
Microprocessors and Microsystems 77 (2020) 103136

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A fast and scalable architecture to run convolutional neural networks

in low density FPGAs

Mário P. Véstias a , ∗, Rui P. Duarte

b , José T. de Sousa

b , Horácio C. Neto

b

a INESC-ID, ISEL, Instituto Politécnico de Lisboa, Portugal
b INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 15 February 2019

Revised 8 March 2020

Accepted 14 May 2020

Available online 21 May 2020

Keywords:

Deep learning

Convolutional neural network

Smart edge devices

FPGA

a b s t r a c t

Deep learning and, in particular, convolutional neural networks (CNN) achieve very good results on sev-

eral computer vision applications like security and surveillance, where image and video analysis are re-

quired. These networks are quite demanding in terms of computation and memory and therefore are

usually implemented in high-performance computing platforms or devices. Running CNNs in embedded

platforms or devices with low computational and memory resources requires a careful optimization of

system architectures and algorithms to obtain very efficient designs. In this context, Field Programmable

Gate Arrays (FPGA) can achieve this efficiency since the programmable hardware fabric can be tailored

for each specific network. In this paper, a very efficient configurable architecture for CNN inference tar-

geting any density FPGAs is described. The architecture considers fixed-point arithmetic and image batch

to reduce computational, memory and memory bandwidth requirements without compromising network

accuracy. The developed architecture supports the execution of large CNNs in any FPGA devices including

those with small on-chip memory size and logic resources. With the proposed architecture, it is possible

to infer an image in AlexNet in 4.3 ms in a ZYNQ7020 and 1.2 ms in a ZYNQ7045.

© 2020 Elsevier B.V. All rights reserved.

1

m

s

d

t

e

a

r

a

a

c

S

c

i

p

r

h

fi

b

i

f

a

T

t

T

n

T

w

m

w

a

r

[

h

0

. Introduction

Recently, the convolutional neural network has emerged as a

ethod for many artificial intelligence tasks including image clas-

ification [1] , useful for computer vision applications, like object

etection and image segmentation. When used in edge devices,

hese methods and algorithms turn embedded devices into smart

mbedded devices that can take decisions based on the smart

nalysis of collected data.

Deep neural networks (DNN) have already achieved the accu-

acy of humans. For this reason, they are being applied in many

utomatic classification tasks. Convolutional neural network (CNN)

 type of DNN is very effective on these tasks since it can identify

orrelations among data inputs and mix them to classify images.

imilar to the human brain, CNNs are made of a series of layers of

onnected neurons with associated weights. This network of layers

s trained to classify unknown data not used during the training

rocess.
∗ Corresponding author.

E-mail addresses: mvestias@deetc.isel.pt (M.P. Véstias),

ui.duarte@tecnico.ulisboa.pt (R.P. Duarte), jose.desousa@inesc-id.pt (J.T. de Sousa),

cn@inesc-id.pt (H.C. Neto).

s

a

l

f

l

r

ttps://doi.org/10.1016/j.micpro.2020.103136

141-9331/© 2020 Elsevier B.V. All rights reserved.
What distinguishes CNNs from other DNNs is the fact that the

rst hidden layers known as convolutional execute 3D convolutions

etween groups of weights (3D kernels) and the initial image or

nput maps. Each convolution with a 3D kernel produces an output

eature map that is the input map of the next layer. Many kernels

re used at each layer producing as many output feature maps.

his large number of convolutions permits to discover features of

he image that are then correlated to identify classes of objects.

he final layers of a CNN are the fully connected (FC), where all

odes of a layer are connected to all nodes of the previous layer.

he last fully connected layer outputs the result of the inference

ith each node corresponding to a class probability.

CNNs may have any number of layers and kernels producing

aps with different sizes. This diversity has led to diverse net-

orks during the last years applied to different problems and

chieving increasing classification accuracy. The first CNNs were

egular networks based on the main two layers described. LeNet

2] was one of the first CNNs used for digit classification repre-

ented with images of size 32 × 32. It has two convolutional layers

nd three fully connected layers with a total of 60K weights. A

arger CNN, AlexNet [3] , was presented in the ImageNet Challenge

or image classification. It consists of five convolutional layers fol-

owed by three fully connected layers with a total of 61M weights

equiring a total of 724 MAC (Multiply-ACcumulate) operations to

https://doi.org/10.1016/j.micpro.2020.103136
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2020.103136&domain=pdf
mailto:mvestias@deetc.isel.pt
mailto:rui.duarte@tecnico.ulisboa.pt
mailto:jose.desousa@inesc-id.pt
mailto:hcn@inesc-id.pt
https://doi.org/10.1016/j.micpro.2020.103136

2 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

c

p

G

F

[

c

i

m

w

t

d

fi

n

[

i

l

t

p

t

m

s

d

t

t

w

t

m

t

s

a

4

p

q

e

T

q

w

t

w

s

i

p

s

s

t

a

s

a

T

l

B

a

r

a

b

o

a

n

a

n

l

w
process images of size 224 × 224 × 3 with a top-5 error rate for

ImageNet around 20%. Other well-known regular CNN models have

followed including the VGG-16 [4] with 16 layers, 2.2 × more

weights than AlexNet and 15.5 GMAC operations with a top-5

error rate around 10%. GoogleNet [5] an irregular CNN with 57

convolutional layers and a new type of layer (the inception module

that consists of parallel convolutions) needs seven million weights

with a total workload of 1.58 GOPs (Giga Operations) to achieve a

top-5 error of 7%. Several versions of ResNet [6] with a number of

convolutional layers ranging from 53 to 155 with up to 11.3 GOPs

of workload reduced the top-5 error to between 5.8% and 6.7%.

The first CNN exceeding human level accuracy was ResNet [6] ,

that won the ImageNet Challenge in 2016. ResNet introduced a

new module that contains an identity connection to reduce the

complexity of the training and, like GoogleNet, also uses 1 × 1

convolutions.

Several other CNNs were proposed in the last years, some

regular and some irregular with layers different from the usual

convolutional and fully connected layers. Implementing any of

these networks in FPGA with the best performance is a difficult

design task, even more challenging for low density FPGAs with

strict performance and memory constraints. Therefore, it is impor-

tant to have parameterizable architectures that can be optimized

for each particular CNN without compromising the performance.

In this paper, a parameterizable architecture for inference of

regular CNNs in FPGA is proposed. It deals efficiently with the

diversity of layers and kernels and can be implemented in low

density FPGAs to run large CNNs in low cost FPGA-based embed-

ded systems. The proposed architecture considers a set of archi-

tectural optimizations: fixed-point quantization, that is, activations

and weights are represented with fixed-point format (fixed-point

representation in different layers can have different scale factors);

an efficient method to calculate the convolutional layers that is

independent of the size of the convolution window; image batch

where convolutional layers are run for multiple images before run-

ning the fully connected layers; and parallel execution of convolu-

tional and fully connected layers to improve the implementation of

each type of layer and increase throughput.

The paper is organized as follows. Section 2 describes the re-

lated work on FPGA implementations of CNNs and optimization

methods. Section 3 describes the fundamentals of convolutional

neural networks. Section 4 describes the proposed architecture for

CNN inference. Section 5 describes area and performance models

of the architecture to help designing the architecture for best per-

formance. Section 6 describes the area and the performance results

of the architecture running well-known CNNs. Section 7 concludes

the paper.

2. Related work

FPGAs are promising platforms for the acceleration of CNN

inference because they have higher energy efficiency when

compared to GPU (Graphics Processing Units) and CPU (Central

Processing Units) and higher performance when compared to CPU.

The reconfigurability of FPGAs is also an advantage because it

permits to quickly adapt the hardware architecture to the specific

needs of the CNN. Using operands and operations with the strictly

required size improves the resource utilization of the architectures.

While having all these advantages, FPGAs require hardware design

and implementation expertise. To overcome this, a few works have

proposed automatic frameworks and high-level synthesis (HLS) to

automatically convert a high-level specification of the network into

a synthesizable architecture to be implemented in FPGA [7] . While

HLS tools allow fast design of architectures for CNN inference,

they are not optimized for best performance and most efficient

resource usage. A different approach is to consider configurable
ores or architectural templates that can be configured for a

articular network [8] . This is the approach followed in this work.

Depending on the target FPGA device, hundreds or thousands of

FLOPs were already obtained in the execution of CNN inference.

PGA implementations of CNNs started to consider small networks

9,10] . The first approaches to the implementation of CNNs in FPGA

onsidered only convolutional layers [11] . In [12] and [13] FPGA

mplementations of complete CNN models were proposed. The for-

er uses an architecture similar to that proposed in [11] . These

orks consider a flexible architecture that can run any convolu-

ional layer with different shapes and sizes of convolution win-

ows. The problem of this architecture is that the performance ef-

ciency varies with the window sizes of convolutions. To elimi-

ate this performance variability with the window size, Suda et al.

13] implement convolutions as matrix multiplications by rearrang-

ng the input maps of the layer. However, the solution introduces a

arge overhead associated with the memory accesses and execution

imes necessary to rearrange the input maps. This overhead was

artially eliminated in [14] using an accelerator for matrix mul-

iplication and dedicated units to convert the inputs maps into a

atrix.

Reusing a hardware module for different layers improves re-

ource efficiency, but may lead to low throughput if not carefully

esigned since different layers require different computing pat-

erns and the number of parallel computing cores may not match

he number of operations. Another mismatch aspect is associated

ith the utilization of external memory bandwidth. The distribu-

ion of memory bandwidth throughout the computing resources

ust be carefully designed so that there is a correct balance be-

ween computation and communication.

A different direction was followed by Liu et al. [15] that in-

tead of a flexible structure to run any layer proposed a pipeline

rchitecture with a layer at each pipeline level. The work achieves

45 GOPs (fixed-point 8-16b) in a Virtex7 VX690T. The approach

ermits the optimization of the architecture for each layer but re-

uires other techniques like fused layers [16] to account for the

xtra memory required to store intermediate maps and weights.

he solution reduces on-chip memory requirements but still re-

uires some memory that increases with the number of layers

hich may not be available in low density FPGAs. A trade-off be-

ween a single HW module for all layers and a pipeline structure

ith a module for each layer was proposed in [17] where different

ubsets of convolutional layers are mapped to different comput-

ng layer modules. The solution trade-offs resource efficiency by

erformance.

It is known that CNNs have high redundancy permitting a

ignificant simplification. The simplifications have been used by

everal authors looking for hardware simplification. Data quan-

ization includes a set of techniques that reduce the size and

rithmetic type of activations and weights. In [18] the author has

hown that fixed-point data representations with 8 bits guarantee

n accuracy close to that obtained with 32-bit floating point.

he size of data can be fixed for all layers or optimized for each

ayer [19] . In extreme implementations, CNNs are converted to

NN (Binary Neural Networks) where weights or both activations

nd weights are represented with a single bit reducing memory

equirements [20 , 21] . The limitation of BNNs is that to obtain

n accuracy comparable to that obtained with a floating-point

ased architecture it needs from 2 to 11 × more weights and

perations [20] . Also, the first and last layers require full precision

nd so the architecture must support both representations. Binary

etworks use binary weights but batch normalization parameters

nd bias values still need full arithmetic representations. Binarized

etworks with 1-bit weights have some accuracy drop that for

arge networks can be over 10%. This is even worst when both

eights and activations are represented with a single bit. BNNs

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 3

c

D

a

a

t

n

a

t

i

c

l

l

u

r

k

s

n

t

(

s

o

b

[

a

r

a

i

a

w

w

w

8

w

w

l

l

o

r

f

a

l

e

t

c

t

m

f

a

c

p

3

l

m

M

t

o

Fig. 1. Input and output feature maps of convolutional layers.

t

a

w

l

I

a

O

a

l

s

o

c

n

t

c

m

m

s

l

n

S

f

f

n

a

t

a

p

m

p

f

w

w

T

q

z

m

s

i

b

s
an be efficiently implemented with LUTs of the FPGA, leaving

SPs for addition only, which reduces resource utilization.

Another class of optimizations considers data reduction. A first

pproach to these methods was proposed in [22] where DNNs

re compressed using pruning and Huffman coding. Results show

hat pruning the fully connected layers of AlexNet by 91% have a

egligible effect over the network accuracy. In [23] the pruning is

dapted to the underlying hardware matching the pruning struc-

ure to the data-parallel hardware arithmetic unit. The method

s applied to CPU and GPU. Pruning is typically not applied to

onvolutional layers since the percentage of weights in these

ayers is quite below the number of weights in fully connected

ayers. Pruning introduces sparsity in the kernels of weights and

nbalanced computation of different output feature maps. Sparsity

equires irregular accesses to on-chip memory of activations. To

eep dot-product parallelism, these memories are replicated.

Some optimization techniques are more hardware friendly

ince they allow keeping the regular structure of computing

odes. Many sources of parallelism exist in the CNN computa-

ion. There is parallelism between different output feature maps

inter-output parallelism), between different convolutions of the

ame layer (intra-output parallelism) and between dot-product

perations (intra-kernel parallelism). All sources of parallelism can

e explored in a CNN implementation [24] .

Batching is used to reduce memory bandwidth requirements

25] . Several output feature maps of the last convolutional layer

re batched before being executed. The process increases kernel

euse in fully connected layers since the same kernel is used for

ll batched maps.

Recently, authors started to consider low density FPGAs for the

mplementation of CNNs. In [8] small CNNs were implemented in

 ZYNQ XC7Z020 with an average performance of 13 GOPs with

eights represented in 16 bit fixed-point format. The same FPGA

as then used to implemented bigger CNN models, like VGG16,

ith data represented with 8 bits [26] achieving performances of

4 GOPs. In [27] the authors implemented a pipelined architecture

ith weight pruning in fully connected layers in a ZYNQ XC7Z020

ith data represented with 16-bit fixed point achieving 76 GOPs.

Optimization techniques are necessary to run large CNNs in

ow density FPGAs. Some techniques like data quantization, paral-

elism exploration and batching do not compromise the regularity

f hardware computing modules. Others, like pruning, introduce ir-

egular computations that reduce the performance and resource ef-

ectiveness of the architecture. Extreme quantization still degrades

ccuracy and fully pipelined layer modules are not appropriate for

ow density FPGAs.

Therefore, a parameterizable hardware module for CNN infer-

nce in FPGA that optimizes performance and resource utiliza-

ion without accuracy degradation of the network model and that

an be mapped on low density FPGAs is proposed. The architec-

ure considers 8-bit data quantization, batching and two separate

odules to process different types of layers (convolutional and

ully connected) in a pipelined model of computation. Performance

nd area models are derived for the architecture to help designers

hoose the best configuration for a particular network.

Compared to previous CNNs, the proposed architecture im-

roves the inference performance and the resource efficiency.

. Convolutional neural networks

Convolutional neural networks consist of a series of processing

ayers of different types. Each layer receives a set of input feature

aps (IFM) from the previous layer and generates Output Feature

aps (OFM) to the next layer. In regular CNN there are convolu-

ional, fully connected and pooling layers. Some works consider

ther type of layers in their CNNs. For example, GoogleNet [5] has
he inception layer and [6] introduced a new layer that contains

n identity connection to reduce the complexity of training. CNNs

ith specific layers are usually known as irregular CNNs.

The most computational intensive part of a CNN are the convo-

utional layers in which a set of 3D kernels are convolved with the

FMs to generate the OFMs. In this paper nodes of feature maps

re referred to as activations (see Fig. 1).

Each convolution of a 3D kernel over the IFM produces one

FM. Therefore, the number of output feature maps generated in

 convolutional layer is the same as the number of kernels at that

ayer. Some convolutional layers are followed by pooling layers that

ub-sample the OFMs by merging neighbor activations into a single

ne using a max or average function.

The set of convolutional layers is followed by one or more fully

onnected (FC) layers. A node in a fully connected layer is con-

ected to all nodes of the previous layer. The last FC layer outputs

he probabilities of each class of objects with one node for each

lass. These layers contain most of the weights of a CNN which

ust be stored and transferred from external memory to on-chip

emory. Hence, they are very demanding in terms of memory

pace and memory bandwidth. Also, while in the convolutional

ayers the same kernel is used many times, in a FC layer each ker-

el is used only once.

In all layers each output is followed by an activation function.

everal functions exist but recently the Rectified Linear Unit (ReLU)

unction is commonly used for its simplicity and good results. This

unction keeps the positive activations unaltered and zeroes the

egative ones.

Knowing that convolutional layers are computation intensive

nd that FC layers are memory bandwidth intensive, several op-

imization techniques apply to both types of layers while others

re more appropriate to only one type of layer.

The most used optimization technique that reduces the com-

utational complexity, the required memory bandwidth and the

emory size is to use fixed-point computation instead of floating-

oint and to reduce the bit width of weights and activations. Dif-

erent fixed-point representations can be used in different layers

hich is known as dynamic fixed-point quantization. In this paper

e refer to it as mixed fixed-point.

One technique considered only in a few works is zero-skipping.

he ReLU function converts negative values to zero and conse-

uently many output activations are zero. Multiplying a weight by

ero is useless so the zero-skipping technique does not run these

ultiplications reducing the processing time. In [28] the authors

how for several known networks that an average of up to 50% of

nput activations are zero. The number of zeros can be increased

y applying dynamic pruning to the convolutional layers, which

ets activations to zero if their values are below a threshold. The

4 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

t

o

n

e

t

t

t

d

d

a

e

b

4

a

t

w

b

l

a

t

a

p

t

b

t

l

m

c

m
same work has shown that within certain thresholds it is possible

to dynamically prune activations without affecting the network

accuracy.

Static pruning is also used as an optimization technique to re-

duce the number of weights. During training, weights below a cer-

tain threshold are cut. The technique is normally applied to the

fully connected layers where the number of weights is very high

and cut percentages of up to 90 % can be used without affecting

the network accuracy. Another technique used to reduce the high

memory transfer times of weights in the FC layers is the image

batch. In this technique, several outputs of the last convolutional

layer are calculated and batched before running the FC layers. This

way, the weights of FC layers read from memory are then used for

a batch of input maps amortizing the transfer time.

Zero-skipping and pruning introduce storage sparsity which

complicates the hardware implementation and increases the

on-chip memory bandwidth requirements. The image batch

technique increases latency but can be used instead of weight

pruning keeping the regular structure of the architecture. There-

fore, the architecture proposed in this paper implements mixed

fixed-point quantization and image batch producing very efficient

computing systems for embedded computing in low density

FPGAs.

4. Architecture for CNN inference

The proposed architecture targets all types of FPGAs, with

an emphasis on low density FPGAs with low memory and com-

putational resources. Therefore, implementations in which all

layers are implemented in a pipelined structure that uses on-chip

memory to store OFM are not considered, since the on-chip

memory resources of low density FPGAs are scarce. Instead, the

proposed architecture has two main modules executing in a

pipelined fashion: one to execute convolutional layers and another

to execute fully connected layers. Both convolutional and fully

connected layers could be executed within a single block since

the main arithmetic operations of both are dot-products. However,

the computational and memory bandwidth requirements of these

types of layers are different. The convolutional layers have higher

computational requirements, while the fully connected layers

have higher memory bandwidth requirements. Consequently, for a

better performance efficiency, they are implemented separately.

The hardware modules for the execution of convolutional and

fully connected layers run in parallel and include a set of config-

urable registers to set them for each specific layer. To run a layer,

each module is configured with the characteristics of the layer, in-

cluding the number and size of kernels, source and destination ad-

dresses of activations and kernels, the existence of a pooling layer

and the fixed-point format.

The input image and the intermediate feature maps are stored

in on-chip memory to be processed. The ideal situation is when

the on-chip memory is enough to store the whole input image and

intermediate feature maps. Since the layers are executed one at a

time, this is possible when the on-chip memory can hold the IFMs

and OFMs of any layer. In those cases where the on-chip memory

is not enough to store the whole initial image, the image is cut into

pieces which are convolved separately. If the output feature maps

do not fit in the on-chip memory, they are stored in external mem-

ory and then reloaded in pieces as IFMs for the next layer. These

feature of the architecture permits the execution of large CNN in

low density FPGAs.

The convolutions and dot-products are all done by a cluster of

processing elements (PE) that run in parallel. Each processing ele-

ment is responsible for calculating an output feature map. So, each

PE processes one kernel at a time. The execution of the CNN in the

proposed architecture works as follows:
1. The convolutional and the fully connected modules are con-

figured for the first layers: number of kernels, size of kernels,

source and destination addresses of activations and kernels, the

existence of a pooling layer and the fixed-point format;

2. The image is loaded to the feature map memory;

3. Kernels are read from external memory and stored on the local

memories of the PE cluster. Kernel transfer and kernel process-

ing can be executed at the same time, that is, while one set

of kernels are used by the processors, the next set of kernels

can be transferred at the same time. This is fundamental in the

fully connected layers where the number of computations is the

same as the number of weights;

4. After loading the kernels, the image or the IFM are broadcast

to all PEs to determine the next output feature maps. In those

cases where the number of kernels of a layer is higher than the

number of processing elements, output feature maps are calcu-

lated in groups and so the process repeats for each new group

of kernels. Each output activation associated with a convolu-

tion of a kernel is stored back in the feature map memory to

be used by the next layer. When a layer is followed by pooling,

the activation is stored locally and waits for the other mem-

bers of the pooling window. Only the pooling result is stored in

memory for the next layer;

5. The whole process repeats until finishing the convolution be-

tween the image or the IFMs and all the kernels. After that, the

next kernels are loaded from memory and the process repeats

until running all kernels of a layer, finishing the processing of a

layer;

6. The process repeats with the configuration of the next layer.

The architecture proposed in this work implements the func-

ionality described above (see Fig. 2).

The architecture has two clusters of processing elements (PE),

ne for the convolutional layers and another for the fully con-

ected layers. There is a send/receive activations module for

ach cluster associated with on-chip memories to store activa-

ions. These modules are responsible for reading/writing activa-

ions from/to the on-chip memories and send/receive them to/from

he PE clusters. They also establish the connection with the data

ispatch and interconnect module to access external memory. All

ata from and to external memory goes through a data dispatch

nd interconnect module responsible to read and buffer data from

xternal memory, send it to the on-chip memories and write data

ack to external memory.

.1. PE Clusters

The PE cluster for convolutions consists of a matrix of cores

nd an interconnection network to forward input and output ac-

ivations (see Fig. 3).

Each column of cores is connected to a local memory of the

eight memory block. The weights stored in this memory are

roadcast to all cores of a column. To allow overlapping of calcu-

ation and communication, memories of the weight memory block

re dual-port. Each line of cores is connected to a port of the fea-

ure map memory (FMM). Activations read from a port of the FMM

rea broadcast to all cores of the line of cores connected to this

ort. The number of lines of cores equals the number of ports of

he FMM. The number of cores per line of the cluster is limited

y the available memory to implement the local memories and by

he resources to implement each core. The number of cores per

ine and per column are statically configurable and therefore the

atrix of cores is the same for all layers.

All cores of a column receive the same kernel and therefore

ontribute to the same OFM (intra-output parallelism). Adding

ore cores in a column only requires more computing resources,

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 5

Fig. 2. Block diagram of the proposed architecture.

Fig. 3. Architecture of the PE cluster for convolutional layers.

s

o

n

t

o

b

O

t

c

w

o

t

n

i

w

a

l

l

t
ince the local memory is the same independently of the number

f cores in its column. Cores in the same line receive different ker-

els and therefore each produces a different OFM. The more cores

here are in a line the more OFM are generated in parallel (inter-

utput parallelism). The activations calculated by the cores are sent

ack to the feature map memory if the next layer is convolutional.

therwise, they are sent to the batch memory to be processed by

he fully connected layers. Data transfer from the cores to the on-

hip memories is done by small switches, represented in the figure

ith letter S .
The PE cluster for fully connected layers has the same structure

f the cluster for convolutions but the number of lines of cores in

he cluster is now determined by the batch size. In the fully con-

ected layers the kernels have the same size of the IFM, which

s the same as having a single IFM. Each kernel is applied to the

hole IFM and produces a single activation. The intra-output par-

llelism is explored only when batch of OFM of the last convo-

utional layer is considered. Several OFM of the last convolutional

ayer can be stored before running the first fully connected layer. In

his case, the same kernel can be reused for several batched OFM

6 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

Fig. 4. Architecture of a pair of cores in a line.

a

t

i

d

a

n

f

c

i

o

p

i

z

q

t

a

a

r

i

c

D

w

o

c

k

l

o

p

a

n

a

f

l

o

i

reducing the memory bandwidth requirements at the cost of some

additional on-chip memory to accumulate OFM and more cores for

parallel processing.

The activations generated by the final fully connected layer are

sent back to the dispatch and interconnect module to be stored in

the external memory.

A core calculates the dot product between the activations and

the weights with a multiply-accumulate unit. The clusters of cores

are the modules that occupy most of the resources of the architec-

ture and so any area optimization of the core has a great impact in

the final area. MAC units are implemented for 8-bit unsigned ac-

tivations and 8-bit signed weights. Multiplication results are accu-

mulated without bit loss. The final result is shifted according to the

fixed-point scale factor and truncated centrally in the send/receive

activations modules.

The core has dot-product parallelism to improve performance,

that is, eight 8-bit weights and activations are read in parallel in a

single memory access. To efficiently use all resources of the FPGA,

LUTs and DSPs are both used to implement MACs. One DSP can

implement two 8-bit multiplications with one operand in common

and two additions [29] . So, one DSP has to be shared between two

cores. To implement 8-bit multiplications with LUTs the architec-

ture proposed in [30] is followed. The datapath of two cores shar-

ing DSPs of the same line is illustrated in Fig. 4 .

The architecture in the figure determines the dot-product be-

tween a common vector of eight activations, A = [A 0 , .., A 7] , and

two vectors of weights, W = [W 0 , .., W 7] and Z = [Z 0 , .., Z 7] , to pro-

duce two dot products, DP 0 = A · W and DP 1 = A · Z. Each MAC is

implemented with DSPs and LUTs. When there are no more DSPs

available, the core is only implemented with LUTs. The architecture

is pipelined (not shown in the figure) to improve throughput.

4.2. Send/Receive activations module

The send/receive activations module in the convolutional layers

is responsible for reading and writing data from/to the feature map

memory. The module transfers data between the external mem-

ory and the FMM, reads activations from the FMM and sends them

to the PE cluster, and receives activations from the PE cluster and

writes them in the FMM. The module contains configurable read

and write memory address generators for the FMM. The order of

reads and writes of activations from the FMM must take into con-

sideration the window size of the convolution, the size of the maps
nd the pooling size. Previous approaches calculate 2D convolu-

ions and accumulate the results for all feature maps. The method

s inefficient when a single architecture is used for all layers and

ifferent layers have different window sizes since the underlying

rchitecture would have to be flexible to support this diversity.

Our architecture follows a different approach. Instead of run-

ing multiple 2D convolutions, a single 3D convolution is trans-

ormed into a long dot product and so the window size of the

onvolution is transparent for the processing cores. Pixels of the

nitial image or activations of the input feature maps and weights

f kernels are stored in order z − x − y (see Fig. 5).

Each activation of an output feature is obtained from the dot

roduct between the 3D kernel x k × y k × z k and the correspond-

ng activations of the IFM of size x p × y p × z p (see Fig. 5 b), where

 p is the number of IFMs. The weights of a kernel are all read se-

uentially from the memories of weights since they are stored in

his order. The activations are read in sequence from the FMM but

fter x k × z k activations the address has to jump to the next y k
dding an offset to the address of the input feature memory being

ead. For a layer without stride nor followed by pooling, the offset

s x p × z p . Formally, the dot product to calculate each step of the

onvolution is given by:

P con v =

i = y k −1 ∑

i =0

j= x k z k −1 ∑

j=0

W ix k z k + j × P startAd d r+ ix p z p + j (1)

here startAddr is the address of the first activation of the block

f the input feature map being convolved. This operation is used to

onvolve a kernel with the set of input feature maps sliding the 3D

ernel along the feature maps. If a layer is followed by a pooling

ayer, the output activations of the pooling window are pooled and

nly the pooling result is stored in the FMM. The advantage of the

roposed method is that it is independent of the size of kernels

nd the size of the convolution window.

Considering a 3D input feature map of size x p × y p × z p , a ker-

el of size x k × y k × z k , a pooling window of size x pool × y pool and

 stride of size m , the convolution of a kernel, kl , with the 3D input

eature map is given by Algorithm 1 .

poolFunction is the function to be used in the pooling operation,

ike maximum or average. The startAddr function adds the correct

ffset to the address pointer of the feature map memory, depend-

ng on the next activation to be calculated.

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 7

Fig. 5. Reading mode of images, feature maps and weights.

Algorithm 1: Convolution with a 3D kernel.

Require: 3D input feature map and one kernel of weights

Ensure: A single output feature map result of the convolution of

the feature maps with the kernel

for r = 1 to y p /m do

for m = 1 to x p /m do

poolV ar ⇐ 0

for l = 1 to x pool do

for k = 1 to y pool do

dp = ∑ i = y k −1

i =0

∑ j= x k z k −1

j=0
W ix k z k + j × P startAd d r(r,m,l,k,i, j)+ ix p z p + j

poolV ar ⇐ poolF unction (poolV ar, dp)

end for

end for

neuron (m,r) ⇐ poolV ar

end for

end for

Fig. 6. Example of a 3D feature map and a kernel to be convolved.

Z

∑

∑

a

f

s

fi

t

t

c

e

(

p

r

t

t

r

t

s

s

fi

t

e

p

o

o

b

T

c

t

t

t

4

(

n

v

o
Let’s consider an example with three input feature maps, Z 0 , Z 1 ,

 2 , and a 3D kernel, K 0 , K 1 , K 2 (see Fig. 6).

The first kernel convolution is given by:

1

i =0

2 ∑

j=0

a ji × k ji +

4 ∑

i =3

2 ∑

j=0

a ji × k j(i −1)
The next convolution is given by:

2

i =1

2 ∑

j=0

a ji × k ji +

5 ∑

i =4

2 ∑

j=0

a ji × k j(i −1)

nd so on with the other two convolutions.

The order of read and write addresses of the activations

rom/to the FMM are generated by the address generators of the

end/receive activations module. The address generators are con-

gured for each layer (there is no hardware reconfiguration, only

he registers that store the count limits of the generators are ini-

ialized with new values). To improve the performance of the ar-

hitecture, the FMM explores intra-output parallelism where sev-

ral activations of an output feature map are generated in parallel

see the block diagram of the FMM in Fig. 7).

Different activations of an output feature map are generated in

arallel using the same kernel and different blocks of the IFM. To

ead different blocks of an IFM, the memory of the FMM is par-

itioned in several smaller memories. The number of memories is

he same as the number of blocks to be processed in parallel. The

ead and write addresses are common to all memory blocks. At

he edges of the IFM blocks, the convolution window needs data

tored in a neighbor memory. The output multiplexers permits to

elect the memory to read data from.

Finally, the result of the activation is shifted (to support mixed

xed-point quantization) and truncated to the number of bits of

he activations.

The send/receive activations module for the fully connected lay-

rs is simpler since there are no convolutions, only a long dot-

roduct. Data from the batch memory is read and written only

nce for each kernel. When there is IFM batching, the batch mem-

ry consists of several separated memories, one for each map

atch. The read and write addresses are common for all memories.

he output activations from the cores are also shifted and trun-

ated, like in the convolutional layers, before being written back in

he batch memory. Batch memories are dual port to allow simul-

aneous reading from the fully connected cores and writing from

he convolutional cores.

.3. Data dispatch and interconnect module

The data dispatch and interconnect module contains DMA

Direct Memory Access) blocks to transfer data from the exter-

al memory to the on-chip memories of the architecture and

ice-versa. Depending on the memory bandwidth requirements

f each module, DMAs can be dedicated or shared. DMAs are

8 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

Fig. 7. Architecture of the feature memory buffer.

Fig. 8. Execution flow of the CNN model implemented by the ARM processor.

5

a

o

s

o

t

f

h

m

5

o

t

T

T

w

i

i

T

w

i

s

e

t

m

T

fi

s

l

t

t
initially programmed for a sequence of transfers. The transferred

information contains a header to identify the destination of the

data to be transferred.

The dispatch of data is controlled by the ARM processor helped

by the internal controller of the architecture. The internal con-

troller informs the processor whenever a layer has finished its exe-

cution. The processor is responsible for the configuration of DMAs

and to signal the controller when data (image and weights) are

loaded and ready to be processed. The processor is also responsi-

ble for the configuration of the controller and the architecture for

each new layer.

The complete execution of a CNN consists of the execution of

a sequence of layers. The ARM processor is programmed according

to each CNN model following the execution flow (see Fig. 8).

The overlapping of communication and computation depends

on the available on-chip memory and the CNN model. Since this is

known before runtime, the optimization is considered when pro-

gramming the flow in the ARM.
. Performance and area models of the architecture

The convolutional and the fully connected clusters work in par-

llel in a pipelined fashion. To obtain the best throughput, delays

f both PE clusters should be close to each other as much as pos-

ible. The execution times of the clusters depend on the number

f cores, which depends on the available hardware resources, and

he external memory bandwidth. In the following sections, a per-

ormance and an area model of the architecture is described that

elps the designer to design the architecture guided by perfor-

ance and area.

.1. Performance model

The execution time of the complete CNN, Texec CNN is the sum

f the execution time of each convolutional layer, Texec CL plus

he time to transfer the image to be inferred and the result,

comm image , that is

 exec CNN = T comm image +

i = CL ∑

i =1

T exec CL i +

i = F L ∑

i =1

T exec F L i (2)

here CL is the number of convolutional layers of the CNN and FL

s the number of fully connected layers.

The execution throughput (images/s), Thr CNN , of the architecture

s given by

 hr CNN =

1

max

(
T comm image +

∑ i = CL
i =1 T exec CL i ,

∑ i = FL
i =1 Texec FL i

f cCoreL

) (3)

here fcCoreL is the number of lines of cores in the FC cluster, that

s, the batch size. This throughput is in fact an average throughput

ince fcCoreL results are produced for each execution of the FC lay-

rs.

The time to read the image from external memory depends on

he image size, imageS , and the memory bandwidth to external

emory, BW (bytes/s), as follows:

 comm image =

imageS

BW

(4)

The time to execute a convolutional layer depends on the con-

guration of the architecture and on the features of the layer. As-

ociated with the architecture there is the number of cores in each

ine of the convolutional cluster, convCoreL , the number of ports of

he FMM, convCoreC , and the operating frequency of the architec-

ure, freq . The features associated with the layer are the number

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 9

o

w

c

m

t

c

n

u

m

s

a

t

d

r

t

i

l

t

o

t

c

c

w

n

l

(

d

d

w

m

g

T

t

i

e

w

c

g

d

T

T

t

c

a

i

5

r

A

w

a

a

t

f

a

c

s

A

+

w

c

a

m

c

l

a

t

B

5

n

s

o

s

f

o

s

a

h

i

u

c

s

o

T

O

e

A

s

m
f 3D kernels, nKernel , and the size of the 3D kernels, kernelSize ,

hich is the same for all kernels.

It is assumed that each weight memory of the fully connected

luster has enough space to hold two kernels, so that kernel com-

unication can overlap with kernel computation. The storing of

he new output activations generated in a layer overlaps with the

alculation of the activations. This is essential in the fully con-

ected layers since the weight kernels are not reused like those

sed in the convolutional layers.

Another aspect has to do with the size of the image and feature

aps. If any of these do not fit in the FMM the layer is executed in

teps, that is, the image or the IFM are divided and processed sep-

rately. For example, an image may have to be divided in two and

he half images are processed one after the other. Also, if the OFM

o not fit the FMM, then it is stored in external memory and then

eloaded to be processed in steps. It means that the weights have

o be read from external memory as many times as the number of

mage or IFM partitions.

Considering these aspects, the execution time a convolutional

ayer depends on the number of cycles to do the convolutions, the

ime to transfer the IFM when it had to be stored in external mem-

ry, the time to transfer convCoreL kernels and the time to write

he last convCoreL activations.

The number of cycles to execute a convolutional layer, convCy-

le , is given by Eq. (5) .

on v Cycle =

1

con v CoreC

⌈
nKernel

con v CoreL

⌉
× nCon v × kernelSize

nMAC
(5)

here nConv is the number of 3D convolutions and nMAC is the

umber of parallel multiply-accumulations of each core.

The volume of non-overlapping data to be transferred in the

ayer, dCommCL , depends on the necessity to use external memory

EM) to store the OFM, OFM size , that is

C ommC L = con v CoreL × kernelSize without EM (6)

C ommC L = con v CoreL × kernelSize × nP artial + OF M size

with EM (7)

here nPartial is the number of partitions of the input feature

ap.

From these equations, the total execution time of a layer is

iven by Eq. (8) .

 exec CL =

con v Cycle

f req
+

dC ommC L

BW

(8)

In the case of FC layers, the IFM and OFM are small, compared

o those of the convolutional layers, and so it is assumed that there

s enough batch memory to hold them. The number of cycles to

xecute a FC layer, fcCycle , is given by Eq. (9) .

f cCycle =

⌈
nKernel

F CCoreC

⌉
× kernelSize

nMAC
(9)

here fcCoreC is the number of cores in each column of the fully

onnected cluster.

The volume of data to be transferred in a FC layer, dCommFL , is

iven by Eq. (10)).

CommF L = nKer nel × ker nelSize (10)

From these equations, the total execution time of a FC layer,

exec FL , is given by Eq. (11) .

 exec F L = max

(
f cCycle

f req
,

dCommF L

BW

)
(11)

The performance model just described does not include the

ime to configure the layers. It depends on the unit that does this
onfiguration but the configuration data is negligible compared to

ll weights and activations to be transferred. Therefore, it was not

ncluded in the model.

.2. Area model

For the area model, the computational and the on-chip memory

esources were considered.

The total computational area, A comp , is given by:

 comp = AC ctrl + AC interC + con v CoreL × con v CoreC × AC cCore

+ f cCoreL × f cCoreC × AC f cCore + AC SRAcon v + AC SRA f c (12)

here AC ctrl is the area of the system controller, AC interC is the

rea of the data dispatch and interconnect module, AC SRAconv is the

rea of the send/receive activations module of convolutional clus-

er, AC SRAfc is the area of the send/receive activations module of

ully connected cluster, AC cCore is the area of the convolutional core

nd AC fcCore is the area of the FC core.

The area is computed as the number of LUTs and DSPs. A comp

onsiders DSPs and LUTs as separate resources, that is, two in-

tances of A comp are considered, one for DSPs and another for LUTs.

The total on-chip memory resources, A mem

, is given by

 mem

=AM interC + AM SRAcon v + AM SRA f c + con v CoreL × AM cCore + (13)

 f cCoreL × AM f cCore + f cCoreC × AM batch (14)

here AM interC is the memory size of the data dispatch and inter-

onnect module, AM SRAconv is the memory size of the send/receive

ctivations module of the convolutional cluster, AM SRAfc is the

emory size of the send/receive activations module of the fully

onnected cluster, AM cCore is the local memory size of the convo-

utional cluster, A fcCore is the local memory size of the FC cluster

nd AM batch is the memory required to store an instance batch of

he batch memory. In this case, the memory unit is one 4KBytes

RAM.

.3. Designing with the models

From the performance and area models just described, the

umber of cores of each cluster and the batch size is explored re-

tricted by the total resources of the FPGA and the external mem-

ry bandwidth searching for the best performance. This design

pace exploration is still manual.

The designer must guarantee that each local memory of the

ully connected cluster is enough to hold two kernels to guarantee

verlapping of computation and communication. Also, when pos-

ible, guarantee that the FMM can hold the IFM and the OFM of

ny convolutional layer and that the batch memory is enough to

old two OFM of the previous convolutional layer for each batch

nstance, and one IFM and one OFM of the fully connected layer.

The number of cores of the proposed architecture is config-

rable and depends on the available resources. Both clusters of

ores of the proposed architecture run in parallel with a pipeline

tructure. Hence, to obtain a balanced pipeline, the execution times

f both must be equal, that is:

 comm image +

i = CL ∑

i =1

T exec CL i =

i = F L ∑

i =1

T exec F L i (15)

This condition is constrained by the available on-chip memory,

CM , the available computing resources, COMP , and the available

xternal memory bandwidth, BW . The required on-chip memory

 mem

must be lower than OCM and the necessary computation re-

ources, A comp must be lower than COMP . The available bandwidth

ust be distributed according to the communication requirements

10 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

Table 1

Resources occupation of three different implementations of the core.

Type Core 0 Core 1 Core 2

LUTs 305 411 517

DSPs 2 1 0

Table 2

Configuration and Area of the proposed architecture running the inference of

AlexNet in both FPGA platforms.

ZYNQ7020 ZYNQ7045

ConvCores 16 × 7 48 × 8

FCcores 2 × 6 1 × 40

Cores Type 0/1/2 108/4/12 280/104/40

BATCH 6 40

Feature Mem. Size 28 K × 8 bytes 56 K × 8 bytes

Batch Mem. Size 6 × 2 K × 8 bytes 40 × 2 K × 8 bytes

Weight Mem. Size 1 K × 8 bytes 1 K × 8 bytes

LUT DSP BRAM LUT DSP BRAM

Convolutional Cluster 34584 220 0 128144 664 0

FC Cluster 6204 0 0 20680 0 0

Feature Memory 957 0 56 1068 0 112

Batch Memory 535 0 24 2613 0 160

Data

Dispatch + Control

3530 0 18 3832 0 18

Weight Mem 120 0 34 360 0 98

Total 46130 220 134 156951 664 388

Table 3

Performance results of the proposed architecture for high throughput running

the inference of AlexNet in both FPGA platforms.

ZYNQ7020 ZYNQ7045

Images/s 227 774

Performance (GOPs) 329 1120

% Peak Performance 83 66

6

A

t

a

c

o

t

p

t

n

p

e

f

a

a

a

p

u

a

m

A

r
of each cluster. The ratios between the data communication of con-

volutional layers, convComm , and the data communication of the

FC layers, fcComm , are determined and then the bandwidth is dis-

tributed with the same ratio.

Given the available resources and the available memory band-

width to external memory, the manual design space exploration

starts with a particular batch and a particular number of con-

volutional and fully connected cores whose total number of re-

sources (LTs, DSPs and BRAMs) do not exceed the available re-

sources, according to the area model. From each particular config-

uration of the architecture, the performance is estimated. The per-

formance model gives us the execution time of convolutional lay-

ers and of fully connected layers. To balance these figures accord-

ing to Eq. (15) , we change the number of cores used to run each

type of layers and the memory bandwidth reserved for each set

of cores. Two performance metrics are used to assess the quality

of the solution: image throughput and performance efficiency (ra-

tio between estimated performance and peak performance). Given

the limited memory bandwidth, increasing the number of cores re-

duces the performance efficiency whenever there is a bottleneck

associated with the memory bandwidth.

6. Results

All architectures were tested with two regular CNNs: AlexNet

and VGG16. All architectures were implemented with Vivado

2019.1 targeting a ZedBoard with a ZYNQ XC7Z020 (Artix-7 FPGA

with a dual ARM Cortex-A9 CPU) and a Xilinx SoC ZC706 Evalu-

ation Kit with a XC7Z7045 FPGA (Kintex-7 FPGA with a dual ARM

Cortex-A9 CPU). The programmable logic has four 64-bit High-

Performance (HP) ports with direct access to external memory

working at 150 MHz with a total bandwidth of 4.8 GByte/s. The

real data transfer in the ZedBoard with these ports was measured

and achieved around 3.3 GBytes/s and this is the bandwidth

considered during the design of the architecture. In the ZC706

board, the DRR3 memory connected to the programmable logic

side supports up to 4.8 GBytes/s. The real data transfer of a ZC706

board is 4 GBytes/s. The runtime configuration of the architecture

is done by the ARM processor. The architecture runs at 200

MHz in the Artix-7 technology and at 250 MHz in the Kintex-7

technology. In all implementations, 8-bit mixed fixed-point is used

to represent weights and activations that guarantees very low

accuracy drop (1% and below) [26] .

To test and assess the quality of the proposed configurable ar-

chitecture, the next steps were followed:

1. Two instances of the architecture for two different CNNs were

designed using the performance and area models targeting two

different FPGAs. The models are used to help the designer find

an appropriate number of cores constrained by the area of the

target FPGA. This process is still manual. However, the hardware

description of the architecture uses generics that facilitate the

design of the architecture. Even the type of the cores are spec-

ified with generics and so there is no extra effort to design the

architecture in order to use different types of cores;

2. The designs were tested on the board and the area and perfor-

mance were determined;

3. The measured area and performance of these four architectures

were compared with the results obtained from the models to

access their precision for the same four architectures;

4. The area results are quite close to the values obtained with the

area model since the model considers the area of each individ-

ual block of the architecture obtained from the implementation.

The results obtained with the performance model are within 4%

of the measured results. Considering this to be an acceptable

error, a set of studies based on the models were done to de-
termine some important tradeoffs: performance versus memory

bandwidth and communication versus computation.

All results are reported in the following sections.

.1. Characterization of the proposed configurable architecture using

lexNet

The convolutional and the fully connected cores occupy most of

he area of the architecture. To balance the utilization of both LUT

nd DSP resources of the FPGA, different im plementations of the

ores are considered with two, one or no DSPs (see the resources

ccupation of the cores in Table 1).

The proposed architecture has been configured for high

hroughput (images/s) in the inference of AlexNet in both FPGA

latforms. Using the performance and area models introduced in

he previous section, the number of convolutional cores, fully con-

ected cores and batch size were calculated for high through-

ut. The architectures were then implemented and executed on

ach FPGA platform. The number of resources and the per-

ormance of the designed systems are described in Tables 2

nd 3 .

In the ZYNQ7020 FPGA a throughput of 227 images/s was

chieved that corresponds to a real performance of 329 GOPs,

round 83% of the peak performance. Therefore, it has a high

erformance efficiency given that a single programmable mod-

le is being used to run all layers. In the ZYNQ7045 there are

round 4 × more hardware resources and so it was expected a

uch higher performance. In this device our architecture runs the

lexNet inference with a throughput of 774 images/s, which cor-

esponds to a performance of 1120 GOPs. This is 3.4 × the per-

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 11

Fig. 9. Estimated throughput of the architecture for different memory bandwidths.

f

f

f

Z

h

a

a

t

I

c

w

t

m

o

o

d

m

b

w

H

t

m

i

T

3

a

m

a

7

p

l

p

p

l

i

n

u

t

c

n

T

p

a

C

s

t

F

t

L

a

a

p

o

t

n

a

b

c

6

a

a

A

m

o

p

c

i

f

c

t

b

a

a

a

f
ormance achieved in the ZYNQ7020. The percentage of peak per-

ormance is lower (66%) because the increase in resources was not

ollowed by an increase in the external memory bandwidth. The

YNQ7045 still have resources to improve the performance, but the

igher FPGA occupation leads to a lower operating frequency and

 lower performance efficiency. With 512 convolutional cores the

rchitecture processes 837 images/s with a peak performance over

wo TOPs but the performance efficiency reduces to around 55%.

t means that the communication becomes the bottleneck and the

ores are underutilized. The almost linear increase of performance

ith the number of resources shows that the proposed architec-

ure is scalable and can be efficiently implemented in FPGAs with

ore resources.

To determine the influence of the external memory bandwidth

ver the performance of the system, the throughput performance

f the architecture was estimated considering FPGA boards with a

ifferent memory bandwidth (see Fig. 9).

The points identified in the figure correspond to the perfor-

ance points obtained with the memory bandwidth of the tested

oards. According to the results illustrated in the figure, the band-

idth limits the performance of the system in both platforms.

ow much is this limitation depends on the type of FPGA. With

he ZYNQ7020 the performance improvements achieved with a

emory bandwidth higher than 4 GBytes/s are negligible, that

s, the available resources limit the performance improvement.

he performance achieved with the real memory bandwidth,

.3 GBytes/s, of the ZedBoard is only 12% above the maximum

chievable performance. For the ZYNQ7045, as expected, a higher

emory bandwidth is needed to take advantage of all the avail-

ble resources of the FPGA. In this case, a memory bandwidth of

 GBytes/s permits to achieve a performance of only 1% from the

eak performance. Also, the real memory bandwidth of the board

imits the performance to 25% from the peak performance.

Considering the implementations of Table 3 , the transfer and

rocessing times of each layer have been determined using the

erformance and area models (see Fig. 10).

For a perfect processing and communication balancing both de-

ays in each layer should be equal. The processing only dominates

n the first two layers. So, in general, the communication domi-

ates the execution time of the architecture, that is, the cores are

nderutilized. To improve the performance efficiency of the archi-

ecture, the number of cores can be reduced to balance the exe-

ution time with the communication time. However, reducing the
 5
umber of cores also reduces the total performance of the system.

he designer must choose an appropriate point depending on the

roject requirements.

The results presented so far are for high throughput. However,

 specific application may simply require a particular throughput.

onsidering this, several implementations were generated with

pecific estimated image processing throughputs and the occupa-

ion of resources in terms of LUTs and DSPs was determined (see

ig. 11).

The number of LUTs and DSPs are related to each other since

he arithmetic operations in the cores can be implemented with

UTs or DSPs. The implementations whose occupation of resources

re presented in the graphs consider a balanced occupation of LUTs

nd DSPs. As can be observed, it is possible to achieve real-time

rocessing (assuming real-time processing as 30 images/s) with

nly one fourth of the resources of a ZYNQ7020. This means that

here is a considerable margin to increase the complexity of the

etwork in terms of weights and number of computations and still

chieve real-time processing. Also, the proposed architecture can

e used as a core within a more complex image processing appli-

ation using only a fraction of the FPGA.

.2. Implementation of the architecture for VGG16

To show the usability of the architecture to run larger CNN,

n architecture to run the inference of VGG16 was implemented

nd configured. This is a much larger network when compared to

lexNet, as described in the introduction, with more weights and

ore computations. One important difference with a great impact

ver the performance is the fact that while in the AlexNet the IFM

lus the OFM of any layer fit in the feature map memory, in the

ase of VGG, the feature maps of the first layers do not fit the

nternal memory and have to be stored in external memory. This

orces the feature maps to be processed in smaller maps with a

onsequent increase in the volume of data transferred between

he core and the external memory. VGG16 was implemented in

oth FPGAs for high throughput (images/s) (see results in Tables 4

nd 5).

In the ZYNQ7020 FPGA, a throughput of only 12 images/s was

chieved, which corresponds to a real performance of 385 GOPs,

round 93% of the peak performance. This is a very high per-

ormance efficiency. In the ZYNQ7045 it was possible to achieve

3 images/s with a performance of 1632 GOP/s and a perfor-

12 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

Fig. 10. Transfer and processing delays for each layer of AlexNet.

Fig. 11. Trade-off between occupation of resources and image throughput for inference of AlexNet in ZYNQ 7020 and ZYNQ7045.

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 13

Fig. 12. Transfer and processing delays for each layer of VGG16.

Table 4

Configuration and area of the proposed architecture running the inference of VGG16

in both FPGA platforms.

ZYNQ7020 ZYNQ7045

ConvCores 16 × 8 64 × 8

FCcores 1 × 1 1 × 6

BATCH 1 6

Feature Mem. Size 32 K × 8 bytes 144 K × 8 bytes

Batch Mem. Size 1 × 2 K × 8 bytes 6 × 2 K × 8 bytes

Weight Mem. Size 1 K × 8 bytes 1 K × 8 bytes

LUT DSP BRAM LUT DSP BRAM

Convolutional Cluster 42856 220 0 178632 812 0

FC Cluster 517 0 0 1830 12 0

Feature Memory 1048 0 64 1308 0 288

Batch Memory 230 0 4 539 0 124

Data

Dispatch + Control

3530 0 18 3940 0 18

Weight Mem 120 0 34 480 0 130

Total 48535 220 120 187007 824 460

Table 5

Performance results of the proposed architecture for best throughput run-

ning the inference of VGG16 in both FPGA platforms.

ZYNQ7020 ZYNQ7045

Images/s 12 53

Performance (GOPs) 385 1632

% Peak Performance 93 86

m

Z

t

a

t

Table 6

Performance comparison of the proposed architecture with previous works running

AlexNet and VGG in ZYNQ7020 and ZYNQ7045.

This Work This Work [19] This Work [26] This Work

CNN AlexNet AlexNet AlexNet VGG16 VGG16 VGG16

FPGA 7020 7045 7045 7020 7020 7045

LUTs 46130 156951 86262 48535 29867 187007

BRAMs 134 388 303 116 86 460

DSPs 220 664 808 220 190 824

BW 3.3 4.0 10.8 3.3 4.2 4.0

Freq 200 250 200 200 214 230

Images/s 227 774 340 12 2.7 53

GOPs 329 1120 493 385 84 1632

GOPs/kLUTs 7.1 7.1 5.7 7.9 2.8 8.7

GOPs/DSPs 1.5 1.7 0.6 1.8 0.44 2.0

t

a

p

p

a

6

O

a

m

F

7

e
ance efficiency of 86 %. Note that the operating frequency of the

YNQ7045 implementation decreased slightly to 230 MHz due to

he higher occupation of the FPGA.

The transfer and processing times of each layer of VGG16 was

lso determined (see Fig. 12).

The detailed delays of each layer of VGG16 help us understand

he high performance efficiency obtained. In the ZYNQ7020 all data
ransfers overlap with data processing, except in the first layer. So,

lmost all cores are always working during the whole inference

rocessing. For the ZYNQ7045, the transfer time is higher than the

rocessing delays. So, the fully connected cores are underutilized

nd consequently reduces the performance efficiency.

.3. Comparison with the state of the art

The proposed architecture was compared with previous works.

nly a few works consider 8-bit mixed fixed-point representations

nd the ZYNQ7020 as the target device (see Table 6).

Compared to related work our architectures have better perfor-

ance and better area efficiency in both types of networks and

PGAs.

. Conclusions and future work

In this work, a configurable architecture for the inference ex-

cution of CNNs was proposed. The architecture targets both low

14 M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136

[

[

[

[

[

[

and high density FPGAs. To improve performance and reduce hard-

ware with negligible accuracy loss 8-bit mixed fixed-point repre-

sentation for weights and activations was considered.

The architecture is scalable and has high performance and area

efficiencies. Compared to state of the art works over the same

FPGA devices, the proposed architecture improves the image in-

ference throughput. Also, it has been shown that it is possible to

run large networks in a low density FPGA with acceptable perfor-

mance.

The next step is to study the impact of hybrid quantization (dif-

ferent fixed-point datawidths in different layers) over the area and

the performance of the architecture. It is also planed to extend the

architecture with new modules to support irregular CNNs.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgment

This work was supported by national funds through

FCT, Fundação para a Ciência e a Tecnologia, under project

UIDB/50021/2020 and through IPL, Instituto Politécnico de Lisboa,

under project IPL/IDI&CA/2019/inCNeuralN/ISEL.

References

[1] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-

thy , A. Khosla , M. Bernstein , A.C. Berg , L. Fei-Fei , Imagenet large scale visual
recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 .

[2] Y.L. Cun , L.D. Jackel , B. Boser , J.S. Denker , H.P. Graf , I. Guyon , D. Henderson ,
R.E. Howard , W. Hubbard , Handwritten digit recognition: applications of neu-

ral network chips and automatic learning, IEEE Commun. Mag. 27 (11) (1989)

41–46 .
[3] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-

volutional neural networks, in: Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, ser. NIPS’12, Cur-

ran Associates Inc., USA, 2012, pp. 1097–1105 .
[4] K. Simonyan , A. Zisserman , Very deep convolutional networks for large-scale

image recognition, in: Proceedings of the 3rd International Conference on

Learning Representations, 2015 .
[5] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9 . June

[6] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2016, pp. 770–778 .

[7] J. Zhang , J. Li , Improving the performance of OpenCL-based FPGA accelera-
tor for convolutional neural network, in: Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17,
2017, ACM, New York, NY, USA, 2017, pp. 25–34 .

[8] S.I. Venieris , C. Bouganis , fpgaConvNet: mapping regular and irregular convo-
lutional neural networks on FPGAs, IEEE Trans. Neural Netw. Learn.Syst. (2018)

1–17 .

[9] S. Chakradhar , M. Sankaradas , V. Jakkula , S. Cadambi , A dynamically config-
urable coprocessor for convolutional neural networks, SIGARCH Comput. Ar-

chit. News 38 (3) (2010) 247–257 .
[10] Y. Chen , T. Luo , S. Liu , S. Zhang , L. He , J. Wang , L. Li , T. Chen , Z. Xu , N. Sun ,

O. Temam , DaDianNao: a machine-learning supercomputer, in: 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, Dec 2014,

pp. 609–622 .

[11] C. Zhang , P. Li , G. Sun , Y. Guan , B. Xiao , J. Cong , Optimizing FPGA-based accel-
erator design for deep convolutional neural networks, in: Proceedings of the

2015 ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, ser. FPGA ’15, ACM, New York, NY, USA, 2015, pp. 161–170 .

[12] J. Qiu , J. Wang , S. Yao , K. Guo , B. Li , E. Zhou , J. Yu , T. Tang , N. Xu , S. Song ,
Y. Wang , H. Yang , Going deeper with embedded FPGA platform for convolu-

tional neural network, in: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’16, ACM, New York,

NY, USA, 2016, pp. 26–35 .

[13] N. Suda , V. Chandra , G. Dasika , A. Mohanty , Y. Ma , S. Vrudhula , J.-s. Seo , Y. Cao ,
Throughput-optimized opencl-based fpga accelerator for large-scale convolu-

tional neural networks, in: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’16, ACM, New York,

NY, USA, 2016, pp. 16–25 .
[14] Y. Qiao , J. Shen , T. Xiao , Q. Yang , M. Wen , C. Zhang , FPGA-accelerated deep
convolutional neural networks for high throughput and energy efficiency, Con-

currencyand Computation: Practice and Experience 29 (20) (2017) e3850–n/a .
E3850 cpe.3850

[15] Z. Liu , Y. Dou , J. Jiang , J. Xu , S. Li , Y. Zhou , Y. Xu , Throughput-optimized FPGA
accelerator for deep convolutional neural networks, ACM Trans. Reconfigurable

Technol. Syst. 10 (3) (2017) 17:1–17:23 .
[16] M. Alwani , H. Chen , M. Ferdman , P. Milder , Fused-layer CNN accelerators, in:

2016 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), Oct 2016, pp. 1–12 .
[17] Y. Shen, M. Ferdman, P. Milder, Maximizing CNN accelerator efficiency through

resource partitioning, in: Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ser. ISCA ’17, ACM, New York, NY, USA, 2017,

pp. 535–547. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080221 .
[18] P. Gysel , M. Motamedi , S. Ghiasi , Hardware-oriented approximation of convo-

lutional neural networks, in: Proceedings of the 4th International Conference

on Learning Representations, 2016 .
[19] J. Wang , Q. Lou , X. Zhang , C. Zhu , Y. Lin , D. Chen , A design flow of accelerating

hybrid extremely low bit-width neural network in embedded FPGA, in: 28th
International Conference on Field-Programmable Logic and Applications, 2018 .

[20] Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P.H.W. Leong, M. Jahre,
K.A. Vissers, FINN: A framework for fast, scalable binarized neural network in-

ference, CoRR (2016) abs/1612.07119 .

[21] S. Liang, S. Yin, L. Liu, W. Luk, S. Wei, FP-BNN: Binarized neural network on
FPGA, Neurocomputing 275 (2018) 1072–1086. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0925231217315655 .
22] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural net-

work with pruning, trained quantization and huffman coding, CoRR (2015)
abs/1510.00149 .

23] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, S. Mahlke, Scalpel: customiz-

ing DNN pruning to the underlying hardware parallelism, SIGARCH Comput.
Archit. News 45 (2) (2017) 548–560. [Online]. Available: http://doi.acm.org/10.

1145/3140659.3080215 .
[24] M. Motamedi , P. Gysel , V. Akella , S. Ghiasi , Design space exploration of FP-

GA-based deep convolutional neural networks, in: 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan 2016, pp. 575–580 .

25] Y. Shen , M. Ferdman , P. Milder , Escher: a CNN accelerator with flexible buffer-

ing to minimize off-chip transfer, in: 2017 IEEE 25th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM), April

2017, pp. 93–100 .
26] K. Guo , L. Sui , J. Qiu , J. Yu , J. Wang , S. Yao , S. Han , Y. Wang , H. Yang , Angel-Eye:

a complete design flow for mapping CNN onto embedded FPGA, IEEE Trans.
Comput.-Aided Des.Integr. Circuits Syst. 37 (1) (2018) 35–47 .

[27] L. Gong , C. Wang , X. Li , H. Chen , X. Zhou , MALOC: A fully pipelined FPGA ac-

celerator for convolutional neural networks with all layers mapped on chip,
IEEE Trans. Comput.-Aided Des.Integr. Circuits Syst. 37 (11) (2018) 2601–2612 .

28] J. Albericio , P. Judd , T. Hetherington , T. Aamodt , N.E. Jerger , A. Moshovos ,
Cnvlutin: ineffectual-neuron-free deep neural network computing, in: 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), June 2016, pp. 1–13 .

29] M. Véstias , R.P. Duarte , J.T. de Sousa , H. Neto , Parallel dot-products for
deep learning on FPGA, in: 2017 27th International Conference on Field Pro-

grammable Logic and Applications (FPL), Sept 2017, pp. 1–4 .

[30] E.G. Walters, Array multipliers for high throughput in Xilinx FPGAs with 6-
input luts, Computers 5 (4) (2016). [Online]. Available: http://www.mdpi.com/

2073-431X/5/4/20 .

Mário P. Véstias is a Coordinate Professor at the Poly-

technic Institute of Lisbon, School of Engineering (ISEL),

Department of Electronic, Telecommunications and Com-
puter Engineering (DEETC). He is a senior researcher at

the Electronic Systems Design and Automation group at
the research institute INESC-ID in Lisbon. His main re-

search interests are Computer Architectures and Digi-
tal Systems for High-Performance Embedded Computing,

with an emphasis on Reconfigurable Computing. He is a

Ph.D. in Electrical and Computer Engineering from the
Technical University of Lisbon.

Rui P. Duarte is an Assistant Professor at the University of

Lisbon, School of Engineering (IST), Department of Electri-
cal and Computer Engineering (DEEC). He is a senior re-

searcher at INESC-ID, a research institute associated with
the Engineering University, IST. His main research inter-

ests are Digital Systems Design and Computer Architec-
ture. He has a Ph.D. in Electrical and Computer Engineer-

ing from the Technical University of Lisbon.

http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0001
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0002
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0003
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0004
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0005
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0006
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0007
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0008
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0009
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0010
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0011
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0012
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0013
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0014
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0015
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0016
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0016
http://doi.acm.org/10.1145/3079856.3080221
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0018
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0019
http://arxiv.org/abs/1612.07119
http://www.sciencedirect.com/science/article/pii/S0925231217315655
http://arxiv.org/abs/1510.00149
http://doi.acm.org/10.1145/3140659.3080215
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0024
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0024
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0024
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0024
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0024
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0025
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0026
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0027
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0028
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0029
http://refhub.elsevier.com/S0141-9331(20)30303-3/sbref0029
http://www.mdpi.com/2073-431X/5/4/20

M.P. Véstias, R.P. Duarte and J.T. de Sousa et al. / Microprocessors and Microsystems 77 (2020) 103136 15

José T. de Sousa is an Assistant Professor at the Univer-

sity of Lisbon, School of Engineering (IST), Department of
Electrical and Computer Engineering (DEEC). He is a se-

nior researcher at INESC-ID, a research institute associ-

ated with the Engineering University, IST. His main re-
search interests are Digital Systems Design and Computer

Architecture. He has a Ph.D. in Electrical and Computer
Engineering from the Technical University of Lisbon.
Horácio C. Neto is an Associated Professor at the Uni-

versity of Lisbon, School of Engineering (IST), Department
of Electrical and Computer Engineering (DEEC). He is re-

sponsible for the Electronic Systems Design and Automa-

tion (ESDA) research group at INESC-ID, a research insti-
tute associated with the Engineering University, IST. His

main research interests are Digital Systems Design and
Computer Architecture, with emphasis in Reconfigurable

Computing. He has a Ph.D. in Electrical and Computer En-
gineering from the Technical University of Lisbon.

	A fast and scalable architecture to run convolutional neural networks in low density FPGAs
	1 Introduction
	2 Related work
	3 Convolutional neural networks
	4 Architecture for CNN inference
	4.1 PE Clusters
	4.2 Send/Receive activations module
	4.3 Data dispatch and interconnect module

	5 Performance and area models of the architecture
	5.1 Performance model
	5.2 Area model
	5.3 Designing with the models

	6 Results
	6.1 Characterization of the proposed configurable architecture using AlexNet
	6.2 Implementation of the architecture for VGG16
	6.3 Comparison with the state of the art

	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgment
	References

