Reconfigurable Accelerator for On-Board SAR
Imaging Using the Backprojection Algorithm

0000—0002—7060—4745 1,3[0000—0003—2709—867 X
I, Helena Cruz!3!
1,4[000—0002—3621—8322]

Rui Policarpo®2! I, and

Horéacio Neto

! INESC-ID/IST-UL, Lisboa
rui.duarte@tecnico.ulisboa.pt
3 helena.cruz@tecnico.ulisboa.pt

4 hcn@inesc-id.pt

2

Abstract. Synthetic Aperture Radar is a form of radar widely used to
extract information about the surface of the target. The transformation
of the signals into an image is based on DSP algorithms that perform
intensive but repetitive computation over the signal data. Traditionally,
an aircraft or satellite acquires the radar data streams and sends it to be
processed on a data center to produce images faster. However, there are
novel applications demanding on-board signal processing to generate im-
ages. This paper presents a novel implementation for an on-board embed-
ded SoC of an accelerator for the Backprojection algorithm, which is the
reference algorithm for producing images of SAR sensors. The method-
ology used is based on a HW/SW design partition, where the most time
consuming computations are implemented in hardware. The accelerator
was specified in HLS, which allows to reuse the code from the original
implementation of the algorithm in software. The accelerator performs
the computations using floating-point arithmetic to produce the same
output as the original algorithm. The target SoC device is a Zyng 7020
from Xilinx which has a dual-core ARM-A9 processor along with a re-
configurable fabric which is used to implement the hardware accelerator.
The proposed systems outperformed the software-only implementation
in 7.7x while preserving the quality of the image by adopting the same
floating-point representations from the original software implementation.

Keywords: FPGA - Synthetic Aperture Radar - DSP - Backprojection
- Zynq - SoC - Reconfigurable Accelerator.

1 Introduction and Motivation

Remote sensing technologies such as Synthetic-Aperture Radar (SAR) have been
widely used monitor the surface of the Earth, in particular, ships and oil spills
tracking at sea, ice-caps and sea level, terrain erosion, drought and landslides, de-
forestation, fires, and other types of natural disasters. The main strength of SAR
is that it operates even in the presence of clouds, smoke and rain and without
a light source, making it a very attractive method of monitoring Earth. A SAR
sensor can be mounted on-board flying platforms such as satellites, aircrafts and

2 R. P. Duarte et al.

Fig. 1. Illustration of SAR operation and its physical parameters.

drones. Moreover, with the advancements in the technology and signal process-
ing methods, there are increasing business opportunities for satellites and drones
equipped with lightweight, small, and autonomous systems for on-board process-
ing and generation of SAR images and subsequent broadcasting them, avoiding
the time-consuming processing data at the receivers. However, its implementa-
tion in low-power embedded systems is limited to simplified implementations of
the algorithm. While they are able to reduce the processing time, they sacrifice
the image quality.

At the moment, the reference algorithm for SAR imaging is Backprojection
(BP), which computes the contribution of each reflected pulse for each pixel
on the resulting image. This process is time consuming as the projections all
of the received pulses have to be computed for all pixels in the image. Figure
illustrates the parameters involved in the operation of a SAR mounted on a
moving platform.

Recent radiation tests [4] on System-on-Chip (SoC) Zynq devices from Xilinx
have shown that they provided a good performance under a harsh environment,
therefore there is an increasing interest in adopting such systems on-board air-
crafts. These devices have a dual-core ARM A9 CPU along with a reconfigurable
fabric which is capable of implementing a hardware accelerator to alleviate the
computations from the CPU and speedup the overall execution time.

This work introduces a novel accelerator architecture for SAR imaging using
the Backprojection image generation algorithm and its evaluation on a SoC
device.

This paper is organized as follows. Section 2 presents the background on
BP algorithm and existing accelerators. Section 3 is dedicated to the profile
of the algorithm, which determines which parts of the implementation require
more processing time, and thus be the candidates for hardware acceleration.
Section 4 details the implementation of the hardware accelerator using High-
Level Synthesis (HLS). Section 5 presents the HW/SW system design, and its
performance and resources are discussed in Section 6. Section 7 concludes the
paper with the final remarks.

Reconfigurable Accelerator for On-Board SAR Imaging 3

2 Background

2.1 Backprojection

The following nomenclature related to the Backprojection algorithm is adopted
in this paper:

— R - Differential range from platform to each pixel at the center of the swath.

— Tk, Yk, 2k - Radar platform location in Cartesian coordinates.

— x,y, z - Pixel location in Cartesian coordinates.

— 7. - Range to center of the swath from radar platform.

— f(z,y) - Value of each pixel (z,y).

— 0y - Aperture point.

— r - Range from pixel f(z,y) to aperture point 6.

— w - Minimal angular velocity of wave.

— Gz,y(Tk, Or) - Wave reflection received at 7, at 0 (calculated using the linear
interpolation in equation .

— s(n) - Wave sample in the previous adjacent range bin.

— r(n) - Corresponding range to the previous adjacent bin.

As aforementioned, the BP algorithm computes the contribution of each re-
flected pulse for each pixel on the resulting image. The BP algorithm takes
the following values as input: number of pulses, location of the platform for each
pulse, the carrier wave number, the radial distance between the plane and target,
the range bin resolution, the real distance between two pixels and the measured
heights. For each pixel and each pulse, the BP algorithm, performs the following
steps:

1. Computation of the distance from the platform to the pixel:
R=/(z—z)?+ (y—yp)?+ (2 — 2)2 —7e (1)

2. Conversion of the distance to an associated position (range) in the data set
(received echoes).
3. Obtain the samples at the computed range via linear interpolation, using

equation [2| [5].

s(n+1) —s(n)
B S A N —)
T e) 2)
4. Scales the sampled value by a matched filter to form the pixel contribution.
This value is calculated using equation [3| [5]. dr is calculated using equation

).

9ay(rr) = 9(n) +

ein\ﬁl =cos(2-w- d?") + isin(Z “w- dr) (3)

5. Accumulates the contribution into the pixel. The final value of each pixel is
given by equation [4| [5].

f($, y) = ngﬂ(rk, Qk) . ei'w'2'|”'_k>\ (4)
k

4 R. P. Duarte et al.

The pseudocode to compute the aforementioned steps is shown in algorithm[2}
k, represents the wave number and is given by 27TCf <, where f. is the carrier
frequency of the waveform and c is the speed of light, a; refers to the position of
the pixel, and vy, corresponds to the platform position. The complex exponential
e is equivalent to cos(w)+isin(w) and, therefore, a cosine and sine computation
is implied in the calculation of each pixel, represented in equation [4]

Algorithm 1 Backprojection algorithm pseudocode, from [T].

1: for all pixels k do

2: fr <0

3: for all pulses p do

4: R+ |la — vy

5: b+ [(R— RO)/AR]

6: w < [(R— RO)/AR] —b

7 s+ (1—w) g(p,b)+w-g(p,b+1)
8: fr %karS-e?”ku'R

9: end for

10: end for

2.2 FPGA Accelerators for Backprojection

There are several accelerators for the BP algorithm, however they often target
High Performance Computing (HPC) systems for real-time generation of images.
The work in [3] uses OpenCL to program 16 GPUs (with 2048 cores each),
receives all signals in 17.7 seconds and takes 1 to produce an image. There are
also some implementations of accelerators on FPGA of variations of the BP
algorithm such as fast-BP [6] or factorized-BP [7]. Even though they perform
faster than the complete BP algorithm the image quality is degraded, therefore
they are not useful for comparison with the proposed architecture. Previous
work on implementing the BP algorithm targeting SoC devices can be found
in [2]. However, the authors focused on acceleration by distributing the load on
the two CPU cores and introducing a lightweight software-only fault tolerance
mechanism.

3 Algorithm Profiling

The profiling of the BP algorithm running on a single core of the A9 ARM
processor of the target Zynq device was required to determine which parts of
the algorithm should be accelerated.The implementation of the BP algorithm
adopted is available in [I]. The obvious functions to be accelerated in hardware
are the square root and the sine and cosine functions from the inner loop. Nev-
ertheless, in this algorithm there is a final accumulation operation at the end of
the inner loop, which can be seen as a reduce operation, and thus a scale down
in the number of data transfers required.

Reconfigurable Accelerator for On-Board SAR Imaging 5

In the profiling, an image of 512x512 pixels was generated from 512 pulses,
with 512 samples for pulse. 512 complex floating-point samples produce a single
complex floating-point result, which results in reduction of required throughput.

Table [1] summarizes the processing times of the most time consuming math-
ematical operations in the BP algorithm. All times are in nanoseconds and were
measured for 1000 repetitions of the execution of each operation on the ARM
processor, compiled with -O3 compiler optimization.

Table 1. Execution times for the operations in the implementation of BP.

Operation Time [ns] % Execution Time

Sqrt 50 1.3%
Sin+Cos 3108 84.3%

Misc 530 15.4%

Total 3688 100.0%

4 SAR Backprojection Accelerator

The accelerator targeted the most time consuming operations of the BP algo-
rithm, and was specified using Xilinx HLS. Using HLS and maintaining the
floating-point representation allows to reutilize parts of the source code and
guarantees that the images produced will have the same result as the original
implementation of the BP algorithm. The accelerator was implemented as a sin-
gle IP core, where it receives the range values and samples for 512 pulses. The
range values are double precision floating-point values whereas the samples are
complex single-precision floating-point values. The operations implemented on
the accelerator correspond to line 9 of algorithm

In this specification, it is noteworthy the separation of the computations be-
tween two loops in the HLS specification. The first loop obtains the data for
the range values from the streaming interface, computes their product to serve
as input to trigonometric functions and stores the result in local memories. The
second loop receives the pulse samples also via the streaming interface, performs
the complex multiplication and writes the result to the output streaming in-
terface. Figure |3] illustrates the sequence diagram of the relations between the
building blocks of the accelerator.

Table [2] summarizes the FPGA resources required to implement the BP ac-
celerator from the specification. The HLS tool produced a circuit design capable
of operating at 100 MHz, resulting in an IP core which requires a minimum of
60 clock cycles in latency, of which 24 cycles are required by the CORDIC IP.

6

R. P. Duarte et al.

Table 2. Estimate of resources required to implement the BP accelerator reported by
Vivado HLS.

Resource Utilization % Total on Zynq-7020

BRAMI18K 2 1%
DSP48E 34 15%
LUTs 13986 26%
Input AXI Streams | Range Values | | Sample Values
-
Compute the
angle, sine and_< Angle computation
cosine for 512 Sine
range values Cosine
;
~ _Memory
Compute the A4
matched filter
result from values < Matched Filter
stored in memory Accumulator
and the 2nd input
stream ll
~

Output AXI Stream | Pixel Value |

Fig. 2. Organization of the accelerator.

Algorithm 2 HLS accelerator specification.

1: for all pulses p do

2:

9

3
4
5:
6:
7.
8

input < inStream.read()
R + input.data()

angle + 2.R.Ku

s, ¢ < hls :: sincos(angle)
mem_sin[p] < s
mem_cos[p] < ¢

: end for

: for all pulses p do
10:
11:
12:
13:
14:
15:

input < inStream.read()

sample.re + input.data()

sample.im < input.data()

matched_filter_result <— (mem_cos[p] + imem_sin[p]) - sample

acc < acc + matched_filter_result

outStream.write(acc) > pixel_val

16: end for

Reconfigurable Accelerator for On-Board SAR Imaging 7

5 HW/SW Project

The HW/SW project of the BP algorithm follows the partition created for the
accelerator of the algorithm. The accelerator was integrated by establishing a
connection to the CPU via AXI streaming interface, which is connected through
Direct Memory Access (DMA) controller. Figure [3]illustrates the Vivado project
containing the hardware blocks. On the software-side, the accelerator is used
issuing data transfers between the DMA controller and the memory.

The listing [I.1] shows the simplified code running on the ARM A9 CPU. The
initial part of the code corresponds to the initialization of constants [1]. The loops
for all pixel computations were changed so that only the range computations are
performed in software and the rest of the algorithm in the hardware accelerator.
Moreover, the original loop which iterated all the pulse samples was removed
as they are computed by the accelerator. The interaction with the accelerator
happens through the DMA, before instructing to transfer input values of range
and sample values from the DDR to the accelerator, is programmed to wait for
the computation of a row of pixels.

axi_smc

S00_AXI =" .
s Zm Moo_AXI i
axi_dma_0 i+ S01_AXI Xa :

M_AXI_MM2S AXI SmartConnect

M_AXI_S2MM
M_AXIS_MM2S

S s AxiLTE

+ S_AXIS_s2mMm axis_sar1_datapath_0

=+ strm_in [‘ :| strm_out + £

Axis_sar1_datapath (Pre-Production)

AXI Direct Memory Access

AXI Int ect
Interconned ZYNQT Processing System

. . =" " o
Z:i 4 MOO_AXI [Ta] S00_AXI + [I M_AXI_GPO s
il =X S ||1 FIXED_IO > SLAXLHPO o i
) - ZYNQ S_AXI_HPO_FIFO_CTRL + |
ps7_0_axi_periph ||+ DDR
‘ processing_system7_0 ’
{ oor

{ Fixen_io

Fig. 3. Hardware project design on Vivado.

Listing 1.1. Backprojection code

void Backprojection () {
sar_constants_calculation ();
for (iy = 0; iy < BP.NPIX.Y; ++iy)
const double py = (—BP_.NPIX_.Y /2.0 + 0.5 + iy) =* dxdy;
DMA _Transfer (image + iy*xrow_offset); // ACCL 2 DDR image row
for (ix = 0; ix < BP.NPIX.X; ++ix)
// calculate pizel contribution
DMA _Transfer (range); // DDR 2 ACCL
DMA _Transfer (samples); // DDR 2 ACCL
} /)
Y/
Y // func

8 R. P. Duarte et al.
6 Results and Discussion

The proposed system was implemented on a Zyng-7020 device installed on a
Pyng-Z2 from TUL. The system was tested with two images, a synthetic one
provided in the Perfect Suite[I] and a real one from the AFRL dataset, in figure
The software was compiled with the -O3 compilation option.

Fig. 4. Synthetic SAR image from the Perfect benchmark suite (left) and real SAR
image from the AFRL dataset (right).

6.1 Processing Time

From the original algorithm profiling, it was found the algorithm required 487.5
seconds to generate of a 512x512px image. The processing times for the com-
putations made by the accelerator in software, corresponding to line 9 of the
pseudocode, required 1667.3 us, whereas the same computations in the accelera-
tor required only 37.31 us, a reduction of 44.68 x. Comparing the total processing
times for a 512x512 image, between the original and the accelerated version, the
accelerated is 7.7x faster.

6.2 Hardware Resources

The resources required to implement the accelerator on the reconfigurable fabric
of the device are dominated by the Digital Signal Processing (DSP) blocks which
consume about 64% of the total available on the device. Table [3| summarizes the
resources required to implement the accelerator on the Zynq device.

6.3 Energy Consumption

The current consumption was measured using a UM24C USB power meter, con-
nected between the host computer and the Pyng-Z2 FPGA board. Figure[5|shows
the power consumption measured, which details the consumption for power-on,
configuration of the device and execution of the algorithm with the reconfigurable

Reconfigurable Accelerator for On-Board SAR Imaging 9

Table 3. Summary of resource utilization to implement the accelerator on a Zyng-7020.

Resource Utilization % Total on Zyng-7020

LUT 11517 21.65
BRAM 4 2.86
DSP 141 64.09

accelerator. The average power consumption of the whole system is 1.796 W. The
power estimate from Vivado provides insight on the on-chip power consumption,
which is 1.584 W. The difference between the measurement and the estimate is
around 200 mW (12%) and is attributed to other components present on-board
which are not taken into account by Vivado. Figure [6] shows the details of the
power consumption, where 86% of power is consumed by the CPU (PS7).

The software-only implementation consumes on average 1.72 W. Even though
the system with the hardware accelerator requires more 76 mW, finishes 7.1
minutes earlier than the software-only implementation. In comparison with the
originalexecution on the CPU, which consumed 241.5 mWh (772.2 J), the system
with the hardware accelerator requires 30.4 mWh (109,55 J), which represents
14.18% of the total energy consumption.

Power (W)

BackProjection: SW-+HW

Loading data into DDR

16 FPGA config

Power-on/Idle

Time [s]

Fig. 5. System current consumption during the different stages of the experiment.

7 Conclusions

The work presented proposes a novel HW/SW implementation of the BP algo-
rithm on an embedded SoC platform for on-board processing of SAR imaging.
The creation of the accelerator was facilitated by the adoption of HLS to mi-
grate sets of arithmetic operations from software to hardware. The proposed

10 R. P. Duarte et al.

Dynamic: 1445 W (91%)
Clocks D035W (2%
(R
6% Signals: 0.045W (3%)
91% Logic: 0031W (%)
M BRAW: 0.001W
DSP: 0.079W
M Fs7: 1254W (86%)

9%

Device Static 0130w (9%)

Fig. 6. On-chip power consumption distributed across the different elements.

architecture was able to achieve a speedup of 7.7x over the software-only imple-
mentation while preserving the quality of the image. Future work will focus on
moving other operation of the BP algorithm into hardware to further improve
the performance of the accelerator.

Funding Sources

This work was supported by national funds through Fundacao para a Ciéncia
e a Tecnologia (FCT) with references UID/CEC/50021/2019 and PTDC/EEI-
HAC/31819/2017 (SARRROCA).

References

1. Barker, K., Benson, T., Campbell, D., Ediger, D., Gioiosa, R., Hoisie, A., Ker-
byson, D., Manzano, J., Marquez, A., Song, L., Tallent, N., Tumeo, A.: PERFECT
(Power Efficiency Revolution For Embedded Computing Technologies) Benchmark
Suite Manual. Pacific Northwest National Laboratory and Georgia Tech Research
Institute (December 2013), http://hpc.pnnl.gov/projects/PERFECT/

2. Cruz, H., Duarte, R.P., Neto, H.: Fault-tolerant architecture for on-board dual-
core synthetic-aperture radar imaging. In: Hochberger, C., Nelson, B., Koch, A.,
Woods, R., Diniz, P. (eds.) Applied Reconfigurable Computing. pp. 3—-16. Springer
International Publishing, Cham (2019)

3. Gocho, M., Oishi, N., Ozaki, A.: Distributed Parallel Backprojection for Real-
Time Stripmap SAR Imaging on GPU Clusters. Proceedings - IEEE Interna-
tional Conference on Cluster Computing, ICCC 2017-Septe, 619-620 (2017).
https://doi.org/10.1109/CLUSTER.2017.64

4. Lentaris, G., Maragos, K., Stratakos, 1., Papadopoulos, L., Papanikolaou, O.,
Soudris, D., Lourakis, M., Zabulis, X., Gonzalez-Arjona, D., Furano, G.: High-
performance embedded computing in space: Evaluation of platforms for vision-
based navigation. Journal of Aerospace Information Systems 15(4), 178-192 (2018).
https://doi.org/10.2514/1.1010555

5. Pritsker, D.: Efficient global back-projection on an fpga. In: 2015
IEEE Radar Conference (RadarCon). pp. 0204-0209 (May 2015).
https://doi.org/10.1109/RADAR.2015.7130996

http://hpc.pnnl.gov/projects/PERFECT/
https://doi.org/10.1109/CLUSTER.2017.64
https://doi.org/10.2514/1.I010555
https://doi.org/10.1109/RADAR.2015.7130996

Reconfigurable Accelerator for On-Board SAR Imaging 11

6. Song, X., Yu, W.: Processing video-SAR data with the fast backprojection method.
IEEE Transactions on Aerospace and Electronic Systems 52(6), 2838-2848 (2016).
https://doi.org/10.1109/TAES.2016.150581

7. Wielage, M., Cholewa, F., Riggers, C., Pirsch, P., Blume, H.: Parallelization
strategies for fast factorized backprojection SAR on embedded multi-core ar-
chitectures. In: 2017 IEEE International Conference on Microwaves, Antennas,
Communications and Electronic Systems (COMCAS). pp. 1-6. IEEE (nov 2017).
https://doi.org/10.1109/COMCAS.2017.8244770

https://doi.org/10.1109/TAES.2016.150581
https://doi.org/10.1109/COMCAS.2017.8244770

	Reconfigurable Accelerator for On-Board SAR Imaging Using the Backprojection Algorithm

