. Gorham, M. J. Minardi, S. M. Scarborough, K. D.
Naidu, and U. K. Majumder, “A challenge problem for 2D/3D imaging of
targets from a volumetric data set in an urban environment,” in Algorithms
for Synthetic Aperture Radar Imagery XIV, E. G. Zelnio and F. D. Garber,
Eds. Bellingham, WA, USA: SPIE, 2007, pp. 97–103. [Online]. Available:
https://doi.org/10.1117/12.731457

[6] K. Naidu and L. Lin, “Data dome: Full k-space sampling data for high-
frequency radar research,” in Algorithms for Synthetic Aperture Radar
Imagery XI, E. G. Zelnio and F. D. Garber, Eds. Bellingham, WA, USA:
SPIE, 2004, pp. 200–207. [Online]. Available: https://doi.org/10.1117/12.
548773

[7] S. M. Scarborough et al., “A challenge problem for SAR-based GMTI
in urban environments,” in Algorithms for Synthetic Aperture Radar Im-
agery XVI, E. G. Zelnio and F. D. Garber, Eds. Bellingham, WA, USA:
SPIE, 2009, pp. 143–152. [Online]. Available: https://doi.org/10.1117/12.
823461

[8] K. Barker et al., “PERFECT (Power efficiency revolution for embedded
computing technologies) benchmark suite manual,” Pacific Northwest Nat.
Lab. Georgia Tech Res. Inst., Dec. 2013. [Online]. Available: https://hpc.
pnnl.gov/projects/PERFECT/

[9] A. F. Yegulalp, “Fast backprojection algorithm for synthetic aperture
radar,” in Proc. IEEE Radar Conf. Radar Next Millennium, 1999,
pp. 60–65.

[10] L. M. H. Ulander, H. Hellsten, and G. Stenstrom, “Synthetic-aperture radar
processing using fast factorized back-projection,” IEEE Trans. Aerosp.
Electron. Syst., vol. 39, no. 3, pp. 760–776, Jul. 2003.

[11] L. Zhang, H.-L. Li, Z.-J. Qiao, and Z.-W. Xu, “A fast BP algorithm with
wavenumber spectrum fusion for high-resolution spotlight SAR imaging,”
IEEE Geosci. Remote Sens. Lett., vol. 11, no. 9, pp. 1460–1464, Sep. 2014.
[Online]. Available: https://ieeexplore.ieee.org/document/6725618/

[12] D. L. N. Hettiarachchi and E. Balster, “An accelerated SAR back projection
algorithm using integer arithmetic,” in Proc. Asia-Pac. Signal Inf. Process.
Assoc. Annu. Summit Conf., 2018, pp. 80–88.

[13] A. Fasih and T. Hartley, “GPU-accelerated synthetic aperture radar back-
projection in CUDA,” in Proc. IEEE Radar Conf., 2010, pp. 1408–1413.

[14] O. Frey, C. L. Werner, and U. Wegmuller, “GPU-based parallelized time-
domain back-projection processing for Agile SAR platforms,” in Proc.
IEEE Geosci. Remote Sens. Symp., Jul. 2014, pp. 1132–1135. [Online].
Available: https://ieeexplore.ieee.org/document/6946629/

[15] C. Stringham and D. G. Long, “GPU processing for UAS-based LFM-
CW stripmap SAR,” Photogramm. Eng. Remote Sens., vol. 80, no. 12,
pp. 1107–1115, 2014.

[16] E. J. Balster, M. P. Hoffman, J. P. Skeans, and D. Fan, “GPGPU accel-
eration using OpenCL for a spotlight SAR simulator,” in Proc. 5th Int.
Workshop OpenCL, 2017. [Online]. Available: https://doi.org/10.1145/
3078155.3078157

https://www.mdpi.com/2072-4292/12/15/2428
https://www.mdpi.com/2072-4292/12/15/2428
https://doi.org/10.1117/12.855375
https://doi.org/10.1117/12.855375
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118116104.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118116104.ch1
https://doi.org/10.1117/12.731457
https://doi.org/10.1117/12.548773
https://doi.org/10.1117/12.548773
https://doi.org/10.1117/12.823461
https://doi.org/10.1117/12.823461
https://hpc.pnnl.gov/projects/PERFECT/
https://hpc.pnnl.gov/projects/PERFECT/
https://ieeexplore.ieee.org/document/6725618/
https://ieeexplore.ieee.org/document/6946629/
https://doi.org/10.1145/3078155.3078157
https://doi.org/10.1145/3078155.3078157


MOTA et al.: ONBOARD PROCESSING OF SAR BP ALGORITHM IN FPGA 3611

[17] B. Ge, L. Chen, D. An, and Z. Zhou, “GPU-based FFBP algorithm for
high-resolution spotlight SAR imaging,” in Proc. IEEE Int. Conf. Signal
Process. Commun. Comput., 2017, pp. 1–5.

[18] M. Wielage, F. Cholewa, C. Fahnemann, P. Pirsch, and H. Blume, “High
performance and low power architectures: GPU vs. FPGA for fast factor-
ized backprojection,” in Proc. 5th Int. Symp. Comput. Netw., Nov. 2017,
pp. 351–357. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CANDAR.2017.101

[19] J. Park, P. T. P. Tang, M. Smelyanskiy, D. Kim, and T. Benson, “Efficient
backprojection-based synthetic aperture radar computation with many-
core processors,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2012, pp. 1–11.

[20] P. Schleuniger, A. Kusk, J. Dall, and S. Karlsson, “Synthetic aperture
radar data processing on an FPGA multi-core system,” in Proc. 26th Int.
Conf. Archit. Comput. Syst., 2013, pp. 74–85. [Online]. Available: https:
//arcs2013.fit.cvut.cz/

[21] F. Cholewa, M. Pfitzner, C. Fahnemann, P. Pirsch, and H. Blume, “Syn-
thetic aperture radar with backprojection: A scalable, platform independent
architecture for exhaustive FPGA resource utilization,” in Proc. Int. Radar
Conf., Oct. 2014, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/
document/7060455/

[22] F. David, “Implementation of a power efficient synthetic aperture radar
back projection algorithm on FPGAs using OpenCL,” Master’s thesis,
Dept. Elect. Eng., Universidade Federal do Rio Grande do Sul, Porto
Alegre, Brazil, 2017.

[23] D. Pritsker, “Efficient global back-projection on an FPGA,” in Proc. IEEE
Radar Conf., May 2015, pp. 204–209.

[24] R. P. Duarte, H. Cruz, and H. Neto, “Reconfigurable accelerator for
on-board SAR imaging using the backprojection algorithm,” in Proc.
16th Int. Symp. Appl. Reconfigurable Comput. Archit., Tools, Appl., 2020,
pp. 392–401.

[25] Micron, “System power calculator,” 2021. [Online]. Available: https://
www.micron.com/support/power-calc

David Mota received the B.S. and M.S. degrees in
electronic and telecommunications engineering from
Instituto Superior de Engenharia de Lisboa, Lisboa,
Portugal, in 2017 and 2021, respectively.

His current interests include the areas of digital
signal processing and reconfigurable computing.

Helena Cruz received the B.Sc. and M.Sc. degrees
in computer science and engineering in 2016 and
2018, respectively, from Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal, where she is
currently working toward the Ph.D. degree.

She is an early-stage Researcher with INESC-ID,
Lisbon, where she is researching the optimization
of synthetic-aperture radar (SAR) image formation
algorithms, implementation of SAR algorithms using
reconfigurable devices and fault tolerance mecha-
nisms for SAR.

Pedro R. Miranda received the M.Sc. degree in
electrical and computer engineering from Instituto
Superior Técnico, University of Lisbon, Lisbon, Por-
tugal, in 2021.

He developed reconfigurable computing architec-
tures for real-time SAR imagery at INESC-ID. His
main interest is digital system design, with an em-
phasis on reconfigurable computing.

Rui Policarpo Duarte received the Ph.D. degree in
electrical and electronic engineering from Imperial
College London, London, U.K., in 2014.

He is currently a Researcher with the Electronic
Systems Design and Automation Research Group,
INESC-ID, Lisbon, Portugal. His research interests
include reconfigurable computing, and fault-tolerant
and low-power architectures.

José T. de Sousa received Ph.D. degree in electronics
engineering from Imperial College, London, U.K., in
1998.

He is currently a Lecturer with the Department
of Electrical and Computer Engineering, School of
Engineering (IST), University of Lisbon, Lisbon,
Portugal, and has been a Senior Researcher with
INESC-ID, Lisbon, a research institute associated
with IST since 1999. He is also a Tech Entrepreneur
in the area of semiconductor intellectual property,
having founded and managed three companies: Core-

works (2001.2013, cofounder and CEO), IPbloq (2017.2019, cofounder and
CEO), IObundle (2018-present, owner and founder). He holds four international
patents, is a coauthor of one book, and has authored or coauthored more than 70
technical papers in international journals and conferences. His main research
interests include digital systems design and computer architecture, with an
emphasis on reconfigurable computing.

Dr. de Sousa was the General Chair of the 2013 Field Programmable Logic
and Applications Conference, Co-Editor of its proceedings, and a related Special
Issue on the IEEE TRANSACTIONS ON COMPUTERS.

Horácio C. Neto received the Ph.D. degree in elec-
trical and computer engineering from the Technical
University of Lisbon, Lisbon, Portugal, in 1992.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
School of Engineering (IST), University of Lisbon.
He is responsible for the Electronic Systems Design
and Automation Research Group, INESC-ID, Lisbon,
a research institute associated with IST. His main
research interests include digital systems design and
computer architecture, with an emphasis on reconfig-

urable computing.

Mário P. Véstias received the Ph.D. degree in elec-
trical and computer engineering from the Technical
University of Lisbon, Lisbon, Portugal, in 2002.

He is a Coordinate Professor with the Department
of Electronics, Telecommunications and Computer
Engineering, School of Engineering, Polytechnic In-
stitute of Lisbon, Lisbon, where he is responsible
for undergraduate and graduate courses on computer
architecture and digital systems design. He is also
a Senior Researcher with the Electronic Systems
Design and Automation Group, INESC-ID, Lisbon.

His research interests include computer architectures and digital systems for
embedded reconfigurable computing.

https://doi.ieeecomputersociety.org/10.1109/CANDAR.2017.101
https://doi.ieeecomputersociety.org/10.1109/CANDAR.2017.101
https://arcs2013.fit.cvut.cz/
https://arcs2013.fit.cvut.cz/
https://ieeexplore.ieee.org/document/7060455/
https://ieeexplore.ieee.org/document/7060455/
https://www.micron.com/support/power-calc
https://www.micron.com/support/power-calc


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


