
Stochastic Processors on FPGAs to Compute Sensor
Data Towards Fault-Tolerant IoT

Abstract—The continuous increase in the amounts of data
received at the edges of the Grid is making necessary to
pre-compute data at the IoT device before communicating it
over the network. Moreover, in the IoT context the devices
are often required to operate under heavy power and area
constraints and subjected to harsh environments. However, in
this context, traditional computing paradigms struggle to provide
high availability and fault-tolerance. Stochastic Computing has
emerged as a competitive computing paradigm that produces fast
and compact implementations of arithmetic operations, while
offering high levels of parallelism, and graceful degradation
when in the presence of errors. Stochastic Computing is based
on the computation of pseudo-random sequences of bits, hence
requiring only a single bit per signal. In virtue of the gran-
ularity of the bitstreams, the bit-level specification of circuits,
high-performance characteristics and reconfigurable capabilities,
FPGAs are often adopted to implement and test such systems.
The proposed framework takes a high-level specification and
automatically creates a complete Stochastic Computing systems
capable of interfacing sensors directly on the FPGA, and per-
form computations over the stochastic bitstreams. Moreover, the
presented framework is also able to generate custom stochastic
processing units, perform fault-tolerance tests, and report esti-
mates on performance, resources and power. As proof-of-concept,
this paper presents two Machine Learning applications typical
in IoT, implementing Karhunen-Loeve Transforms and Neural
Networks, and compares them against typical implementations.

Index Terms—IoT, Fault-Tolerance, Stochastic Computing,
Stochastic Bitstreams, Approximate Computing, FPGA, Evalua-
tion Framework, Karhunen-Loeve Transform, Neural Networks.

I. INTRODUCTION

Edge computing intends to compute vast amounts of data,
constantly generated by IoT devices, before communicating
the resulting data to the Grid. Moreover, to alliviate the Edge
servers from computing basic, but essential, Digital Signal
Processing (DSP) and Machine Learning (ML) functions, there
is interest in delegating such computing to the IoT device.
However, in the IoT context devices are often required to
operate under heavy power and area constraints and subjected
to harsh environments, struggle to provide high availability
and fault-tolerance. To overcome such limitations, this work
proposes to make use of a different computing paradigm that
blends well with the IoT context, and offers direct analog
sensor interface without Analog-to-Digital Converters (ADCs),
fault-tolerance and savings in resources and power.

Stochastic arithmetic has emerged as an alternative compu-
tational paradigm able to provide approximate computations
requiring less hardware, towards a circuit design with simpler

Fig. 1. Illustration of two scenarios for a typical IoT application, with (I)
and without (II) stochastic computing.

but massively parallel components, trading off precision for
computation time [1].

Applications such as neuromorphic systems [2], [3], [4],
bio-inspired systems [5], neural networks [6], [7], high-
throughput Bayesian inference [8], image and video pro-
cessing [9], Finite Impulse Response (FIR) [10] and Infinite
Impulse Response (IIR) [11] digital filters, and autonomous
cyber-physical systems [12] are characterized for their regular-
ity in their data-path. Their computations are mainly based on
multiple multiplications followed by accumulations. Moreover,
many of these applications do not require exact results and can
tolerate some deviations in their computations.

The operation of Stochastic Computing (SC) closely re-
sembles biological neural systems, which are known to ex-
cel in robustness, power-efficiency, and massively parallel
neural elements. Moreover, they have highly reconfigurable
and plastic connections, a feature which can be emulated
by reconfiguration capabilities of Field-Programmable Gate
Arrays (FPGAs). In addition, the bit level specification of
stochastic bitstreams makes it favorable for implementation
on these devices.

Figure 1 illustrates the typical scenario (I) where a de-
pendable IoT system requires the implementation of fault-
tolerance mechanisms at all levels of the system, even though
it only acquires data from the sensor and communicates the
data to the Edge servers. The figure also presents the new
approach (II) using SC, which performs computations directly
over he acquired stochastic bitstream, thus alleviating the
computational load at the Edge. Moreover, by adopting SC,
the proposed approach also reduces the require fault-tolerance
mechanisms at the IoT and Edge levels.

Insofar, the majority of research conducted on SC is con-
fined to a set of applications, which are highly customized,



specific to certain applications and difficult to extend its
adoption. Furthermore, the benefits of SC are not always clear
due to the resources of the supporting elements and the clock
latency to process long bitstreams. Often, the benefit of SC is
shadowed by the latency and resources required to interface a
traditional computing systems.

As a motivational example, the Bayesian inference system
presented in [13] requires 597 Logic Elements (LEs) to be
implemented, of which, only 42 are spent on the datapath
for the Bayesian Machine. The remaining 555 LEs are spent
on conversion of 13 stochastic bitstreams. The contribution
in [14] presents a comparison of parallel binary versus stochas-
tic implementations for neural networks on reconfigurable
hardware. The authors concluded that even though stochastic
bitstreams require more clock cycles to compute than binary,
the advantage of compact realizations in hardware surpasses
that through comparison of geometric mean of the two metrics.
Therefore there is a need for a methodology to make this
assement at an earlier stage of the design process.

The main challenge addressed in this paper is to ease
the definition and evaluation of a Stochastic Processor (SP)
to compute, at the IoT-level, mathematical expressions as
alternative to other time consuming and prone-to-error design
approaches, and without having to delve into the technicalities
of High-Level Synthesis (HLS).

This contribution proposes a highly customizable and scal-
able framework that given a problem’s specification as mathe-
matical expression, it generates the corresponding SP, and its
supporting blocks, targeting reconfigurable logic. This work
is intended to facilitate automated architectural changes via
unified and regular interfaces, and design-space exploration
often sought in research due to the long execution times.
Moreover, this work provides an estimate of resources, power
and performance metrics. This enables the usage of the SC
in stand-alone stochastic systems or accelerators for heteroge-
neous and System-on-a-Chip (SoC) platforms.

The main challenge is to find a quick and easy method to
describe the datapath of the system which is also facilitates
the implementation of applications.

The flow of the proposed framework is illustrated in Fig. 2.
It starts with a high-level specification from the user as a math-
ematical expressions described in Python, which are translated
into a computational stack, as sequences of inter-connected
operands and operators. The framework then generates the
Register Transfer Level (RTL) in Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language (VHDL)
for custom SC arithmetic units, the SP which implements the
desired functionality, and the supporting blocks.

The main contribution of this work is a framework for fast
prototyping os SC systems on FPGAs, and its demonstration
generating circuit designs for algorithms common in IoT.
Moreover, the Karhunen-Loeve Transform (KLT) algorithm
can be implemented as inner product, which is the same for an
FIR filter, hence demonstrating its wide range of applicability
of the proposed work.

This paper is organized as follows: section II is devoted to

Fig. 2. Flow of the proposed framework to simulate, synthesize and evaluate
Stochastic Computing systems on FPGAs.

introduce SC and presents the most relevant research contri-
butions incorporated in the proposed framework. Section III
introduces the inner workings of the proposed framework, to
generate VHDL entities and the data-path for the mathematical
expression to be implemented. Section IV presents the details
about the proposed framework. A demonstration of a large-
scale stochastic system with the first implementation of the
KLT implemented on an FPGA. Conclusions and final remarks
are in section VIII.

II. BACKGROUND ON STOCHASTIC COMPUTING

J. Von Neumann introduced SC in [15] as a method to de-
sign probabilistic logic circuits and synthesize robust systems
from unreliable components. In [16], Gaines has introduced
the use of stochastic bitstreams to represent operators with
high levels of error tolerance.

A. Stochastic Bitstreams

By definition, a stochastic signal is the result of a
continuous-time stochastic process which produces two values:
0 and 1. (bipolar). According to [1], a unipolar stochastic
bitstream is a sequence of stochastic signals over time whose
value is within [0; 1] and defined as the number of ones (o)
over the total number of bits (t). In bipolar representation
the value is within [−1; 1] and is also encoded as a ratio
but followed by a negative bias and a scale factor of 2. On
stochastic bitstreams there are no weights in the representation,
as in typical binary-radix representation, thus all bits have the
same contribution for the encoded value. For example, the
same sequence of 8 bits 10110110 represents 5/8 = 0.625
in unipolar and 2 ∗ (5/8 − 0.5) = 0.25 in bipolar. Fig. 3
illustrates the aforementioned stochastic bitstream. On top
there’s the clock signal, to ensure synchronism; and on bottom
the encoded value.

B. Arithmetic Units

To perform arithmetic computations several stochastic arith-
metic units have been proposed, including an adder, and a
multiplier, as illustrated in Fig. 4.More details on stochastic



Fig. 3. Example of a stochastic bitstream encoding 0.625 and 0.25 in unipolar
nd bipolar encodings, respectively.

Fig. 4. Block diagram of the unipolar stochastic units: a) multiplier (top-left),
b) adder (top-right), c) negation (bottom-left) and d) squarer (bottom-right).

arithmetic units can be found in the survey presented in [17]
which covers the most common arithmetic units.

The unipolar stochastic multiplication is only the result
of a logic AND of its stochastic inputs. The complement
is the negation of the bitstream. Bipolar multiplication is
achieved through an XNOR operation. Addition, or more
precisely average, is obtained via a round-robin multiplexation
of the stochastic inputs, which depends on a N-module counter
corresponding to N inputs in the multiplexer. The squarer of
a stochastic bitstream is the equivalent to a multiplication of
a bitstream by itself, de-phased by a clock cycle. The clock
cycle makes the pseudo-random bitstreams to be uncorrelated.
The multiplication is now of two independent streams but with
the same value, resembling the power of two operation.

The implementation of n-ary add or multiply operators is
achieved by adding additional inputs to the logic circuits. In
terms of FPGA implementation it means that the number of
inputs of a LE can be evaluated simultaneously.

For more complex operators, such as exp, tanh and abs,
there are realizations of stochastic operators using Finite State
Machines (FSMs). Implementation of such units can be found
in [18], [19].

C. Supporting Blocks

Since most systems usually adopt parallel binary-radix
representation, a converter from/to stochastic bitstreams is
therefore required to ensure its inter-operability. The process
of generating the stochastic bitstream is illustrated in Fig. 5,
where a specific binary-radix value (val) is compared with
the output of a uniform pseudo-random generator, usually
an Linear Feedback Shift-Register (LFSR) [20]. Whenever
the pseudo-random number is smaller, it produces a 1 and 0
otherwise. After each pseudo-random sample the ratio between
the number of ones and the total number of bits will be towards
val. In this example, the encoded value is 9/16 = 0, 5625.
The conversion from stochastic-to-binary is based on the

Fig. 5. Detail on process of generating a pseudo-random bitstream for a given
binary-radix value between 0 and 1.

Fig. 6. Block diagram of a binary-to-stochastic unit.

integration of the 1s on a bitstream, which is accomplished
using a binary-radix counter. A second counter is required to
count the total number of bits. Fig. 6 and 7 show the details
of the conversion units.

To improve the statistical quality of the stochastic bitstreams
on the datapath, this work adopts the Self-Timed Ring-
Oscillator (STRO) proposed in [13]. The main reasons to
consider a STRO instead of a global clock source are: different
clock signal for each stochastic unit; all generated clock
signals with the variation of voltage, temperature, location
on the device and its degradation. All synchronous stochastic
units have an instance of this unit to generate its clock signal.

D. Graceful Degradation

The graceful degradation of stochastic bitstreams is referred
to the impact of bit-flips on the bitstream. In such occurrences,
and regardless of the position of the bit on the bitstream, the
value of the error associated with each bit-flip is the same as
the least significant bit, in binary-radix. On this account, [9]
has applied the concept of stochastic logic to a reconfigurable
architecture that implements image processing operations on a
simulated data-path. The authors show that the quality of the
results degrades gracefully with the increase of errors on the
bitstream.

Fig. 7. Block diagram of a stochastic-to-binary unit.



E. Main Limitations

The main fragilities of SC are: a linear increase in the
precision of typical binary representations, for stochastic com-
putations it imposes an exponential increase in the length
of the bitstream; sensitivity to temporal correlations; and the
supporting blocks are usually the performance bottleneck,
rather than the arithmetic units.

III. FROM MATHEMATICAL EXPRESSIONS TO REVERSE
POLISH NOTATION TO STOCHASTIC DATAPATHS

Like any datapath, SP implements a chain of computations,
but over a bitstream. This work proposes a method to specify
it as a mathematical expression, defined as a list of operands
and operators, organized in a stack to resemble Reverse Polish
Notation (RPN), or postfix notation. The advantages of such
representation are: simplified representation without parenthe-
sis, hence fewer operations are needed, faster introduction
by the user and with fewer mistakes [21], [22]. In RPN the
operators follow the operands. The strength of this notation is
the support of n-ary operators, which is compatible with the
aforementioned stochastic operators. Example: 3 − 4 × 5
is defined in RPN as 3 4 5 × −. Essentially, the framework
recognizes the different operands and operators of a math-
ematical expression, and then generates the corresponding
VHDL. From this data structure it is possible to identify
the requirements for a system, namely: the number of input,
internal and output signals; the different types, number of
input operands and data dependencies of the operators used.
The data structure is organized as a tree of computations
which maintains the data dependencies in the data-path. These
mathematical expressions can be variable in size and type of
operations.

Considering the following motivational example of a func-
tion to be implemented:

f =
1

N
(in0 × in1 + in2 × in3 × in4) (1)

it has the corresponding RPN stack representation:

f = in0 in1 × in2 in3 in4 × × + N / (2)

To facilitate the stack manipulation, it is split into a set of
partial computations stored in intermediate variables:

tmp0 = in0 × in1 (3)
tmp1 = in2 × in3 × in4 (4)

which the original expression can be replaced with:

f =
1

N
(tmp0 + tmp1) (5)

and to facilitate the generation of the VHDL source file
describing the data-path to implement this expression, it is
expressed as a list of operands and operators in Python, e.g.
sums and multiplications, resembling RPN. This regular form
is easily extracted and can be efficiently mapped into an RTL
specification, exploiting the parallelism offered by FPGAs.

The user input for equation 2 in Python can be described
by the following list of computations, which itself can be
comprised of other lists, or operands, and operators:

t1 = [’in0’, ’in1’, ’*’];
t2 = [’in2’, ’in3’, ’in4’, ’*’];
f = [t1, t2, ’+’];

which results in the following Python variable:

>>> f
[[’in0’, ’in1’, ’*’], [’in2’, ’in3’, ’in4’,
’*’], ’+’]

Variables t1 and t2 are lists of strings, which represent
partial computations. These variables can be of any size. The
last element, or tail, of the list holds the representation of
the operation. In this example, the operands are:d + or *.
The remaining elements are the operands. It is also possible
to define operations which depend on the results of previous
computations, e.g. f is defined as the sum, or average, of
t1, and t2 . Table I lists the stochastic combinatorial and
sequential operators supported so far.

TABLE I
LIST OF THE STOCHASTIC OPERATORS SUPPORTED

Operator Nomenclature
Sum (average) +
Multiplication *

Negation -
Square pow2

The inputs and outputs of the SP correspond to the number
of variables and are automatically determined. To complete
the specification of a datapath it is necessary to indicate the
length and type (unipolar/bipolar) of the bitstream. To serve
this purpose there is a variable in Python which holds this
configuration. The architecture of the SP is independent of
the bitstream’s length.

IV. STOCHASTIC FRAMEWORK

One of the key strengths of the proposed framework is that
given any mathematical expression, regardless the complexity
of the mathematical expressions, the system maintains its
regularity.

The framework integrates the translation of the expression
of the SP into a stack. Apart from the core of the SP, which
is different for all expressions, all other supporting units have
the same architecture, such as data sources and sinks for the
stochastic bitstreams, varying only the number of bits, or the
length of the bitstreams supported.

The generated SP was planned to be autonomous or part of
a larger system, as illustrated in Fig. 8. The SP is in the middle
and the rest of the circuit is formed by the supporting units to
do the computations. The system is interfaced via the input and
output bitstreams, and also the FSM’s control signals, namely
Clk, Enable and Reset. In particular, the FSM is responsible
for the generation of the control signals for all units in the
design. It also controls the burn-in period to compensate the
clock cycles required by the FSM-based stochastic arithmetic
units.



Fig. 8. Top-level architecture of the circuit design to test the Stochastic
Datapaths, including the supporting units.

A. Generation of Custom Arithmetic Units From Templates

In typical binary-radix representation all basic operators
are either unary or binary, with 1 or 2 inputs, respectively.
However, has n-ary SC operators support for more than two
operands. Therefore, it is required to create the required
custom components, as it is difficult to account for all possible
operators with any number of operands in advance. Therefore,
the framework determines the number of arguments for multi-
plications and sums and then generates the required stochastic
arithmetic components. In more detail, it iterates over the
aforementioned list of computations to retrieve the different
operators and then generates the VHDL entity matching the
operation and the number of inputs.

In SC, each operator can have a diverse number of operands.
Therefore, it is necessary to generate custom arithmetic units
according to the mathematical expression. Moreover, the num-
ber of variables considered is unknown, so it is also necessary
to create the necessary interfaces to support any number
of inputs and outputs. The VHDL source files are created,
and used to synthesize the design and generate the FPGA
configuration file, or to simulate the system. This process has
been automated through the use of Python and Tool Command
Language (TCL) scripts.

B. Interfaces

Conversion between binary-radix and stochastic bitstreams
is the major limitation in interfacing typical digital systems.
Even tough it offers many parallel operators there are not many
inputs available.

Connecting the SP from the rest of the supporting elements
allows to integrate it in other systems, capable of interfacing
with stochastic bitstreams, such as [12]. In this work the
authors have created a cyber-physical system which interfaces
analog sensors and actuators without the need to have either
analog to digital and binary-to-stochastic converters, to acquire
input data; and stochastic-to-binary and digital to analog
converters to drive the actuators.

In essence, the generation of a bitstream from a binary-radix
value requires more resources than an analog interface, but the
analog interface requires a dedicated input pin.

C. Advanced Features

Keep up with the novel advancements in SC. In this direc-
tion the framework already includes a few research novelties
to demonstrate its scalability. The incorporated features which

Fig. 9. RTL of a test circuit for a Stochastic Datapath.

mitigate some of the limitations in SC and improve the quality
of the results

1) Burn-in Period: The values at the output are not ready in
the same instant the computation starts. Therefore, a counter
in included to accommodate sufficient latency to have the SP
producing valid results. Once the counter reaches the threshold
value, the outputs are computed.

2) Independent and Uncorrelated Clock Sources: In [23],
the authors claim to reduce the correlation between bitstreams
by using STROs to generate spread-spectrum, individual and
uncorrelated clock sources for each synchronous stochastic
unit. Moreover, the authors also claim reduction in the power
dissipated in the clock trees, without the penalty of intro-
ducing synchronizers, or alternative components, typical of
asynchronous circuit designs [24]. This feature, which consists
of a configurable length ring oscillator can be instantiated to
provide the clock signal to all synchronous components in a
SP.

D. Test Platform

The proposed framework provides a test platform to run any
SP generated by it on an FPGA. It creates a fully functional
autonomous stochastic system, containing the SP derived from
the mathematical expression. The system supports SP of any
size, being limited by the resources available on the FPGA
device. This test platform manages the input and output signals
required by the SP, along with the required conversions to be
accessed by the host computer. Fig. 9 depicts the system to
be implemented on the FPGA. On the edges there are the
conversion blocks, and in the middle the unit corresponding
to the SP.

1) Circuit: The test platform circuit is constituted by the
circuit under test (i.e. a simple arithmetic unit or a SP), the
bitstream generators, and the output calculators.

It includes the units for the generation of the stochastic
bitstreams from binary values previously stored in Block
Random Access Memorys (BRAMs), and the result converters
back to binary and its storage in other BRAMs. In more detail,
each of these units supports many parallel bitstreams.

2) Operation: Once the FPGA is configured with the test
circuit, via its Joint Test Action Group (JTAG) port, it is ready
to exchange data with the host computer. To automate the
process on the host computer a TCL script has been created
to download the data also via the JTAG interface. The FSM
controls the test process. It waits for the indication from the
host computer to start the generation of the input bitstreams
and starts counting the burn-in period, from binary values



stored in BRAMs. After the burn-in period is over, the FSM
starts the convertion of the output bitstreams.

V. PERFORMANCE, POWER AND RESOURCES ESTIMATES

The framework relies on the FPGA vendor tools to synthe-
size the test circuit and to produce a configuration bitstream.
When this process is launched it instructs the synthesis tool
to produce results for resource consumption, and timing and
power estimates.

VI. CASE STUDY: KARHUNENLOVE TRANSFORM

A. Background

The KLT, also known as Principal Component Analysis
(PCA), is an algorithm widely used in Machine Learning
to reduce the dimensionality of data sets of many correlated
variables, and is formulated as follows. Given a set of N data
xi ∈ RP , where i ∈ [1, N ] an orthogonal basis described
by a matrix Λ with dimensions P ×K can be estimated that
projects these data to a lower dimensional space of K di-
mensions. The projected data points are related to the original
data through the formula in (6), written in matrix notation,
where X = [x1, x2, ..., xN ] and F = [f1, f2, ..., fN ], where
f i ∈ RK denote the factor coefficients.

F = ΛTX. (6)

The original data is described from the lower dimensional
space via (7):

X = ΛF +D (7)

where D is the error of the approximation. The objective of
the transform is to find a matrix Λ that has the Mean-Square
Error (MSE) of the data approximation minimized. A standard
technique is to evaluate the matrix Λ iteratively as described
in steps (8) and (9), where λj denotes the jth column of the
Λ matrix.

λj = arg max E{(λTj Xj−1)2} (8)

Xj = X −
j−1∑
k=1

λkλ
T
kX (9)

where X = [x1x2...xN ], X0 = X , ‖λj‖ = 1 and E{.} refers
to expectation.

B. Hardware Implementations

The KLT algorithm is based on the dot-product operation,
which can be implemented using different circuits. Fig. 10
shows the datapath for: a) rolled and b) unrolled architectures
of a dot-product based circuit, to implement the datapath of
one projection vector from a Zp to Zk KLT.

The circuit receives data from the input stream, identified
with X . The samples, from the input stream, for each dimen-
sion p, are multiplied by the corresponding projection vector
λpk. The output of the multiplier is connected to an adder to
do the accumulation. The final result is placed in the output
stream, identified with fk.

a) b)

Fig. 10. Schematics of the datapath of a dot-product, for one projection vector
of a KLT circuit: a) rolled and b) unrolled architectures.

C. Experimental Results

In this experiment, to compare binary-radix against SC, it
was considered the unfolded architecture, which is the one
that maximizes the parallelism offered by FPGAs. Considering
also 9-bit binary-radix representation, it corresponds to a 512-
bit bitstream. However, the length of the bitstream has no
influence on the SP.

The implementation of the aforementioned KLT example in
a complete parallelized would require to compute 100 streams
with 500 multiply-accumulate operations, thus it is necessary
to evaluate what is the maximum level of parallelism, and
determine if the adoption of the SC is the most favorable
approach.

The introduction of the expression for the KLT is generated
in Python to explore different possible implementations for the
problem via the following script:

[frame=single]
inp = 0
outp = []
expr = []
mac_inputs = 2
num_streams = 10

for i in range(0,num_streams):
for j in range(0,10,mac_inputs):

for k in range(0,mac_inputs):
outp.append("in" + str(inp))
inp = inp + 1

outp.append("*")
outp.append("+")

expr.append(outp)

Fig. 11 presents the comparison of the resources required
by both types of implementation using different numbers of
inputs and parallel streams. For the SP implementation,on the
left, the inputs are associated with converters, which penalizes
the solution by requiring 18% extra resources. The plot on
the right shows the results for the same implementation but
without considering the conversion of the inputs, leading a
SP solution which in the worst case requires 10% of the
resources for the binary-radix solution. The results for the
synthesis, in terms of resources, of the binary-radix and SC
were modeled, using a linear approximation, to reduce the



Fig. 11. Comparison of the resources required to implement KLT using
binary-radix (red) and SC (blue) for different numbers of input and parallel
streams, with radix conversion units (left) and without (right).

Fig. 12. Representation of a simple neural network.

number of synthesis required to perform the evaluation.
Other applications such as neural networks can also be

implemented by the proposed framework. An example of a
very simple neural network is illustrated in Figure 12, and
would be given by the mathematical expression for each
neuron:

N0 = SN((in0 × w00 + in1 × w02)× w10

2
+

(in0 × w01 + in1 × w03)× w12

2
)

N1 = SN((in0 × w00 + in1 × w02)× w11

2
+

(in0 × w01 + in1 × w03)× w13

2
)

In this example, SN is the operator corresponding to a
Stochastic Neuron, which implements the activation function,
usually tanh(n), and Nx is the output of each neuron. wx are
the weights for each connection of the network.

In the current version of the framework, such expression
would generate replicated operations in the VHDL specifica-
tion, nevertheless the synthesis tool is instructed to eliminated
them in the project options before being synthesized.

VII. DISCUSSION

A. Benefits in Datapath Design

The present work could be of benefit for the engineer that
is not familiarized with SC and is considering adopting it
to use the processing power of a sensor node and improve
the reliability of the system. By automatically producing and
evaluating traditional datapaths in their SC implementations,
not only is possible to compare resources but also evaluate
it’s performance when operating variation of the operating
conditions (power, temperature).

B. Time Overhead
In SC each value is encoded as a bitstream over time instead

of a parallel set of bits at one. Therefore, in the case-study
presented the latency to produce a valid computation is given
by the clock cycles to reach the length of the projection vector
plus the time to perform multiplication and go through the
adder tree, which is given by equation 10:

T = PProjLen + TMult + TAdderTree (10)

For both cases PProjLen is the same as the number of
inputs. However for the particular case of SC, TMult requires
2WL clock cycle and so does TAdderTree, but delayed by
one clock cycle. For typical parallel binary TMult is 1,
considering a fully combinatorial multipliers, and TAdderTree

is log2(ProjLen).
The tradeoff is given in terms of the size of the pro-

jection vector and the wordlength (WL) adopted. Thus, the
latency SC implementation would only produce results faster if
log2(ProjSize) is greater than 2WL. A parallel binary system
is able to produce a result per clock cycle, whereas an SC
system requires 2WL clock cycles.

VIII. CONCLUSIONS AND FUTURE WORK

This work introduces a framework to do an early assessment
of the cost and performance of SC. It receives a specification
for a datapath as a mathematical expression in Python and
synthesizes the corresponding SP on an FPGA. Future work in-
volves including support for automatic evaluation of tradeoffs
in terms of errors introduced by the representation on the data-
path. The framework, along with its source files and a tutorial,
are available at https://www.removed-for-blind-review.com,
under an open-source license.

REFERENCES

[1] B. R. Gaines, “Techniques of identification with the stochastic com-
puter,” in in ”Proc. International Federation of Automatic Control
Symposium on Identification, Progue, 1967.

[2] M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “Cbram devices as binary synapses for low-
power stochastic neuromorphic systems: Auditory (cochlea) and visual
(retina) cognitive processing applications,” in Electron Devices Meeting
(IEDM), 2012 IEEE International, Dec 2012, pp. 10.3.1–10.3.4.

[3] H. Li, D. Zhang, and S. Foo, “A stochastic digital implementation of
a neural network controller for small wind turbine systems,” Power
Electronics, IEEE Transactions on, vol. 21, no. 5, pp. 1502–1507, Sept
2006.

[4] N. L. Zhang and D. Poole, “Exploiting causal independence in bayesian
network inference,” Journal of Artificial Intelligence Research, vol. 5,
pp. 301–328, 1996.

[5] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. Modha,
“A digital neurosynaptic core using embedded crossbar memory with
45pj per spike in 45nm,” in Custom Integrated Circuits Conference
(CICC), 2011 IEEE, Sept 2011, pp. 1–4.

[6] F. Zhou, J. Liu, Y. Yu, X. Tian, H. Liu, Y. Hao, S. Zhang, W. Chen,
J. Dai, and X. Zheng, “Field-programmable gate array implementation
of a probabilistic neural network for motor cortical decoding in rats,”
Journal of Neuroscience Methods, vol. 185, no. 2, pp. 299 – 306, 2010.

[7] J. Zhao, “Stochastic bit stream neural networks,” PhD thesis, London
University, 1995.

[8] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput bayesian
computing machine with reconfigurable hardware,” in Proceedings of
the 18th Annual ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’10. New York, NY, USA: ACM,
2010, pp. 73–82.



[9] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” Computers, IEEE
Transactions on, vol. 60, no. 1, pp. 93–105, Jan 2011.

[10] Y.-N. Chang and K. Parhi, “Architectures for digital filters using stochas-
tic computing,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, May 2013, pp. 2697–2701.

[11] N. Saraf, K. Bazargan, D. Lilja, and M. Riedel, “IIR filters using stochas-
tic arithmetic,” in Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, March 2014, pp. 1–6.

[12] R. P. Duarte, M. Vestias, and H. Neto, “Xtokaxtikox: A stochastic
computing-based autonomous cyber-physical system,” in Proceedings of
the 1st IEEE International Conference on Rebooting Computing (ICRC),
2016.

[13] R. P. Duarte, J. Lobo, J. F. Ferreira, and J. Dias, “Synthesis of
bayesian machines on FPGAs using stochastic arithmetic,” 2nd Interna-
tional Workshop on Neuromorphic and Brain-Based Computing Systems
(NeuComp 2015), associated with DATE2015, Design Automation Test
Europe 2015, March 2015.

[14] N. Nedjah and L. de Macedo Mourelle, “Reconfigurable hardware
for neural networks: binary versus stochastic,” Neural Computing
and Applications, vol. 16, no. 3, pp. 249–255, May 2007. [Online].
Available: https://doi.org/10.1007/s00521-007-0086-x

[15] J. von Neumann, “Probabilistic logics and synthesis of reliable organ-
isms from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[16] B. Gaines, “Stochastic computing systems,” A. in Information Sys-
tems Science, Ed., vol. 2, 1965, p. 37.

[17] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May
2013. [Online]. Available: http://doi.acm.org/10.1145/2465787.2465794

[18] B. Brown and H. Card, “Stochastic neural computation. i. computational
elements,” Computers, IEEE Transactions on, vol. 50, no. 9, pp. 891–
905, Sep 2001.

[19] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite-state machines,”
IEEE Transactions on Computers, vol. 63, no. 6, pp. 1474–1486, June
2014.

[20] P. Alfke, “Efficient shift registers, lfsr counters, and long pseudo-random
sequence generators,” July 1996.

[21] D. M. KASPRZYK, C. G. DRURY, and W. F. BIALAS, “Human
behaviour and performance in calculator use with algebraic and reverse
polish notation,” Ergonomics, vol. 22, no. 9, pp. 1011–1019, 1979.
[Online]. Available: https://doi.org/10.1080/00140137908924675

[22] S. Agate and C. Drury, “Electronic calculators: which notation
is the better?” Applied Ergonomics, vol. 11, no. 1, pp. 2 – 6,
1980. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0003687080901143

[23] R. P. Duarte, M. Vestias, and H. Neto, “Enhancing stochastic com-
putations via process variation,” in Field Programmable Logic and
Applications (FPL), 2015 25th International Conference on, Aug 2015,
pp. 519–522.

[24] A. Martin and M. Nystrom, “Asynchronous techniques for system-on-
chip design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
June 2006.


