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This article explores the use of metamodels as simulation building blocks. The metamodel replaces a part
of the simulation model with a mathematical function that mimics the input-output behavior of that
part, with respect to some measure of interest to the designer. The integration of metamodels as compo-
nents of the simulation model simplifies the model and reduces the simulation time. Such use of the
metamodels also gives the designer a better understanding of the behavior of those parts of the model,
making the simulation model as a whole more intelligible. The metamodel-based simulation model
building process is examined, step by step, and the designer options are explored. This process includes
the identification of the metamodel candidates and the construction of the metamodels themselves. The
assessment of the proposed approach includes the evaluation of the integration effort of the metamodel
into the metamodel-based simulation model, and the accuracy of the output data when compared to the
original system.

A metamodel-based simulation model validation test, based on a simulation model validation test, is
developed to ensure that the response conforms to the original simulation model. The proposed test com-
prises the cases when the simulation response variance varies with the experimental point and when it is
constant. A message routing and processing example, with a fourth-degree polynomial regression meta-
model, is used to illustrate the proposed procedure. An integrated simulation system is used to integrate

the metamodel-based simulation model as well as the original simulation model.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Simulation is a very commonly used technique of designing a
model of a real or proposed system and conducting experiments
with this model. Frequently, the purpose of the experiments is to
estimate the effects on system performance due to changes to a
set of controllable input variables. However, the simulation model
may be quite complex and the use of metamodels is often an alter-
native. A simulation metamodel is a simple mathematical function
intended to mimic the behavior of the large complex simulation
model (Barton, 1998). Blanning (1975) proposed the use of meta-
models to obtain useful sensitivity information with a significant
reduction in the computation time. Kleijnen (1975) suggested
some statistical tools to lead metamodels into common use in sto-
chastic simulation. When a system is very complex, several sepa-
rate simulation models are built. Each simulation model
represents an aspect of performance. In this case, it may be possi-
ble to build a metamodel for each simulation model and the com-
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bination of the resulting metamodels yields a system-level
simulation (Barton, 1997); see also Chambers and Mount-Camp-
bell (2002). The most popular metamodels can be represented as
a linear combination of basis functions from a parametric family.
In particular, linear regression models have been intensively used
because they are relatively simple to construct and use; see Kleij-
nen and Sargent (2000) and Cheng and Kleijnen (1999). However,
in some situations we obtain a poor approximation when using lin-
ear regression metamodels, and we must look for a more precise
and flexible models (Barton, 1992) like, for example, nonlinear
regression metamodels (Santos and Porta Nova, 2006, 1999),
Kriging metamodels (Kleijnen and van Beers, 2005) or neural nets
(Badiru and Sieger, 1998).

A metamodel can be reused stand-alone as a surrogate for a
complete simulation model or may be reused as a building block
in a larger simulation model (Santos and Santos, 2007). Frequently,
for complex simulation models, no simple metamodel exists. How-
ever, we could use metamodels for some, or all, of the components
of the simulation model. Each component represents a different
subsystem of the original system. The use of metamodels is partic-
ularly useful when the simulation models are impractically slow
and/or large. The strategy proposed in this paper consists of esti-
mating and validating linear regression metamodels for each sub-
system and of integrating the metamodels with the simulation
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model. Our focus will be on the commonly used linear regression
metamodels as, in many situations, linear regression offers a good
approximation. The integration consists of replacing the original
subsystem simulation elements by the correspondent metamodels.

This paper is organized as follows: In Section 2 the formulation
of models is presented, including the subsystem metamodel’s con-
struction and their validation. The design procedure for metamod-
el-based simulation model is explained in Section 3, including the
validation of the resulting model with respect to the original sim-
ulation model. A motivating example explores, in Section 4, the use
of metamodels as building blocks of metamodel-based simulation
model. Section 5 is reserved for conclusions.

2. Problem formulation

Consider a simulation model that models a real system. Sup-
pose that the response of the real system is modeled by the output
variable of the simulation program. So the simulation model can be
represented by

S=¢(Zr), (1)

where S is the response, Z = (Z;,...,Z)" is a vector of input vari-
ables and r is a vector of random numbers or randomly selected
seeds of the pseudo-random number generators. The simulation
model can be seen as an aggregate of connected blocks with con-
tractually specified interfaces and explicit context dependencies,
or components (Oses et al., 2004). Assume that some components
of the simulation model can be represented by metamodels. Such
metamodels can be deployed independently and may be used for
composition by third parties. That is, the original simulation model
can be represented by the metamodel-based simulation model

R=n(Zr)+e, )

with ¢ representing the inadequacy of # as representant of ¢. The
metamodel that models the component k of the original simulation
model (that is, the kth metamodel) is given by

Yi=fiX;00) + €, k=1,...,h, (3)
where X = (Xy1,...,Xk) is @ vector of u explanatory variables,
O = (Oko, 01, - - - Okg—1 )T represents a vector of unknown parameters,

€, represents the error, and fi is a mathematical function. The var-
iable X;; may be a transformation of one or more Z; or the response
of some other metamodel (that is, X;; = Y}, with ks # k), or originate
from a part of the original simulation model that has not been
substituted by a metamodel. For instance, the utilization factor
Xy = p = /1 may be a better explanatory variable than the arrival
rate Z; = 4 and the service rate Z, = p (Santos and Porta Nova,
2006). The example of Fig. 1 illustrates the relation between explan-
atory variables, subsystem metamodels and the output variable R
(response).

The validity of the metamodel-based simulation model depends
on the validity of the subsystem metamodels. In addition, the
validity of each metamodel depends on the metamodel type, on
the experimental design selected for estimating the unknown
parameters of the metamodel, on the goal of the metamodel,
etc.; see Kleijnen and Sargent (2000), Sargent (1991) and Santos
and Porta Nova (2005). In the following subsections, we present
the formulation of linear regression metamodels used for the con-
struction of a metamodel-based simulation model, and the validity
measures used to determine the validity of each fitted metamodel.

2.1. Linear regression metamodels

Consider a simulation experiment, for each component k of the
simulation model, based on some experimental design fixed by the
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Fig. 1. Explanatory variables, subsystem metamodels and output variable.

simulation analyst: {D;:i=1,...,n;l=1,...,d}, where n is the
number of experimental points and d is the number of factors.
For simplicity’s purpose we will omit the subscript k in the nota-
tion. Moreover, we assume that each experimental point i is repli-
cated r; times, that is, we simulate r; times the same experimental
point i using different pseudo-random numbers. The simulation
experiment produces

| 1/2
0 = { (Yijyi.)z} ; (4)

the estimated standard deviation of Y;, with Y; = 377, Y;/ri and Yj;
denoting the response of interest observed in the replication j of the
ith experimental point.

Denoting the additive error term correspondent to the jth repli-
cation of the experimental point i as €;, we propose to express the
metamodel (3) as the general linear regression model

q-1
Yi= 00+ 0Xu+ € (5)
I=1
where €; ~N(0,0?), 0; >0, 0o is the overall response level, 6,
(I=1,...,9—1) is the first order approximation effect of X;, and
Xi is identical to D;, or may be a transformation of one or more D;’s.

When the purpose is to use metamodels with pth order approx-
imation effects (p > 2) or/and interactions, the linear regression
model still applies. For example, consider the following regression
model:

Yij = 0o + 01Xt + 02X5, + 03X2 + 0aX5, + 05Xin Xz + €. (6)

If we define Z“ = Xi], Z,’z = Xizl, Zig :XiZ, Z,‘4 = XI-ZZ, and Z,'5 = aniz,
we can then write the regression model (6) which is linear in the
parameters 6.

The unknown parameters of the metamodel (5) may be esti-
mated using the method of linear least squares. Kleijnen (1987),
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p. 195, proves that fitting the regression model to the individual re-
sponses Y; is equivalent to fitting the model to the averages
Y = Z}f:l Y;i/ri with weights r;. Therefore, we simplify the estima-
tion procedure: instead of problem (5), we consider the equivalent
least squares problem in which the individual observations, at each
design point, are replaced by their averages across simulation runs
q-1
Y = 0o+ Z 0 + €, (7)
=1
with € ~ N(0, o?/r;).
In matrix terms, the general linear regression model (7) can be
expressed by

Y=X0+¢,

where Y= (Y,,Y,,....Y,)", e=(e1,6€.,....&)", 0=(00,01,...,
04-1) and X is n x ¢ matrix where the row i, corresponds to the
experimental point i and is given by the scalar 1 followed succes-
sively by the Xj; ... Xig_1:

1 X X2 Xig-1

1 Xa Xn X2g-1
X —

1 an Xn2 an—l

In the estimation of the parameter vector §, we considered the
weighted least squares method that yield the following estimator:

0= X"V;'X)"'X"V; 'Y,

where n > q = rank(X), Vy = diag(a?/ry,0%/r2,...,0%/ry)isan xn
diagonal matrix. If & ~ N(0, 62/r;), ¢ > 0, then 6 = (X'WX) ' X"WY,
with W = diag(rq,12,...,1).

In most applications the variances are unknown and Vy must be
replaced by

76—%/“1)7

in the weighted least squares estimation of 0 yielding the estimated
weighted least squares estimator

0= (X"V,'X)"'X"V;'Y.
This estimator is nonlinear because the transformation of Y involves
the random variables Vy. Its covariance matrix is approximately

cov[f] = (X'V;'X) ",

V, = diag(63/ry,...,6%/ra,. ..

when N =3 ,r — oo (Kleijnen and van Groenendaal, 1992, p.
141).

2.2. Metamodel validation

In order to use the kth estimated metamodel as a surrogate of
the component k of the simulation model, we must verify the
metamodel adequacy and the validity with respect to that compo-
nent. Since the responses are Gaussian, we use the lack of fit F test
that compares two variance estimators, one based on residuals and
the other based on replications (Kleijnen, 1987, p. 286):

_N—n (Y- V)’
n=q S (YY)t

with N =37 r; and Y, is the fitted value for the i-th experimental
point (\7,- =Y, = ?,-j,j =1,...,r;). The variance estimator based on
replications does not depend on the regression model. The meta-
model is rejected if F > F(n — q,N —n; 1 — o). This test is based on
the classical assumption where ¢; are assumed to be i.i.d.
N(0, 6?). Ideally the residuals are null and, in this case, the F test’s
value is null, and we do not reject the metamodel as a substitute
for the component k of the original simulation model.

If the responses have different variances and €; are i.i.d. N(0, 6?)
then a rough test of the adequacy of the model can be made using
the following F test:

 N-n Y5 n(Y - Y)?/e?
n—q (Y- Yi)? /6

with &; given by (4). This is only an approximate test because the
estimation of the variances ¢? introduces another source of vari-
ability. However, this approximation is frequently quite good when
N is not too small, since r; must be large in order to ensure an
acceptable weight estimation (Panis et al., 1994). If different design
points use the same seed, then Vy is no longer diagonal. Although,
we can estimate appropriately the elements of this symmetric ma-
trix and, assuming a constant number of replications r; = r, we may
use the Rao’s lack of fit test (Kleijnen and van Groenendaal, 1992, p.
158).

The validation with respect to the component k of the simula-
tion model can be tested using double cross-validation (Friedman
and Friedman, 1985). In double cross-validation, data is randomly
divided in two equal size parts, or split-halves. A metamodel is
constructed for each of the split-halves and if the regression coef-
ficients are very different, especially with respect to sign, the meta-
model lacks internal consistency or reliability. If the split-half
metamodels are reliable, each one is used on the other half of
the data for predicting the response variable. As a result, two R
values are determined for each split-half metamodel, one for the
data used in the metamodel construction Rz, and the other for
the holdout data RZ,, the data used for the construction of the
other metamodel. The metamodel is probably not valid if the
homologous values from both split-half metamodels differ
substantially.

w

3. Metamodel-based simulation model building

A metamodel-based integration procedure may simplify the
optimization and/or investigation of the system performance. Also,
in some situations, it may allow the analytical combination of sev-
eral metamodels in order to build a system metamodel. For the
construction of a metamodel-based simulation model we identi-
fied five major steps, depicted in Fig. 2, each of these steps will
be subsequently analyzed in the next five sections.

3.1. Definition of the simulation purpose

The construction of a metamodel-based simulation model, as
addressed in this paper, assumes the existence of a previously val-
idated simulation model. In this context, the designer must deter-
mine the conditions under which the model will be used, or
domain of applicability. Namely, the designer must determine if
the inputs are deterministic or random, and a measurement scale
must be selected. While input variables are directly observable,
random parameters are subjected to statistical inference. These
conditions, also defined in the metamodeling process proposed
by Kleijnen and Sargent (2000), will influence the characteristics
of the metamodels. The designer specifies the inputs of the model,
such as the number of servers and their service rate, and the output
of interest or goal, such as customer time in the system or average
delay in queue. Some of these inputs are considered to be fixed for
the purpose at hand. The other inputs are variable and can take val-
ues from a range of interest, or experimental region.

3.2. Identification of possible metamodels

The construction of a metamodel-based simulation model from
a validated simulation model requires the identification of which
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Fig. 2. Building a valid metamodel-based simulation model.

subsystems are candidates to be replaced by metamodels; see
Fig. 3. Some systems exhibit parts with specific purposes and well
defined interfaces that represent good candidates for metamodels.
Examples range from front-end and back-end services to specific
tasks within an organization, such as stock-management or distri-
bution. As a general rule of thumb, parts of the system with low
structural connectivity are, frequently, good candidates due to
smaller interfaces and less constraints (Oses et al., 2004).

From a simulation point of view, when a model of a system is
built up by connecting some existing models, each of the previous
models can also be a metamodel candidate. The designer may also
have specific reasons to evaluate the independent behavior of
some part of the system and then use it as a metamodel candidate.

The identification of a metamodel candidate also requires the
determination of its independent variables, and the respective
experimental regions, as well as the dependent variable. These
experimental regions depend on the experimental region previously
defined for the original simulation model. This means that the meta-
model independent variables are, in fact, dependent on the original
simulation model’s inputs. To assess the limits of the experimental
region of each candidate metamodel, some executions of the simu-
lation model must be performed, unless the designer has some in-
sight into the situation at hand. Since, in most cases, these
variables have a monotonic behavior, only the extreme values of
the simulation model inputs need to be assessed. Such an approach
requires a safety trigger, in the metamodel, to detect any possible
violation of this premise; that is, if any of the metamodel indepen-
dentvariables take values outside the assumed experimental region.

MM,

7z s
4’
MM,
/

Fig. 3. Identification of metamodels within the simulation model.

3.3. Build and validate each metamodel

Each of the metamodel candidates must be individually built to
fit the input-output characteristics of the subsystem it is intended
to replace. Then it must be validated to ensure that it accurately
mimics those characteristics; see Fig. 4.

First, the type of each metamodel must be selected depending
on the input-output transfer function that the metamodel is in-
tended to mimic. In our case, the goal of each metamodel is the
prediction of the simulation output. That is, each metamodel is
used repeatedly instead of the subsystem simulation code that
originated it (Kleijnen and Sargent, 2000). The type of the meta-
model must be carefully selected because the input-output rela-
tion to be approximated is usually complex and a very high
accuracy is needed. If the metamodel is a polynomial function,
then, in general, its degree is not low. Cheng and Kleijnen (1999)
use, for example, polynomials of degree four and six. Although,
in some cases, it is possible to use low order polynomials if good
transformations of data are encountered; see also Cheng and Kleij-
nen (1999).

After determining a metamodel type, we must choose an exper-
imental design. In this step, we determine the type of experimental
design to be utilized and the set of design points for which simula-
tion data must be collected, for constructing the kth metamodel.
This initial design is used for estimating the hypothetical meta-
model’s unknown parameters and depends on the metamodel type
that represents the subsystem k. If the metamodel is rejected by
the validity test, he may improve or substitute the design in order
to construct some other metamodel of either the same or other
type. For example, he may start with a construction of a first order
metamodel with two explanatory variables. If the resulting meta-
model is rejected, then he may enlarge the design (that is, aug-
ments the matrix X) in such a way that he can construct another
metamodel with interaction effect of the explanatory variables.
The analyst should select a design for the k metamodel estimation
and, sometimes, the same design is used for k — 1 metamodel esti-
mation. Possible designs include 2" designs, central composite
designs, sequential bifurcation and Latin hypercube sampling;
see Kleijnen et al. (2005) for details on the selection of appropriate
designs in simulation.
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Fig. 4. Construction of a surrogate metamodel.

After estimating metamodel’s unknown parameters, using lin-
ear least squares method, the metamodel must be validated within
the domain of applicability (current experimental region of inter-
est). The domain of applicability may be, for example, the rectan-
gular region bounded by the maximum and minimum values of
each factor. The metamodel is validated using the validation tests
described in Section 2.2. In general, the experimental region does
not cover the entire area in which the simulation model is valid.
When it happens, then other metamodels, that permit global
approximations, become significant. For example, Kleijnen and
van Beers (2005) discover that a Kriging metamodel may yield a
global approximation that is more accurate than a second-order
polynomial. Also, Santos and Nova (2001) discuss a case where
several linear regression polynomials do not permit an acceptable
fit, whereas a nonlinear regression metamodel provide an ade-
quate fit.

3.4. Integration of the surrogate metamodels

The integration process consists of incorporating the validated
metamodel into the metamodel-based simulation model, resulting
in a graphical representation of the simulation that resembles the
sketch outlined in Fig. 3. Most simulation systems provide facilities
to integrate user written code into the simulation model; see Kel-
ton et al. (1998), Pritsker et al. (1997) and Hauge and Paige (2004).
This code can be used to set up inputs, gather output data or even
to access entities and schedule events. For instance, a queue is an
already written piece of code that is distributed with the simulator
and inserted into the simulation model with a textual or graphical
editor. The metamodel as a simulation building block is another
type of entity that can be parameterized and inserted into a simu-
lation model, called metamodel-based simulation model to distin-
guish from the original model without the metamodels. The
particular mechanics of the integration of the user code into the
simulation model is dependent on the software under use. As far
as the simulation tool under use provides facilities for user code in-
serts, the integration process is quite straightforward and simpler
than we have anticipated.

For each metamodel previously identified and validated, a piece
of code implementing the input-output transfer function, usually a
simple mathematical expression, must be written. Then it is con-
nected to the adjacent elements within the simulation model, in
such a way that every entity arriving to the metamodel is supplied
to the user written code. The user code must extract the required

characteristics of the arriving entity in order to evaluate the math-
ematical function. Frequently, the code is even simpler, since it
does not depend on the characteristics of the arriving entities,
but on fixed or global values, such as the simulation clock. The
evaluation of the mathematical function must then be fed into
the simulation model by scheduling the departure instant of the
entity. The departure instant is determined by adding the arriving
instant with the evaluation of the metamodel for the design point
under examination.

The resulting simulation model will enclose all the originally
modeled nodes except the ones replaced by the black box approach
that implements the metamodel. The resulting model will contain
less nodes, or the same number of nodes in the extreme case when
a single node is replaced by the metamodel, thus making the model
simpler and the simulations run faster.

3.5. Validation of the metamodel-based simulation model

The resulting metamodel-based simulation model must finally
be validated to ensure that it accurately substitutes the original
simulation model. The validity of a metamodel-based simulation
model depends on the validity of the original simulation model
and the validity of the metamodel-based simulation model with
respect to the original simulation model. In this paper, it is as-
sumed that the original simulation model is valid, that is, ‘the con-
ceptual simulation model is an accurate representation of the
system under study’ (Law and Kelton, 2000). Also, it is assumed
that the simulation program is correctly implemented, so it works
as intended.

As a result, we are concerned whether, or not, the metamodel-
based simulation model gives a good representation of the original
simulation model. In order to validate the metamodel-based simu-
lation model, we execute both the metamodel-based simulation
model and the original simulation model at a new set of experi-
mental points, and then compare the results; see Fig. 5. The results
are compared using a statistical test specifically developed and
presented below. It is desirable to use a set of experimental points,
that do not overlap with the ones used for the construction of the
metamodels, in order to make the test more reliable.

In the context of validation of simulation models, Kleijnen et al.
(1998) consider a simulation model valid if the real system and the
simulation model have identical means, identical variances, and
positively correlated real and simulated responses; see also Kleij-
nen et al. (2000). In order to test this composite hypothesis, the
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Fig. 5. Validating and comparing a metamodel-based simulation model.

authors use a test regressing differences of simulated and real re-
sponses on sums. In this paper, we use the same perspective when
comparing the simulation model and the metamodel-based simu-
lation model. However, we use independent replications on both
models as a basis for the comparison, since in well-designed exper-
iments it is convenient to replicate the factor combinations, and in
simulation it is not difficult to do this (compared with the design of
experiments in real problems). Also, these replications allow the
estimation of the weights in the test statistic (12).

Let S; and R; denote the simulated output and the metamodel-
based simulated output respectively in replicate j of the experi-
mental point i, i=1,...,v, j=1,...,m. The set of experimental
points used for the metamodel-based simulation model validation
should be, preferably, different from the sets selected in the
estimation of subsystem metamodels, although within the experi-
mental region. The use of experimental points outside the
metamodels tuning points weakens the comparison of the two
systems, improving the rejection possibility.

We assume that the simulation model and the metamodel-
based simulation model are run under the same conditions; this
idea is similar to the use of common random numbers in the var-
iance reduction techniques context (Law and Kelton, 2000, Section
11.2). As a result, S; and Rj; are dependent. Since the objective is to
test the validity of the metamodel-based simulation model, we as-
sume that S; and Ry are positively correlated, thatis, 0 < p,, < 1;in
order that this assumption holds, it is sufficient that S and R are
monotonically decreasing functions of their common random in-
put data, while the remaining input data of S are independent of
the remaining inputs of R Kleijnen et al. (1998).

We also assume that the pairs (S;,R;) are independent and
identically distributed and have a bivariate normal distribution

Sij H 6? Osr
~ N2 ’ 2 .
Rij Wy O OF
Under these hypotheses, we consider that a metamodel-based sim-
ulation model is valid with respect to the simulation model if and

only if the metamodel-based simulation model and the original
simulation model have identical means, and identical variances

Ho: i, = t, A\ 02 = 2. (8)

Based on the regression test proposed by Kleijnen et al. (1998) we
regress D on Q, where D=5 —R and Q =S +R, that is

ED|Q =q] = By + 4.

Testing o2 = ¢? is equivalent to testing whether Q and D are uncor-
related, that is, pz =0 (Kleijnen, 1987, p. 99). Moreover, 0% =
0? < 0% = ¢2. As aresult, S and R have equal variances if and only
if D and Q are uncorrelated. If p,; =0, then g, = 0 (8; = pg;04/0,)-
If the means of S and R are equal, u, = u,, then u; = u, — p; =
Hs — My =0 (By = ptg — 1 14)- Consequently, if S and R have common
means and variances, then g, = 0. So, the hypothesis (8) results in

Ho: By =0AB, =0. 9)

Applying a general linear test approach, described in Neter et al.
(1996, Chapter 2), we follow the basic three steps:

(i) Fit the full or unrestricted model and obtain the error sum of
squares. In this case, the full model is

Di = By + $1Qi + Ti.
i=1,...,v. If the errors 7; have constant variances, we fit this
model using the 0§dinary least squares method and we obtain the
estimators fp and f;. So, the error sum of squares can be calculated
by

v — o~
SSE(F) =Y (D, — D)?,

i=1
where D; = Bo + p1Q;. If T; ~ N(O, 1/w;) (non constancy of error var-
iance), then

SSE,(F) = iw,-(D,-_ - Dy, (10)
i=1
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with D; = Bo + 1Q;, where B, and p; are the weighted least squares
estimators.

(ii) Fit the model under Hy, named reduced or restricted model,
and obtain the error sum of squares SSE(R). In this case, if 5 =0
and B, =0, then

D; = Ti,

and the correspondent error sum of squares is given by
\4
SSE(R) =Y D,
i=1
if the errors 7; have constant variances. If 7; ~ N(0, 1/w;), then

\4
SSEw(R) =Y _wiD. (11)
i1
(iii) If the errors 7; have constant variances, use the following
test statistic:

. _ SSE(R) — SSE(F) , SSE(F)

F v—(v=-2) “v-2"

that is
(SSE(R) — SSE(F))/2
SSE(F)/(v —2)
and we reject Ho if F* > F(2,v —2;1 — «); F* follows the F distribu-
tion when Hy holds.
In the error variance is not constant over all cases, then use

p_ (SSEW(R) — SSE,(F))/2
v USSEWF)/(v-2)

%

(12)

The hypothesis Hy is rejected if F;, > F(2,v — 2;1 — o). In practice,
the weights w;’s are unknown and they must be estimated. The esti-
mates of the variances, 62 = 1/W;, can be obtained using different
methods (Neter et al., 1996, pp. 403-406). Since independent repli-
cations are available, we use the estimates 67 = 7", (D — D;)?/
[m(m — 1)]. A rough test for testing the hypothesis (9) can be made
also using (12), with w; replaced by w;. Since the weights are based
on the estimated variances, the distribution of F;, under Hy is only
approximately an F distribution with 2 and v — 2 degrees of free-
dom (Neter et al., 1996).

4. Motivating example

Consider a messages routing and processing system depicted in
Fig. 6, where the messages arrive through a network of 3 limited
capacity queues. Each message requires a fixed basic processing time
followed by a sorting process that reprocesses some of the messages.

Our goal is to express the routing part of the system as a surro-
gate linear regression metamodel and then to compare the meta-

model-based simulation model with the original simulation
model. The analysis is performed in terms of the average time in
the system (response S), in relation to the mean interarrival time
(decision variable u). The relevant mean interarrival time consid-
ered is in [1;2] interval (experimental region).

4.1. Metamodel construction and validation

The surrogate metamodel is built in terms of the same response
(average time in the system, Y), decision variable (mean interarri-
val time, X = u), and experimental region [1;2]. We considered
n=14 design points {X;:i=1,14} ={1.0,1.05,1.1,1.15,1.2,
1.25,1.3,14,1.5,1.6,1.7,1.8,1.9,2.0}, with smaller steps where
the output variation rate is higher. The number of replications is
ri=r=15>9 in order to obtain an appropriate estimate for
0;,i=1,...,n (Santos and Porta Nova, 2006) (see Fig. 7).

The warm-up period at each point was evaluated with the
Welch’s procedure and, due to small differences between the
points, an equal 300 initial observations were removed from every
simulation run; see Law and Kelton (2000). The total number of
observations in each run is 2000, making the removed observation
account for 15% of the total.

In the metamodel building process we used polynomial func-
tions of the second to seventh degree. Since we have heteroge-
neous variances the weighted least squares method is used

Mmaxi_i ,6?

=i ol 97.719 > H(14,14;0.95) ~ 6.71,
i=1,n0¥;

where H(14,14;0.95) is the (1 — 0.05)100 percentile of the H statis-
tic distribution, with n = 14 populations and r — 1 = 14 degrees of
freedom associated with each sample variance (Neter et al., 1996,
pp. 764-766); see also Conover et al. (1981). We used the Hartley
test because this test is simple to carry out, the number of replica-
tions are equal, and the error terms are normally distributed; if the
number of replications is unequal but do not differ greatly this test
may still be used as an approximate test. When substantial depar-
tures from normality exit, the Hartley test should not be used be-
cause it is quite sensitive to departures from the assumption of
normal populations. In this case, we may use the modified Levene
test, since it has been shown to be robust to departures from nor-
mality and number of replications need not be equal (Neter et al.,
1996, p. 766-768).

The estimated linear regression metamodels resulted in a rejec-
tion of the second, third and seventh degree polynomials

Y = 34.7262 — 31.3308X + 8.38289X°Y
=103.519 — 164.74X + 92.7217X* — 17.4401X°Y
= 403.98 — 1342.52X + 2250.22X* — 2445.86X> + 1774.96X*
—810.053X° + 206.847X°® — 22.3553X’,

p=02 p=085
| = Exp(8) t = Exp(3) p=04 t = Exp(1) p=02 t=6 t=U(1,2) p=0.15
c=20 c=16 c=1Inf
s=3 s=1 s=2
p=04 p=08
t = Exp(2) t=U(3,6)
c=13 c=Inf
s=3 s=1

Fig. 6. Messaging routing and processing system: ¢ = queue capacity, s = number of servers, t = processing time, [ = time between arrivals, and p = path probability.
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I = Exp(8)

p=0.85
c=Inf
s=2

A
t=U(3,6)
c=Inf -
s=1

Fig. 7. Model with a surrogate metamodel.

and a non rejection of the fourth, fifth and sixth degree polynomials

Y = 240.887 — 532.48X + 455.638X> — 174.099X° + 24.9857X*Y
=407.101 — 1096.6X + 1210.45X> — 672.188X> + 187.214X*
—20.8807X°Y
= 36.5894 + 430.197X — 1380.14X> + 1645.4X> — 966.255X*
+282.079X° — 32.8224X5,

using the lack of fit F test as depicted in Table 1.

In order to gain additional knowledge into the predictive valid-
ity of the non rejected metamodels, we performed the double
cross-validation test depicted in Table 2. The resulting values, cor-
respondent to the polynomials of degrees 4 and 5, can be consid-
ered similar since the interval under consideration is small [1,2],
and some variation can be accepted. The polynomial of degree 6
may lack reliability since the coefficients for the two regression
models are very different, both in magnitude and in sign (Friedman
and Friedman, 1985). Since the non-rejected polynomials of degree
4-6 are metamodel candidates we must select the best. The three

sets of estimated parameters of each polynomial can be used to
measure the discrepancy between the sets. A small discrepancy
emphasizes a low sensitivity to the set of replications used for
the parameter’s estimation. This discrepancy can be evaluated
using the mean relative difference

Al

= i i

S 16
where 91(” is the ith estimated parameter based on the subset j, §; is
the ith estimated parameter based on all available data (0; # 0), and
s is the number of estimated parameters. We selected the polyno-
mial of degree 4 based on the values displayed in Table 3.

4.2. Integration and validation of the metamodel-based simulation
model

In order to integrate the validated surrogate metamodel into the
metamodel-based simulation model, each arriving entity is de-

Table 3

Table 1 Relative difference
Lack of fit F test of the metamodels Coefficient Pol4 pol5 pol6
Metamodel Fyw Critical value By 0.19077 0.43538 103.0799
Pol2 15.905 F(11,196;0.95) = 1.8378 O 021131 051618 35.7536
Pol3 2.739 F(10,196;0.95) — 1.8793 02 8-;}3% g'ggi;‘g }g';ggg
Pol4 0.62807 F(9,196;0.95) = 1.9279 ?)3 0'2]390 0'75977 11'7504
Pol5 0.58880 F(8,196;0.95) = 1.9859 {4 - . .
Pol6 0.65890 F(7,196;0.95) = 2.0565 0 0.85539 105121
Pol7° 731.631 F(6,196;0.95) —2.1451 U6 9.7386

- - ) Mean relative difference 0.21084 0.63866 29.076

¢ We obtain matrices close to singular or badly scaled.
Table 2
Double cross-validation test
Coefficient Pol4 Pol5 Pol6
Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2

0o 214.626 260.581 410.701 587.945 —1410.2 2361.43
0, —468.638 —581.157 —1131.75 —1697.79 6335.43 —9045.67
6, 399.38 499.129 1283.75 2000.87 —-113284 14536.2
03 —152.705 —190.885 —734.581 —1186.82 10501.0 —12461.6
A 22.0149 27.3593 211.052 353.292 —5359.62 5994.3
0s —24.2788 —42.14 433.94 —1531.3
05 ~157.523 162.122
Riy 0.992536 0.996993 0.991832 0.997112 0.992785 0.997503
RZ 0.993415 0.992567 0.993748 0.991449 0.993312 0.990346
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layed by the metamodel. The evaluation of the estimated fourth
degree polynomial yields the value of the delay imposed on the en-
tity. As stated above, the analysis of the metamodel-based simula-
tion model uses the same response, decision variable and
experimental region. The experimental points should differ from
the ones used for the construction of the metamodel. We consid-
ered v=12 design points {Z;:i=1,12} ={1.06,1.1,1.14,1.18,
1.22,1.3,1.38,1.46,1.52,1.65,1.78,1.91} and m = 20 replications
were selected. However, since the output variation rate of the
metamodel is higher in the first half of the interval, it induces high
variations on the message processing part. Although the outputs
are different, the variation rate is alike.

The validation of the metamodel-based simulation model re-
quires its comparison with the original simulation model. The pro-
posed method compares the simulated output S; with the
metamodel-based simulated output Ry, depicted in Fig. 8. As both
responses (time in system) are monotonically decreasing functions
of their common input (mean interarrival time), thus the responses
Sij and Ry are positively correlated. Furthermore, the correlation is
high (Corr = 0.9983). So, we regress their differences D; =S; — R;
against their sums Q; =S; +R;. Since the variances of the sums
D; varies with the experimental point (H = 65.28 > H(12,19;
0.95) =4.86 Neter et al. (1996)) the estimated weighted least
squares is used, resulting in the first degree polynomial

D = -0.00671231 — 0.170106Q.

To test the similarity of the means and variances of both outputs,
we evaluated SSE, (F), SSE,,(R) and F;,. This lead to the non rejection
of the hypothesis Hy in (9) since the critical value F(2,10;
0.95) > F,,; see Table 4. We conclude that the response of the meta-
model-based simulation model conforms to the original simulation
model, providing a better perception of the system’s behavior and
requiring less computational effort.

All the simulations performed in this article used the AweSim
3.0 integrated simulation system (Pritsker et al., 1997) using the

26 T T T T T T T T T
24| 1
= 22r ~6~ ORIGINAL SIMULATION MODEL 1
E % METAMODEL-BASED SIMULATION MODEL
w2
%
z 20 | E
m
=
= 18 B
16 | B
14 1 1 1 1 1 1 1 1 1
1 1.1 12 13 14 1.5 1.6 1.7 1.8 1.9 2
MEAN INTERARRIVAL TIME
Fig. 8. System output with and without the metamodel surrogate.
Table 4
Metamodel-based simulation model validation
SSEy (F) 0.607365
SSEw(R) 0.693176
F;, 0.847705
F(2,10;0.95) 4.10

INTLC to control the simulation parameters for every run of each
design point. The routines OTPUT and EVENT were used to gather
output simulation data, and the implementation of the surrogate
metamodel is easily performed by the routine:

#define X XX[1]
double USERF(int IFN, ENTITY xent) {
double X2 = X*X, X3 = X2+X, X4=X3+X;

if (X<1.0 || X>2.0) MSTOP = -1;
return 240.887 -532.48 * X + 455.638 * X2
- 174.099 * X3 + 24.9857 * X4;

}

where the parameter xX[1] is the metamodel input variable by
the INTLC routine. The regression and all statistical computations
were performed in Matlab 6.5 using custom made and library rou-
tines. Simulations and computations were performed in a PENTIUM M
715 at 1.5 GHz with 1 Gb of ram. The 20 replications, for each Z;, took
between 21.672s and 22.552s for the simulation model and
between 12.794s and 14.387s for the metamodel-based simulation
model, corresponding to a reduction in simulation time between
41.8% and 34.6%.

5. Conclusions

This article explores the use of metamodels as simulation build-
ing blocks. Such approach requires the identification of complex
components of the system that are analyzed independently for la-
ter use as surrogate metamodels. The metamodels must be esti-
mated and validated before they can be used as acceptable
surrogates. As linear regression metamodels are some of the most
widely diffused for metamodel building, we applied them in our
study. Once the metamodel’s parameters are estimated, the imple-
mentation of the metamodel consists of a piece of code that sched-
ules the departure instant of every arriving entity. The resulting
model, with the metamodel surrogates, is then compared with
the original model to ensure that the simulation output, with re-
spect to the input data, has the same behavior. The assessment
of the proposed approach included the evaluation of the integra-
tion effort of the metamodel and the accuracy of the output data
when compared to the original system.

The resulting metamodel-based simulation model can be used
as a replacement of the simulation model, providing simpler and
straightforward models, and faster simulations. It provides higher
abstractions for a better understanding of the internal behavior
of the system being analyzed, and can be used as an optimization
tool of a specific observable output. Our approach allows the use of
metamodels, not only as an analysis tool of the fundamental nature
of the system input-output relationships, but as modeler custom
made building block. This metamodel can, in fact, be used to mimic
the real system’s expected behavior, even if no model was identi-
fied. The use of metamodels as building blocks allows the use of
higher abstractions (higher-resolution models) and reduces the
simulation time. This creates a compromise between the designers
of the original simulation model and the overall subsystem behav-
ior, as both approaches intend to mimic the real system. High-res-
olution models are important, since if a high-level decision maker
does not fully understand a model, then he avoids making deci-
sions based on this model. This is specially true if they know that
uncertainties abound. Frequently, high-level decision makers try
to discover a robust correct reason or argument that they can easily
understand and can be easily explained to others. Often, they also
appreciate to have an analytic comprehension, such as a connec-
tion of crude simple mathematical formulas that gives information
about the issues.
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This paper introduces the concept of using metamodels as accu-
rate simulation building blocks and a respective development
methodology. To achieve statistical accuracy of the metamodel-
based simulation model with respect to the simulation model, a
test is proposed for equal and unequal variances using replication,
based on a test that compares the real world with the simulation
model. To select the best of the non-rejected metamodel candi-
dates, we propose a mean relative difference method to quantify
the lack of reliability.

Additional areas of interest include the use of wider experimental
regions with more complex input-output functional relationships
and the application to more elaborate subsystem compositions. This
may require the use of rational or nonlinear metamodels instead of
the presented linear approach.
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