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ABSTRACT Convolutional neural networks have become the state of the art of machine learning for a vast
set of applications, especially for image classification and object detection. There are several advantages
to running inference on these models at the edge, including real-time performance and data privacy. The
high computing and memory requirements of convolutional neural networks have been major obstacles
to the broader deployment of CNNs on edge devices. Data quantization is an optimization method that
reduces the number of bits used to represent weights and activations of a network model, minimizing
storage requirements and computing complexity. Quantization can be applied at the layer level, by using
different bit widths in different layers: this is called hybrid quantization. This article proposes a new
efficient and configurable architecture for running CNNs with hybrid quantization in low-density Field-
Programmable Gate Arrays (FPGAs) targeting edge devices. The architecture has been implemented on
the Xilinx ZYNQ7020/45 devices and is running the AlexNet and VGG16 networks. Running AlexNet,
the architecture has a throughput up to 508 images per second on the ZYNQ7020 device, and 1639 images
per second on the ZYNQ7045 device. Considering VGG16, the architecture delivers up to 43 images
per second on the ZYNQ7020 device, and 81 images per second on the ZYNQ7045 device. The proposed
hybrid architecture achieves up to 13.7× improvement in performance compared to state-of-the-art solutions,
with small accuracy degradation.

INDEX TERMS Convolutional neural network, deep learning, embedded computing, field-programmable
gate array, hybrid quantization.

I. INTRODUCTION
Convolutional neural network (CNN) is a type of deep learn-
ing network used for image classification [1] and many other
applications in computer vision. The CNN model mimics the
structure of the human brain, with the neurons organized in a
series of layers, and whose interconnections have associated
weights that enhance specific characteristics of the image.
A training process is used to determine the weights, after
which the network is able to classify images other than those
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used during the training process. A trained network will clas-
sify a new image as belonging to one of the classes considered
in a process known as inference.

CNNs demand large storage and computational resources
and therefore are typically run on high-performance comput-
ing platforms. However, a vast application set can be enabled
by running CNN models on edge devices [2]. These smart
embedded devices can take real or almost real-time decisions
based on the analysis of locally collected data.

The fact that edge devices are normally resource-
constrained, makes it difficult to run CNN models on them
with acceptable accuracy and response time. To solve this
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problem, many optimization methods have been devised and
applied to network models and architectures in order to
reduce the computation complexity without significant accu-
racy degradation.

Data quantization is one of these methods. Data quan-
tization reduces the computational weight by using fixed-
point instead of floating-point hardware and smaller data
words. It has been shown that using different data sizes in
different layers can considerably reduce the hardware com-
plexity, improve the performance, and still keep an acceptable
accuracy of the results. This method is called hybrid data
quantization [3].

Designing a dedicated architecture to run CNNs with
hybrid data quantization is challenging since different net-
works will require different data quantizations in differ-
ent layers. Hence, the devised architecture must be flexible
enough so that different data sizes in different layers may
be configured. A few works have used Field-Programmable
Gate Arrays (FPGAs) to implement hybrid architectures
[3], [4], since the FPGA can be reprogrammed for each
specific network. However, these approaches considered a
complete pipeline structures, with a dedicated module for
each layer, and their size only allowed mapping on medium
to large FPGAs.

In this paper a different approach is proposed. The proposal
consists in using modular hybrid computational cores, which
allow further reducing the data sizes and storage requirements
of the configurable architecture, while improving the infer-
ence run time. Such architecture can efficiently run CNNs
in low-density FPGAs, enabling smart embedded comput-
ing [5]. The proposed hardware modules can efficiently run
dot-products of different data sizes in the FPGA, and effec-
tively support hybrid data quantization. The experimental
results show throughput improvements of up to 13.7× when
compared to state-of-the-art approaches that tackle the same
problem.

The paper is organized as follows. Section II describes
related work on CNN FPGA implementations and optimiza-
tion methods. Section III describes the baseline architecture
without hybrid quantization. Section IV describes the pro-
posed architecture for hybrid CNNs. Section V describes the
area and performance results of the architecture running well-
known CNNs. Section VI concludes the paper.

II. RELATED WORK
The ability of CNNs to classify images comes from the con-
volutional layers that run 3D convolutions of weight kernels
and input feature maps (IFM). Each 3D convolution produces
an output feature map (OFM) to be used by the next layer.
Different kernels are used to identify different characteris-
tics of the image stored in different output feature maps.
Successive layers correlate more complex features, allowing
the identification of particular classes of objects. Complex
features are finally fully correlated with fully-connected lay-
ers, where all neurons are connected to all neurons of the
previous layer. A final layer called softmax outputs the result

of the inference process. The softmax layer uses a node for
each class of object and produces the relative probability
of the input image belonging to the object class. In all lay-
ers the neuron outputs are driven by an activation function.
Several activation functions have been proposed but recently
the Rectified Linear Unit (ReLU) function and its variations
are the most commonly used due to their simplicity, advan-
tages during training and good inference results.

The size of the layers, number of kernels and the inter-
connections between layers determine the accuracy of the
network for each class of classification problems. As a conse-
quence, many different CNNs have been proposed in the last
years for improving the accuracy in different sets of images.
LeNet [6] was one of the first CNNs used for classification
of hand-written digits in 32×32 images, and achieved a very
high (over 99%) accuracy. LeNet used 2 convolutional and
3 fully-connected layers, in a total of 60K weights.

The evolution of high-performance computing platforms
made possible the training of networks with 1000× more
weights than those used in LeNet. This way, larger images
could be classified. The AlexNet network [7] has 5 convolu-
tional and 3 fully-connected layers, in a total of 61Mweights.
This increase in the number of weights required much more
memory and many more operations (1.5 GOp) to process a
single image. AlexNet won the 2012 ImageNet Challenge
(for the classification of images of size 224 × 224 × 3 in
1000 different classes), achieving top-5 and top-1 error rates
of 17% and 37.5%, respectively.

The achievements of AlexNet have opened the road to new,
larger and more accurate networks. VGG16 [8], a version
of VGG with 16 layers, has 2.2× more parameters than
AlexNet, and executes 31 GOp to run inference over an
image. This large model achieved a top-5 error rate around
10% in the 2014 ImageNet Challenge. GoogleNet [9] is an
irregular CNNwith 22 convolutional layers and a new type of
group layer (the inception layer consisting of parallel convo-
lutions). The model needs 7M parameters and 1.58 GOp and
achieved a top-5 error of 7% in the 2015 ImageNet Challenge.
ResNet [10] introduced a new composite module containing
an identity connection to reduce the complexity of the train-
ing. Several versions of ResNet have been designed with a
number of convolutional layers ranging from 53 to 155. With
up to 11.3 GOp of workload, ResNet reduced the top-5 error
from 6.7% to 5.8%. ResNet was the first CNN exceeding
human-level accuracy in the ImageNet Challenge.

CNNs, like any other deep neural network, are very
compute-intense and therefore are typically run on high-
performance platforms. However, high-performance devices
are not appropriate for smart embedded computing, since
they are energetically inefficient and too expensive. Current
embedded Central Processing Units (CPUs) achieve only
a few dozen Giga FLoating-point Operations per Second
(GFLOPS) with insufficient power efficiency for real-
time or almost real-time processing of CNNs. Graphics Pro-
cessing Units (GPUs) offer thousands of GFLOPS at the
cost of high energy consumption, disqualifying them for
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embedded computing. Finally, dedicated high-performance
units (Application-Specific Integrated Circuits) are quite
high-performance and energy-efficient, but they are not pro-
grammable and unable to map different networks or adapt to
the constant evolution of deep neural networks.

Reconfigurable computing devices, in particular FPGAs,
are used to implement accelerators for CNN inference
[11], [12]. They are more energy-efficient than GPU and
CPU based-platforms and achieve better performance than
CPUs. The reconfigurability of FPGAs allows designing a
dedicated datapath for a specific CNN model [13], and effi-
ciently implement optimization strategies. Designing a dedi-
cated accelerator for CNN inference requires some hardware
expertise when following the traditional FPGA design flow.
To speed-up the design process, a few works have proposed
automatic frameworks and high-level synthesis (HLS) tools
that automatically convert a specification of the network
model into a dedicated FPGA architecture [14]. HLS tools
allow the fast design of architectures but are not optimized
for best performance and resource usage. A template-based
approach considers configurable cores or architectural tem-
plates that can be configured for a particular network [15].
Solutions obtained from an architectural template are more
optimized but less flexible. A mid-term solution considers
an overlay processor [16], which is a programmable hard-
ware structure that runs a compiled CNN model, but adds
some overhead associated with the overlay. Since our pro-
posal targets constrained devices, it follows a template-based
approach, where a generic and configurable architecture can
be tailored for each specific network and target device.

Initial FPGA implementations of small CNNs [17], [18]
have been followed by FPGA implementations of all layers
of a CNN model [19], [20]. CNN models are made of dif-
ferent types of layers, and each layer has filters and maps
of different sizes. Therefore, the architectures proposed are
flexible enough to run both fully connected and convolutional
layers of different shapes and sizes. One of the main problems
when designing a flexible enough accelerator is how to deal
with different convolution window sizes from layer to layer.
To solve this problem, convolutions are converted to matrix
multiplications by rearranging the input feature maps [20].
To reduce the overhead associated with map rearrangement,
dedicated hardware units are used to convert the input maps
into a matrix [21].

The utilization of a single monolithic hardware module
to run layers with different characteristics may lead to low
throughput, since different layers require different computing
patterns. Alternatively, the module may be designed allowing
for various options and exceptions, which becomes overly
complicated. In this paper, 3D convolutions are calculated
as long inner products, without any additional computational
effort for rearranging the IFM. As such, the hardware struc-
ture to run 3D convolutions does not change with the window
size.

The first generation of CNN implementations take perfor-
mance as themain optimizationmetric. Recently, a fewworks

based on the single module approach [22]–[24] have started
to consider other metrics such as area and power, to enable
design trade-offs.

In [22], only convolutional layers are considered, while
in [23], [24], convolutional and fully-connected layers are
considered but the same module is used in both. Instead of
using the same hardware module in all layers, pipelines of
layer-specific modules have been proposed [25], [26]. These
architectures are quite efficient, since unique modules are
optimized for each layer. However, they require significant
memory resources to store all intermediate maps and weights,
which may easily consume all available on-chip memory in
low-density FPGAs. A trade-off between a single hardware
module for all layers and a pipeline of layer-specific modules
was proposed in [27], where layer subsets are mapped to a
fixed set of modules. This solution sacrifices performance
for resource efficiency and consists of several modules, each
maps to a subset of the CNN layers. This system achieved a
2× speedup for SqueezeNet in a Virtex7 FPGA compared to
state-of-the-art architectures.

To further reduce the number of computing modules,
the present proposal considers only two different modules:
one for convolutions and the other for fully-connected layers.
Since the structure is the same regardless of the window size,
it achieves the same efficiency as a solution with multiple
modules while reducing the required area.

A pipelined accelerator for CNNs on low-density FPGAs
was proposed in [28]. To reduce the required on-chip mem-
ory, it applies a layer-fused technique. With dedicated mod-
ules for each layer, the solution runs AlexNet at 80 Giga
Operations per Second (GOPS) on a ZYNQ7020 FPGA. The
problem of this approach is that it requires on-chip memory
in all layers. Given the finite on-chip memory resources,
it needs a complex circuit to orderly access external mem-
ory, which reduces the available resources to implement the
computing cores. This unbalance between computing and
memory resources reduces the performance efficiency of the
solution for small FPGAs. Our approach also manages to
map large CNNs into low-density FPGAs and achieves better
performance efficiency.

Data quantization is an optimization technique that
changes the type and reduces the size of the numeric represen-
tation of parameters in the model, and consequently reduces
the required storage size and computing resources. In [29],
8-bit fixed-point representations are shown to guarantee an
accuracy close to that obtained using 32-bit floating-point
numerical representations. While fixed-point quantization
schemes have proliferated, a new and notable floating-point
representation, called the block floating-point scheme, using
8 and 16-bit data widths has been proposed [30]. The new
representation reduces the accuracy loss by using simplified
floating-point operations. The proposal has been tested using
the VGG16 network on a Virtex 7 VX690T and has achieved
a performance of 760 GOPS.

The data widths can be fixed for all layers or optimized for
each layer. In [3], an implementation of a mixed-precision
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VGG16 network on a ZYNQ7045 FPGA, achieved a perfor-
mance of 316 GOPS, almost three times better than previous
approaches with fixed data sizes for all layers. In [4], a hybrid
quantization scheme uses 8-bit fixed-point and shift quan-
tization (powers of 2) to represent weights, with fixed 8-bit
activations in all layers. The solution improves the hardware
area due to shift quantization. However, like in [3], the system
is implemented as a pipelined architecture and mapped to
high-density FPGAs.

In [31], hybrid quantization is explored in implementations
both for low-density FPGAs (edge computing) and high-
density FPGAs (cloud computing). However, the adopted
bit-serial matrix multiplication architecture for low-density
FPGAs has a negative impact on the system performance. The
hybrid approach in [3] has the best performance efficiency
overall, but its pipelined implementation of layers can not
be mapped into low-density FPGAs. In [32], a core that uses
8 and 2-bit weights is proposed.

The solution proposed in this paper is able to run networks
with hybrid representations in low-density FPGAs, since the
same hardware module is able to run the inner products of
vectors with different bit sizes.

In extreme quantization implementations, CNNs are con-
verted to Binary Neural Networks (BNNs) [33], [34].
In BNNs, weights or both activations and weights are rep-
resented with a single bit, further reducing memory require-
ments. Networks having 1-bit weights can lose more than
10% accuracy for large networks. To obtain an accuracy
comparable to using floating-point, a BNN needs from
2 to 11× more weights and operations [33]. It is also known
that the first and last layers require full precision, forcing
the architecture to support both representations. The accuracy
gets even worse when both weights and activations are repre-
sented with a single bit. BNNs can be efficiently implemented
with FPGA Look-Up Tables (LUTs), sparing the DSPs for
performing additions only, which greatly reduces the resource
utilization.

Our solution supports 1-bit weights but not 1-bit activa-
tions. Since we are targeting large CNNs, for which BNNs
show considerable accuracy losses, we do not use fully binary
networks.

A fewworks have considered the implementation of CNNs
in a ZYNQ7020 FPGA with data quantization. [15] reported
the implementation of a small CNN in this device, where
the representation of weights and activations with 16-bit
fixed-point data limits the average performance to 13
GOPS. In [35], AlexNet and VGG16 are implemented in
the same ZYNQ7020 FPGA using 8-bit fixed-point data.
The performance improves to 84 GOPS, partly because the
data is represented with half the size compared to [15].
In [36], a low power 8-bit network implemented in the
same ZYNQ7020 device, manages an average performance
of 41GOPS. A pipelined architecture using 16-bit fixed-point
data, and pruning applied to fully connected layers, achieved
a performance of 76 GOPS [28]. These works targeted low-
density FPGAs but achieved a relatively low performance

because a homogeneous data representation has been consid-
ered. Our proposal also targets low-density FPGAs but can
achieve over 1 Tera Operations per Second (TOPS) of average
performance using hybrid quantization.

In this paper, a configurable architecture to execute CNNs
with hybrid data quantization is proposed. The proposal con-
sists of a two-stage pipeline architecture with two separate
modules to process the two types of regular layers: convo-
lutional and fully-connected layers. Compared to previous
CNNs, the proposed architecture improves on the inference
performance and resource efficiency, making it suitable for
low-density FPGAs as well as high-density ones.

III. BASELINE ARCHITECTURE OVERVIEW
The architecture proposed in this paper applies hybrid quanti-
zation to a state-of-the-art architecture that implements large
CNNs in low density FPGAs using an 8-bit fixed-point repre-
sentation format. This baseline architecture is a follow-up of
the work presented in [5], [37] and is described in this section.

FIGURE 1. Block diagram of the baseline architecture.

The baseline architecture has one dedicated hardwaremod-
ule to run convolutional layers and another to run fully-
connected layers in parallel (see Figure 1). This allows for
different optimization techniques to be applied to convolu-
tional or fully-connected layers. Each block executes one
layer at a time and must be configured before running each
layer. The configuration specifies the number of kernels, their
size, memory addresses, the existence of the pooling layer
and its window size, and the scale of the fixed-point format.
The input image and the feature maps are loaded to on-chip
memory in order to be processed. Depending on the size of
the image and intermediate feature maps, they may fit or not
in the on-chip memory. If it does not fit, the image or the
feature maps are divided and processed in pieces. The output
feature maps generated by a layer are stored back in external
memory, and reloaded for the next layer. This increases the
volume of data communication with the external memory but
allows for the execution of CNNs whose maps do not fit in
the available on-chip memory.

Both the convolutional and the fully connected modules
have a cluster of Processing Elements (PEs) comprising local
memories and computing units. Pooling layers and activation
functions are implemented outside the PE clusters, since
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they are applied only to the result of convolutions and inner
products. The execution flow of a CNNmodel in the baseline
architecture consists of the sequential application of the fol-
lowing steps to each layer: loading feature maps and weights
to on-chipmemory, executing convolutions or inner-products,
and storing output maps in external memory. The process
takes into consideration the size and number of on-chip mem-
ories. If the input maps do not fit in the feature map memory
then they are loaded in smaller chunks. If the number of
kernels is higher than the number of weight memories, they
are loaded in small groups.

The architecture is controlled at three levels. The con-
volutional and fully connected modules each have a local
configuration controller, and the complete accelerator has a
general controller. The configuration of each layer is done
by a host processor, including the configuration of the direct
memory access (DMA) modules that read kernels from exter-
nal memory and read/write feature maps to external memory.

FIGURE 2. PE cluster architecture for convolutional layers [37].

The PE cluster of the convolutional module has an array
of cores organized by lines and columns. Each line of cores
is connected to a single port of the feature map memory and
therefore executes over the same block of activations. Each
core of the line receives a different weight kernel. Therefore,
each core in a line generates an activation of a different
output map. Cores in the same column receive the same
weight kernel. Each core in a column receives a different
block of activations from the feature map memory. Thus,
cores in the same column generate activations of the same
feature map (figure 2). Each core has a parallel multiply-add
(MAD) unit to calculate inner-products. Multiple weights and
activations are read and processed in parallel by the MAD
units. The baseline architecture has been implemented with
8-bit fixed-point data. Memory ports are 64-bit wide. Hence,
8 activations and weights are read and processed in parallel
by each parallel MAD unit.

The baseline architecture can execute convolutions with
different window sizes with the same hardware module. This
is done by reading activations and weights as long vectors.
The inner product of these two vectors is computed by the
parallel MAD units.

Let us consider a set of input feature maps with size
xp × yp × zp, where xp × yp is the size of the maps and zp
is the number of maps. One output activation is the result of
the inner product between a kernel with size xk × yk × zk
and the corresponding input activations. Both 3D kernels and
activations are read sequentially from memory following the
order z, x, y. The addresses to read the activations in this
order are generated by address generators configured before
running the layer. Formally, the inner product between a
kernel and the corresponding activations is given by:

DPconv =
yk−1∑
i=0

xk zk−1∑
j=0

Wi xk zk+j × AfirstAddr+i xp zp+j (1)

where firstAddr is the address of the first activation of
the block being convoluted. The complete convolution is
obtained by sliding the kernel over the input maps with a
particular stride, while applying equation 1 to each position.
The output activation is then stored back in the feature map
memory, or first pooled from the pooling window an then
stored in the map memory. The advantage of this method is
the fact it works regardless of the size of kernels or convolu-
tion windows.

The convolution of the 3D kernel with the 3D input map
is given by Algorithm 1, considering the set of all 2D input
feature maps (which together form a 3D input map of size
xp×yp×zp), a 3D kernel of size xk×yk×zk , a pooling window
of size xpool × ypool and a stride of size t . In the algorithm,
poolFunction is the maximum or average pooling function.
The startAddr function adds the correct offset to the address
pointer of the feature map memory, depending on the next
activation to be calculated. The startAddr function takes as
arguments the size of the input feature map, the pooling size,
and the stride value. Given the first memory address where the
feature map is stored (initialAddr), the startAddr function is
given by:

startAddr = initialAddr + k × zp + l × zp × xp
+m× zp × s+ r × zp × xp × s (2)

As described in Algorithm 1, each output neuron is calcu-
lated as the inner product of the kernel and an IFM block of
activation values using equation 1. For example, considering
a kernel of size 3 × 3 × 128, each output neuron is calcu-
lated as the inner product of the kernel and a 3× 3× 128
activation block. The 3D kernel slides over the whole input
map, spanning the xp × yp space. When the stride is greater
than one, the 3D kernel slides over the input map, skipping
over input activation values according to the stride size. For
example, a stride of two means that the every other acti-
vation is skipped, reducing the output map to half the size
of the input map. The algorithm also includes the optional
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Algorithm 1 Convolution With a 3D Kernel
Input: Set of all input 2D feature maps (3D input map) and

one 3D kernel of weights
Output: One output feature map result of the convolution of

the 3D input map with the 3D kernel
for r = 0 to yp/t − 1 do
for m = 0 to xp/t − 1 do
poolVar ⇐ 0
for l = 0 to xpool − 1 do
for k = 0 to ypool − 1 do
dp =

∑yk−1
i=0

∑xk zk−1
j=0 Wixk zk+j ×

AstartAddr(r,m,l,k)+ixpzp+j
poolVar ⇐ poolFunction(poolVar, dp)

end for
end for
neuron(m,r) ⇐ poolVar

end for
end for

pooling step. In this case, the output neuron is generated
only after computing all neurons in the pooling window. The
algorithm sequentially calculates all neurons in the pooling
window in order to merge the pooling layer with the convo-
lutional layer.

The PE cluster of the fully-connected module consists of a
matrix of cores with a structure identical to the PE cluster for
convolutions. Each line of cores receives the activations of an
image in the batch memory. Compared to the convolutional
module, there is a major simplification in the address gener-
ators. Instead of an image convolution, a single dot product
of the complete batched image and the kernel is performed.
Parallel computation of dot products of a batched image and
different kernels is possible by using multiple cores in a
cluster line. The number of cores is limited by the available
memory bandwidth, and is in general much lower than in the
convolution PE cluster. This architectural difference between
the two PE clusters is the main reason for having independent
modules for convolutional and fully-connected layers, as it
improves the hardware efficiency.

IV. HYBRID ARCHITECTURE
This work modifies and extends the baseline architecture to
support the execution of layers with different weight sizes
(8, 2 and 1 bit). Two new hybrid cores are proposed, which use
these weight sizes and are able to efficiently calculate mul-
tiple dot-products. The size of the activations is kept fixed,
since the precision of activations has a higher impact on the
network accuracy than the precision of weights. The architec-
ture described considers 8-bit activations but the design can
straightforwardly support other activation sizes.

In the baseline architecture, each core receives eight 8-bit
activations and eight 8-bit weights of a kernel in parallel. The
new hybrid core always receives 64 bits of activations and
64 bits of weights. The dot-product level of parallelism is

always 8, since there are only 8 different activations available
in each cycle. However, in layers whose weights are repre-
sented with fewer bits, the 64 bits of weights can represent
more than 8 weights. Since there are only 8 activations avail-
able, the 64-bit weight word is used to represent weights of
different kernels.

The hybrid cores proposed in this work are able to calculate
a number of dot-products in parallel, depending on the weight
sizes. Consider, for example, a CNN where some layers
have 8-bit activations and 8-bit weights and other layers
have 8-bit activations and 2-bit weights. The hybrid core
will execute one dot-product between eight 8-bit activations
and eight 8-bit weights, in the first case, and four distinct
dot-products between eight 8-bit activations and eight 2-bit
weights, in the second case.

The two hybrid cores proposed herein are the following:
one for 8- and 2-bit weights, named C8:82, and another for
8- and 1-bit weights, named C8:81. Their architectures are
described in the following two sub-sections.

A. HYBRID CORE FOR 8-BIT ACTIVATIONS AND
8/2-BIT WEIGHTS - C8:82
This subsection details the hybrid core that supports the exe-
cution of two different activation × weight representations:
8×8 and 8×2 (C8:82). As stated above, using a different fixed
size for activations is straightforward, since the architecture
is generic for this parameter.

The approach proposed for the hybrid calculation consists
on designing the core to conditionally execute 4 partial prod-
ucts of eight 8× 2 dot-products when the layer is requesting
an 8× 8 dot-product.
Let us consider eight 8-bit activations, A0,A1, . . . ,A7, that

are read in parallel from the on-chip memory in each clock
cycle. Weights are read from the weight memory. With 2-bit
weights, 4 groups of eight 2-bit weights are read in parallel,
W00,W01, . . . ,W07,W10,W11, . . . ,W17,W20,W21, . . . ,W27
andW30,W31, . . . ,W37. Then, the 4 dot products, DP0, DP1,
DP2 and DP3 are calculated as:

DP0 =
7∑
i=0

Ai ×W0i (3)

DP1 =
7∑
i=0

Ai ×W1i (4)

DP2 =
7∑
i=0

Ai ×W2i (5)

DP3 =
7∑
i=0

Ai ×W3i (6)

These calculations are done using 4 dot-product units,
each implemented with 8 cascaded MAD units (Figure 3).
The eight 8-bit weights W0,W1, . . . ,W7 are set as Wk =

W3kW2kW1kW0k , where k = 0, 1, 2 . . . , 7. Then, the 4 DP
core outputs correspond to partial products that must be added
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FIGURE 3. Architecture for 4 dot-products with 2-bit weights.

to calculate the final 8× 8 dot-product:

A ·W = DP3 × 26 + DP2 × 24 + DP1 × 22 + DP0 (7)

Equation 7 is executed only after calculating the com-
plete convolutions. Therefore, it is implemented outside the
core, and the addition is shared by all cores of a PE cluster
line, followed by the ReLU activation function (not shown
in figure 3).

Each cascaded MAD unit determines R = X + A × W ,
where A =

∑7
i=0 ai × 2i is an 8-bit activation, W = w1 ×

2 + w0 is a 2-bit weight and X =
∑9

i=0 xi × 2i is the 9-bit
output of the previous MAD.

The 2-bit sections represent different numbers depend-
ing on the layer weight size. If the weight size is 8 bits
(mode 0 of operation), the 2-bit sections are partials of the
8-bit weight and represent the numbers {0, 1, 2, 3}, except
for the most significant two bits which represent the num-
bers {−2, −1, 0, 1}. If the weight size is two bits (mode 1
of operation) then the 2-bit sections represent the numbers
{−1, 0, 1}.

TABLE 1. MAD result for mode 1 of operation.

Let us first consider the case of weights represented with
the 2-bit signed numbers {−1, 0, 1} (mode 1). In this mode,

X is added with one of the multiples of A in {-A, 0, A},
depending on the 2-bit weight value, as shown in table 1.
The 6-input LUTs of FPGAs can implement two 5-input

functions as long as the inputs are common. The addition of
X with one of these multiples can be efficiently implemented
with (m+3) 6-input LUTs and the carry-chain, where m = 8
is the number of bits of the activation. Note that the generate
and propagate signals of the carry chain are functions of
only four variables (w0,w1, xi, ai). The LUTs produce the
appropriate generate and propagate signals (and carry-in) to
conditionally subtract/add A (or 0) from/to X .

For the multiplication by 8-bit weights (mode 0), one first
determines the partial products of the activation by two bits of
the weight. In this mode, the two bits of the weight represent
the unsigned numbers {0, 1, 2, 3}, except the most significant
2 bits, which represent the signed numbers {−2, −1, 0, 1}.
When W is a signed 2-bit number, we need multiples A

and 2A to implement X + A ×W . In this case, the generate
and propagate signals are functions of the five variables
(w0,w1, xi, ai, 2ai), and thus can be implemented with the
same number of LUTs as with the signed 2-bit indepen-
dent weights described before. However, in the case of the
multiplication by the unsigned 2-bit weights {0, 1, 2, 3},
the generate and propagate signals are functions of the six
variables w0,w1, xi, ai, 2ai, 3ai, since the 3×multiple is also
needed, and cannot be implemented with a single LUT.

However, using a modified Booth recoding algorithm [38]
and the implementation method proposed in [39], it is pos-
sible to avoid the 3× multiple, and implement the addition
of a variable using a 5-variable function with a single level
of LUTs.

The modified Booth algorithm recodes two bits at a time
with overlapping 3-bit groups (a ‘0’ is appended to the right of
the number). The 3-bit recoding is done according to table 2.

TABLE 2. Recoding with modified Booth.

With weight recoding, only multiples A and 2A
are needed. For example, applying Booth recoding to
−89 = ‘‘10100111’’, the recoded number is given by:
−1:−2:+2:−1. Thence, the multiplication of this number by
A is given by ‘‘10100111’’× A = (−1× 26 + (−2)× 24 +
2× 22 + (−1))× A.
In this case, the propagate and generate functions of the

multiply accumulate operation R = X + A × W are
still functions of the six variables w0,w1,w−1, ai, 2ai, xi,
since recoding requires 3-bit inputs. However, using the
method proposed in [39], variable x can be added with
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FIGURE 4. MAD unit architecture for adding variable X with a 5-variable
function.

a function of the five variables w0,w1,w−1, ai, 2ai, using
the implementation illustrated in figure 4. The unit shown in
figure 4 implements x⊕ f (i4, i3, i2, i1, i0) using both f and its
complement f̄ .

Finally, both functions must be implemented with a sin-
gle MAD, which implements both operation modes, 8-bit
weights (mode 0) and 2-bit weights (mode 1). Therefore,
an extra input is needed to specify the mode and, again, an
addition of variable x with a 6-variable function is needed.
To avoid this 6-input function, a different recoding is consid-
ered that takes into account the operation mode (see recoding
in table 3).

TABLE 3. Weight recoding considering the mode of operation.

Given the mode of operation, the weights are recoded into
three bits (wr2, wr1, wr0): one bit specifies the sign (wr2)
and the other two encode the multiples 0, A and 2A. In this
method, the weights are first recoded and then sent to the
MAD unit, where the applied function fi (wr2, wr1, wr0,
2ai, ai) is given by:

fi = wr1 · wr0 · (wr2 ⊕ ai)+ wr1 · wr0 · (wr2 ⊕ 2ai) (8)

Input wr2 is the carry-in bit needed to implement the 2’s
complement of the multiples. The recoded weights are shared
by all cores in the same column of the PE cluster, and a single
LUT can generate two recoded bits. This way, the resource
overhead associated with recoding is very low.

FIGURE 5. Final architecture for 4 dot-products with 2-bit weights.

The final C8:82 circuit diagram is illustrated in figure 5.
The core inputs are the activation multiples A and 2A, the
2-bit weights and the MAD’s second operand sign.
In addition, a pipeline level has been added to improve the
throughput of the circuit (other pipeline levels can be easily
considered). The chain of eight MAD units has been broken
into two sub-chains of four MAD units each, in order to
reduce the delay of the complete cell.

The cores of the baseline architecture have been replaced
with the new hybrid C8:82 core. Recode units have been
added after the weight memories in both the convolutional
and fully connected modules. The conditional addition of
the partial products has been included before the shift and
activation function. Figure 6 illustrates the new architecture
of the convolutional module. The fully connected module
follows a similar structure, as explained.

B. HYBRID CORE FOR 8-BIT ACTIVATIONS AND
8/1-BIT WEIGHTS - C8:81
The design of the hybrid C8:81 core, supporting the product
of 8-bit activations by 8-bit weights, 8× 8 (mode 0) and the
product of 8-bit activations by 1-bit weights, 8× 1 (mode 1),
follows a similar approach as that for the design of core
C8:82.

The C8:81 core generates 8 dot products, conditionally
added as partials of an 8 × 8 product for 8-bit weight
layers. For this core, a more efficient hardware solution is
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FIGURE 6. Hybrid PE cluster C8:2 core architecture for convolutional
layers.

FIGURE 7. 8/1-bit weight core architecture.

implemented by multiplying and adding two activations in a
single unit.

Each double multiply-add unit (MAD2) multiplies and
accumulates two activations and two 1-bit weights, and adds
the result of the previous MAD2. Four MAD2 units work
together to calculate the dot-product between 8 activations
and 8 weights (see Figure 7).

Considering 8-bit weights, the dot-product A ·W , between
eight activations and eight 8-bit weights W0,W1, . . . ,W7,
is calculated by considering each weight as Wk =

Wk7Wk6Wk5Wk4Wk3Wk2Wk1Wk0, where k = {0, 1, 2 . . . , 7}
and then adding the eight partial products as:

A ·W = (
i=6∑
i=0

DPi × 2i)− DP7 × 27 (9)

As before, equation 9 is implemented outside the core and
before applying the activation function. Each MAD2 unit
implements the dot-product between two 8-bit activations,

Aa and Ab, and two 1-bit weights, Wa and Wb and adds it to
the output of the previous MAD2, X . Formally, it calculates:

R = X + (Aa ×Wa + Ab ×Wb)

The 1-bit weight has different interpretations depending
on the weight size. If the size is 1 bit then it represents
the numbers {−1, 1}; if the size is 8 bits, the 1-bit weights
are partials of the 8-bit weight multiplication and represent
the numbers {0, 1}, except for the most significant bit that
represents the numbers {0, −1} (2’s complement property).

Let us consider two 8-bit activations, Aa and Ab, two
1-bit weights, Wa and Wb, and the selector mode to choose
the weight size or mode of operation. The operations to be
executed depend on the weights according to table 4.

TABLE 4. Core implemented operation according to mode and weights.

According to these functions, X is being added/subtracted
to/from 7-variable functions Aa, Ab, (Ab+Aa), or (Ab−Aa)).
As explained above, this function has to be reduced to five
variables so it can be implemented with a single level of
LUTs. Let us consider Y = X + (Aa + Ab) and rewrite the
expressions in table 4 terms of Y. The result is in table 5).

TABLE 5. Core implemented operation according to mode and weights
using variable Y = X + Aa + Ab.

FIGURE 8. MAD2 inputs for 8/1-bit weights.

For the first three combinations of weights, some function
f or its double 2× f is subtracted from Y. ForWa = Wb = 1,
there is no subtraction (0 is subtracted from Y). Hence,
3 MAD2 inputs are selected using 3 multiplexers depending
on the mode (see figure 8). Then, a 5-input (Wa, Wb and
the 3 multiplexer outputs) function is subtracted from Y .
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Being a 5-input function, it can be implemented with a single
level of LUTs.

In the first MAD2 of the cascade X = 0, making
Y = Aa + Ab, which is already the input of the first mul-
tiplexer. However, X , which is the result of the previous
MAD2 block, needs to be added to Aa+Ab before being input
to the MAD2. This would require an extra adder between
MAD2s whose outputs are not shared with the MAD2s of
other cells. A simpler solution is to do all the required addi-
tions beforehand, such that the input of the first MAD2 block
is Y =

∑k−1
i=0 Ai, where k is the number of activations in the

(sub-)chain of MAD2s. Doing this addition at the beginning
avoids adders between MAD2s, and allows Y to be shared by
the other DPi cells in the core.

The extra logic required to add the activations before the
MAD2 sub-chain and to implement the multiplexers is shared
by all cells of the core and by all cores of the PE cluster. This
sharing considerably reduces the overhead associated with
the extra logic and makes the solution quite efficient.

FIGURE 9. Architecture for 8 dot-products with 1-bit weights.

The final C8:81 circuit diagram is illustrated in figure 9.
The MAD2 units have the same structure of the MAD units
used in the C8:82 core (see figure 4) but function fi in this
case is given by:

fi = w1 · w0 · i0 + w1 · w0 · i1 + w1 · w0 · i2 (10)

where signals in correspond to the MAD2 inputs shown
in figure 9. As in the C8:82 core, the MAD2 chain is divided
in two sub-chains of twoMAD2 units each, in order to reduce
the delay of the complete cell.

V. RESULTS
The proposed hybrid cores have been implemented using
the Vivado 2019.1 Design Suite and run on the ZedBoard
FPGA card. The Zedboard card comprises a low-density
ZYNQ7020 device belonging to the Artix-7 FPGA series,
which contains a dual ARM Cortex-A9 CPU. The cir-
cuit operates at 200 MHz. To demonstrate its scalability,

the proposed hybrid architecture has also been imple-
mented in a Xilinx SoC ZC706 Evaluation Kit, containing
a ZYNQ7045 device of the Kintex-7 FPGA series, also
featuring a dual ARM Cortex-A9 CPU. With this device,
an operating frequency of 240 MHz has been used.

ZYNQ FPGAs have four 64-bit High-Performance ports
working at 150 MHz, which give the programmable logic
direct access to the external memory. The measured external
memory bandwidth is 3.3 GBytes/s on the ZedBoard and
4.2 GBytes/s on the ZC706 board.

All architectures have been described in VHDL, simulated
and implemented with Vivado. In particular, the hybrid cores
have been described by direct instantiation of the FPGAprim-
itive instances LUT6_2 and CARRY4. The LUT6_2 primi-
tives support equations 8 and 10. Four different architectures
have been implemented and tested in FPGA:

1) Architecture 8:8888 - Baseline architecture with both
activations and weights represented with 8 bits;

2) Architecture 8:8228 - Hybrid architecture with acti-
vations represented with 8 bits. The weights of the
first and last layers are represented with 8 bits and the
weights of the hidden layers are represented with 2 bits;

3) Architecture 8:8218 - Hybrid architecture with acti-
vations represented with 8 bits. The weights of the
first and the last layers are represented with 8 bits,
the weights of the hidden convolutional layers are rep-
resented with 2 bits and the weights of the hidden FC
layers are represented with 1 bit;

4) Architecture 8:8118 - Hybrid architecture with acti-
vations represented with 8 bits. The weights of the
first and last layers are represented with 8 bits and
the weights of the hidden layers are represented
with 1 bit;

The AlexNet and VGG16 networks have been trained for
each hybrid size combination using a framework developed in
the scope of this work, which is an extension of Ristretto [29]
integrated with Caffe [40]. To reduce the training time of a
large set of CNNs with different hybrid sizes, only the new
architectures 8:8228, 8:8218 and 8:8118 have been consid-
ered. The framework also allowed validating the results of the
FPGA implementations. On a first validation level, the out-
puts of all layers have been compared with their expected
values, in order to determine the correctness of the internal
node values. On a second validation level, the classification
results for each image have been compared with the frame-
work inference results. All networks have been trained for the
ImageNet data set [41]; their achieved accuracy is indicated
in table 6.

TABLE 6. AlexNet and VGG16 top-1 accuracy for different formats.
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TABLE 7. Hybrid core resource usage for the different implementations.

There is an accuracy degradation of less than 4.5% between
the baseline architecture and the 8:8118 architecture. This is
expected since there is a considerable reduction in weight
size.

A. AREA RESULTS
The convolutional and fully connected cores determine the
FPGA area occupation of the architecture. The cores have
been designed so that both LUT and DSP resources of the
FPGA are used in a balanced way. To achieve this, different
implementations of the cores have been considered with dif-
ferent numbers of DSPs. Table 7 shows the resources occu-
pied by the cores in 2 alternative implementations, A and B.

TABLE 8. Resource utilization for ZYNQ7020.

TABLE 9. Resource utilization for ZYNQ7045.

The overall resource utilization of the architectures when
implemented in the ZYNQ7020 and ZYNQ7045 devices is
shown in tables 8 and 9, respectively.

The architectures have been configured for best perfor-
mance and tailored for the target CNN network. All archi-
tectures have been designed with a comparable number of
resources, for a fair comparison. The batch sizes are larger for
AlexNet, since the number of weights of the fully connected
layers is almost 30× greater than the number of weights of
the convolutional layers. For the VGG16 network, the dis-
tribution of weights is evener, allowing for a smaller batch.
Additionally, since the number of resources of the hybrid
cores varies with the weight size, the total number of cores of
the architectures also varies with the weight size. For lower
weight sizes, the hybrid core is larger, and fewer cores can be
mapped to a particular FPGA device. The PE clusters occupy
most of the total resources of the architecture (around 90%),
with an area given by the number of cores multiplied by the
resources of a single core (tables 8 and 9).

B. PERFORMANCE RESULTS
The performance results obtained when running the inference
step for AlexNet are shown in table 10 for all architectures.
The hybrid architectures achieve throughputs ranging from
448 to 508 images per second on the ZYNQ7020 device, and
from 1429 to 1639 images per second on the ZYNQ7045
device. These results clearly show that, by using hybrid data
quantization, it is possible to run large CNNs in low-density
FPGAs while meeting real-time requirements (>30 images
per second). Compared to the baseline architecture, the best
hybrid architecture improves the image throughput by 2.2×
on the ZYNQ7020 device and 2.1× on the ZYNQ7045
device. The highest measured performance is 735 GOPS for
the ZYNQ7020 and 2.38 TOPS for the ZYNQ7045 with
AlexNet. Considering VGG16 the measured performance
increases to 1.34 TOPS for the ZYNQ7020 and 2.5 TOPS
for the ZYNQ7045. These results come at the cost of a small
accuracy reduction: from 1.5 to 3.7%.

In terms of performance efficiency, measured perfor-
mance/kLUT and measured performance/DSP, the results
show that the ZYNQ7020 is more efficient. This has to do
with the fact that, in spite of a 4-fold increase in the resources
used, when using the ZYNQ7045 instead of the ZYNQ7020,
there is not a proportional increase in the external memory
bandwidth: from 3.3 to 4.2 GBytes/s only. This shows the
importance of the memory bandwidth in the design of CNNs.

For the VGG16 network, the performance results follow a
similar trend (table 11). VGG16 is a larger network compared
to AlexNet. The computation/communication ratio is larger
for VGG16 compared to AlexNet. This explains the better
performance efficiency when running VGG16. In spite of
this, the 4× more resources of the ZYNQ7045 device do
not lead to a 4× faster design, since, as already mentioned,
the memory bandwidth does not scale proportionally.

To better understand the influence of the hybrid cores over
the execution times of each layer, the average processing
times of each layer for the various architectures are shown
in figure 10.
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TABLE 10. Results for AlexNet inference on ZYNQ FPGAs.

TABLE 11. Results for VGG16 inference on ZYNQ FPGAs.

FIGURE 10. Layer execution time for each architecture, CNN and target device.

The first layer always uses 8-bit weights in all architec-
tures. Since the baseline implementation has more cores,
the execution time of AlexNet’s first layer in the baseline
architecture is lower than that of the hybrid architecture.
In all other layers, the hybrid architectures achieve the best
execution times.

When running VGG16, the hybrid architectures achieve
the best execution times for almost all layers. The execution
time of the convolutional layers decreases with the weight
data size as expected. Exceptions exist for the first and
second layers running on the ZYNQ7045 device. For the
first layer, the communication time for weights exceeds the

execution time. For the second layer, the fact it has only
64 different kernels limits the exposed parallelism, making
it useless to increase the number of operations.

In the fully connected layers a significant difference
between the baseline and the hybrid architectures is
observed, caused by the time to transfer weights from
external to internal memories. Another observation is that
the 8:8118 hybrid architecture is slower than the other
hybrid architectures in the last layers, when running
VGG16 on the ZYNQ7045 device. Once again, this is due
to the inability of using all the available MAD units in
parallel.
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TABLE 12. Performance comparison with previous works on ZYNQ7020.

TABLE 13. Performance comparison with previous works on ZYNQ7045.

C. COMPARISON WITH THE STATE-OF-THE-ART
The performance and area of the proposed hybrid architec-
tures have been compared with the implementations of pre-
vious works using the same FPGAs. The overall comparison
results are shown in table 12.

For the ZYNQ7020 device, the proposed hybrid archi-
tectures increase the image throughput by more than 5.5×
compared to the best state-of-the-art approaches for run-
ning AlexNet with 8-bit fixed-point data. All the proposed
hybrid architectures achieve a measured performance which
is 2.5× higher than the binary network architecture for clas-
sifying CIFAR-10 images proposed in [43]. For running the
VGG16 network, the proposed 8:8228 and 8:8218 archi-
tectures achieve an image throughput which is 12× higher
than the architecture proposed in [35], while keeping the
same accuracy. The 8:8118 architecture achieves a slightly
higher throughput (13.7×), at the cost of a 3.5% accuracy
degradation.

The architectures have also been compared with previous
works implemented on a ZYNQ7045 device, as shown in
table 13. For the AlexNet network, the proposed solutions
almost double the image throughput with better performance
efficiencies. For the VGG16 network, the proposed hybrid
architectures also show better performances than previous
works, achieving a throughput 1.5× higher than the pruned
solution proposed in [46], and 9.3× higher than the solution
proposed in [45].

VI. CONCLUSIONS
This work proposes a new configurable architecture for the
execution of CNNs, which efficiently supports hybrid data
quantization. The architecture targets low-cost FPGAs, and
constitutes an advantageous trade-off between performance
(or performance efficiency) and accuracy: it significantly
boosts performance and performance efficiency in exchange
for a low accuracy degradation. Furthermore, its scalability
allows taking advantage of larger FPGAs where more cores
can be deployed with a proportional performance increase.

Running the AlexNet network, the proposed hybrid quanti-
zation architecture achieves a performance of 735 GOPS on a
ZYNQ7020 FPGA, and 2.375 TOPS on a ZYNQ7045 FPGA.
For theVGG16 network, themeasured performance increases
to 1.341 TOPS on a ZYNQ7020 FPGA, and 2.513 TOPS
on a ZYNQ7045 FPGA. These results clearly show that it is
possible to run large high-performance CNNs on low-density
FPGAs for embedded devices, which is a technological con-
tribution to enable the deployment of large CNNs on edge
nodes and end devices.

To extend the applicability of the proposed solution to
irregular networks, the architecture is now being modified to
support particular convolutional layers that exist in irregular
networks. Two interesting such layers are the GoogleNet
Inception and the ResNet Residual layers. Also, hybrid quan-
tization of both weights and activations is being studied in
terms of network accuracy and architectural design.
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