Optimization Techniques for Multi-Dimensional Linear Least-Squares Regression

Guilherme Marcello

Graduate School of AI
Pohang University of Science and Technology
77 Cheongam-ro, Pohang-si
marcello@postech.ac.kr

Abstract

This report presents a comparative analysis of optimization techniques for multidimensional linear least-squares regression. We implement and evaluate four algorithms: Steepest Descent, Stochastic Gradient Descent, Newton's Method, and L-BFGS. Their performance is tested on two diverse datasets: the high-dimensional ICVL hand tracking dataset and the low-dimensional 'Student Habits vs Academic Performance' dataset. Our results illuminate the trade-offs between computational efficiency and convergence speed, providing practical guidance on algorithm selection for various regression challenges.

1 Introduction

Fitting models to data is a core challenge in machine learning, often solved through optimization. This report provides a comparative analysis of classical iterative optimization algorithms for multi-dimensional linear least-squares regression. While analytical solutions exist, iterative methods are crucial for large-scale problems and serve as a basis for more complex models.

Our analysis tests the algorithms on two diverse datasets to evaluate their versatility. The first is the high-dimensional ICVL hand tracking dataset, a computer vision task. The second is the lower-dimensional 'Student Habits vs Academic Performance' dataset ¹, which assesses generalizability. This study aims to illuminate the practical trade-offs between convergence speed, computational cost, and complexity to guide the selection of appropriate optimization strategies.

2 Theoretical Foundation

This section lays out the mathematical framework for the multi-dimensional linear least-squares regression problem and the optimization algorithms used to solve it.

2.1 Problem Formulation

We are given a training dataset of N instances $\{(\boldsymbol{x}_j, \boldsymbol{y}_j)\}_{j=1}^N$, where each input feature vector $\boldsymbol{x}_j \in \mathbb{R}^n$ and its corresponding output target vector $\boldsymbol{y}_j \in \mathbb{R}^m$. Our goal is to find a linear regression function $f: \mathbb{R}^n \to \mathbb{R}^m$ of the form:

$$f(\boldsymbol{x}_j) = \boldsymbol{W}^T \boldsymbol{x}_j \tag{1}$$

 $^{^{1}} A vailable \qquad at \qquad \text{https://www.kaggle.com/datasets/jayaantanaath/student-habits-vs-academic-performance/data}$

where $W \in \mathbb{R}^{n \times m}$ is the matrix of parameters we want to determine. The objective is to minimize the sum of squared errors (or squared L_2 norm of the residuals):

$$\mathcal{E}'(\mathbf{W}) = \sum_{j=1}^{N} ||f(\mathbf{x}_j) - \mathbf{y}_j||_2^2 = \sum_{j=1}^{N} ||\mathbf{W}^T \mathbf{x}_j - \mathbf{y}_j||_2^2$$
(2)

Let $X = [x_1, x_2, \dots, x_N] \in \mathbb{R}^{n \times N}$ be the matrix of input features and $Y = [y_1, y_2, \dots, y_N] \in \mathbb{R}^{m \times N}$ be the matrix of target outputs. The objective function, as given in Eq. (2), can be expressed in matrix form using the Frobenius norm $||\cdot||_F$:

$$\mathcal{E}'(\mathbf{W}) = ||\mathbf{W}^T \mathbf{X} - \mathbf{Y}||_F^2 \tag{3}$$

2.2 Gradient of the Objective Function

The gradient of Eq. (3) with respect to W is given by:

$$\nabla_{\boldsymbol{W}} \mathcal{E}'(\boldsymbol{W}) = 2\boldsymbol{X} (\boldsymbol{W}^T \boldsymbol{X} - \boldsymbol{Y})^T \tag{4}$$

This gradient has the same dimensions as W, namely $\mathbb{R}^{n \times m}$.

2.3 Hessian Matrix (for Newton's Method)

For Newton's method, we require the Hessian matrix of the objective function $\mathcal{E}'(\boldsymbol{W})$. To express this as a standard matrix, we first vectorize the parameter matrix $\boldsymbol{W} \in \mathbb{R}^{n \times m}$ into a vector $\boldsymbol{w} = \text{vec}(\boldsymbol{W}) \in \mathbb{R}^{nm}$. The operator $\text{vec}(\cdot)$ stacks the columns of a matrix into a single column vector. The gradient with respect to this vectorized \boldsymbol{w} is $\nabla_{\boldsymbol{w}} \mathcal{E}'(\boldsymbol{w}) = \text{vec}(\nabla_{\boldsymbol{W}} \mathcal{E}'(\boldsymbol{W}))$.

Using the gradient from Eq. (4): $\nabla_{\boldsymbol{W}}\mathcal{E}'(\boldsymbol{W}) = 2(\boldsymbol{X}\boldsymbol{X}^T\boldsymbol{W} - \boldsymbol{X}\boldsymbol{Y}^T)$. Vectorizing this expression, we get: $\nabla_{\boldsymbol{w}}\mathcal{E}'(\boldsymbol{w}) = \text{vec}(2\boldsymbol{X}\boldsymbol{X}^T\boldsymbol{W} - 2\boldsymbol{X}\boldsymbol{Y}^T) = 2\text{vec}((\boldsymbol{X}\boldsymbol{X}^T)\boldsymbol{W}) - 2\text{vec}(\boldsymbol{X}\boldsymbol{Y}^T)$. Using the identity $\text{vec}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = (\boldsymbol{C}^T\otimes\boldsymbol{A})\text{vec}(\boldsymbol{B})$, we set $\boldsymbol{A} = \boldsymbol{X}\boldsymbol{X}^T$, $\boldsymbol{B} = \boldsymbol{W}$, and $\boldsymbol{C} = \boldsymbol{I}_m$ (the $m\times m$ identity matrix). This yields: $\text{vec}((\boldsymbol{X}\boldsymbol{X}^T)\boldsymbol{W}) = (\boldsymbol{I}_m^T\otimes(\boldsymbol{X}\boldsymbol{X}^T))\text{vec}(\boldsymbol{W}) = (\boldsymbol{I}_m\otimes(\boldsymbol{X}\boldsymbol{X}^T))\boldsymbol{w}$. So, the vectorized gradient is:

$$\nabla_{\boldsymbol{w}} \mathcal{E}'(\boldsymbol{w}) = 2(\boldsymbol{I}_m \otimes (\boldsymbol{X} \boldsymbol{X}^T)) \boldsymbol{w} - 2\text{vec}(\boldsymbol{X} \boldsymbol{Y}^T)$$
 (5)

The Hessian matrix $H_w \in \mathbb{R}^{nm \times nm}$ is the derivative of $\nabla_w \mathcal{E}'(w)$ with respect to w^T :

$$\boldsymbol{H}_{\boldsymbol{w}} = \frac{\partial(\nabla_{\boldsymbol{w}}\mathcal{E}'(\boldsymbol{w}))}{\partial\boldsymbol{w}^{T}} = 2(\boldsymbol{I}_{m} \otimes (\boldsymbol{X}\boldsymbol{X}^{T}))$$
(6)

The matrix $\boldsymbol{X}\boldsymbol{X}^T = \sum_{j=1}^N \boldsymbol{x}_j \boldsymbol{x}_j^T$ is positive semi-definite, and \boldsymbol{I}_m is positive definite. The Kronecker product $(\boldsymbol{I}_m \otimes (\boldsymbol{X}\boldsymbol{X}^T))$ is therefore positive semi-definite. Thus, $\boldsymbol{H}_{\boldsymbol{w}}$ is positive semi-definite, which is expected for a convex least squares problem.

2.4 Jacobian of Residuals (for Gauss-Newton Method)

The Gauss-Newton method is an iterative algorithm often used to solve non-linear least squares problems. It approximates the Hessian matrix using the Jacobian of the residual functions. In our linear regression case, the residuals are linear with respect to \boldsymbol{W} .

Let the residual for the *j*-th data instance be $r_i(\mathbf{W}) \in \mathbb{R}^m$:

$$\boldsymbol{r}_j(\boldsymbol{W}) = \boldsymbol{W}^T \boldsymbol{x}_j - \boldsymbol{y}_j \tag{7}$$

As in the Hessian derivation, we vectorize the parameter matrix $\mathbf{W} \in \mathbb{R}^{n \times m}$ into $\mathbf{w} = \text{vec}(\mathbf{W}) \in \mathbb{R}^{nm}$. The k-th component of $\mathbf{r}_j(\mathbf{W})$ is $(\mathbf{r}_j(\mathbf{W}))_k = (\mathbf{w}^{(k)})^T \mathbf{x}_j - (\mathbf{y}_j)_k$, where $\mathbf{w}^{(k)}$ is the k-th column of \mathbf{W} (i.e., $\mathbf{W} = [\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(m)}]$).

The Jacobian of $r_j(W)$ with respect to w^T , denoted $J_{r_j}(w) \in \mathbb{R}^{m \times nm}$, is given by the matrix calculus identity $\frac{\partial (A^T x)}{\partial \text{vec}(A)^T} = I_p \otimes x^T$ (where A is $q \times p$). In our case, A corresponds to W $(n \times m)$, x to x_j $(n \times 1)$, and p to m. Thus:

$$J_{r_j}(w) = \frac{\partial r_j(W)}{\partial w^T} = I_m \otimes x_j^T$$
(8)

Here, I_m is the $m \times m$ identity matrix, and x_j^T is the transpose of the j-th input feature vector (a $1 \times n$ row vector). The resulting Jacobian $J_{r_j}(w)$ has dimensions $m \times nm$.

For the Gauss-Newton method, we typically stack all N residual vectors into a single large residual vector $\mathcal{R}(\mathbf{W}) \in \mathbb{R}^{Nm}$:

$$\mathcal{R}(\mathbf{W}) = \begin{pmatrix} \mathbf{r}_1(\mathbf{W}) \\ \mathbf{r}_2(\mathbf{W}) \\ \vdots \\ \mathbf{r}_N(\mathbf{W}) \end{pmatrix}$$
(9)

The Jacobian of this stacked residual vector, $J_{\mathcal{R}}(w) \in \mathbb{R}^{Nm \times nm}$, is then formed by vertically stacking the individual Jacobians:

$$J_{\mathcal{R}}(\boldsymbol{w}) = \frac{\partial \mathcal{R}(\boldsymbol{W})}{\partial \boldsymbol{w}^{T}} = \begin{pmatrix} \boldsymbol{J}_{\boldsymbol{r}_{1}}(\boldsymbol{w}) \\ \boldsymbol{J}_{\boldsymbol{r}_{2}}(\boldsymbol{w}) \\ \vdots \\ \boldsymbol{J}_{\boldsymbol{r}_{N}}(\boldsymbol{w}) \end{pmatrix} = \begin{pmatrix} \boldsymbol{I}_{m} \otimes \boldsymbol{x}_{1}^{T} \\ \boldsymbol{I}_{m} \otimes \boldsymbol{x}_{2}^{T} \\ \vdots \\ \boldsymbol{I}_{m} \otimes \boldsymbol{x}_{N}^{T} \end{pmatrix}$$
(10)

This Jacobian $J_{\mathcal{R}}(\boldsymbol{w})$ is used in the Gauss-Newton update rule, where the Hessian is approximated as $2J_{\mathcal{R}}(\boldsymbol{w})^TJ_{\mathcal{R}}(\boldsymbol{w})$. For this linear least squares problem, this approximation $2(\sum_{j=1}^N(\boldsymbol{I}_m\otimes\boldsymbol{x}_j)(\boldsymbol{I}_m\otimes\boldsymbol{x}_j))=2\sum_{j=1}^N(\boldsymbol{I}_m\otimes(\boldsymbol{x}_j\boldsymbol{x}_j^T))=2(\boldsymbol{I}_m\otimes(\boldsymbol{X}\boldsymbol{X}^T))$ is identical to the true Hessian $\boldsymbol{H}_{\boldsymbol{w}}$ given in Eq. (6). This occurs because the second-order derivatives of the residuals (which are omitted in the Gauss-Newton approximation) are zero for linear residuals.

2.5 Hessian Matrix (for Newton's Method)

Newton's method requires the Hessian matrix. Since W is a matrix, the Hessian is technically a 4th-order tensor. However, the problem can be vectorized. Let $w_{vec} = \text{vec}(W) \in \mathbb{R}^{nm \times 1}$, where $\text{vec}(\cdot)$ stacks the columns of a matrix into a single vector. The objective function $\mathcal{E}'(W)$ from Eq. (2) can be seen as m independent least-squares problems, one for each column of W (i.e., for each output dimension). Let $w^{(s)} = W_{:,s}$ be the s-th column of W, and let $y_j^{(s)}$ be the s-th component of y_j . Then the objective for the s-th output dimension is $\mathcal{E}'_s(w^{(s)}) = \sum_{j=1}^N ((w^{(s)})^T x_j - y_j^{(s)})^2 = ||X^T w^{(s)} - Y_{s,:}^T||_2^2$, where $Y_{s,:}$ is the s-th row of Y. The gradient for this single-output problem is $\nabla_{w^{(s)}} \mathcal{E}'_s(w^{(s)}) = 2X(X^T w^{(s)} - Y_{s,:}^T)$. The Hessian for $\mathcal{E}'_s(w^{(s)})$ with respect to $w^{(s)} \in \mathbb{R}^n$ is $H_s = 2XX^T \in \mathbb{R}^{n \times n}$. Since the total objective $\mathcal{E}'(W) = \sum_{s=1}^m \mathcal{E}'_s(W_{:,s})$, the Hessian of $\mathcal{E}'(W)$ with respect to $w^{(s)}$ is a block-diagonal matrix:

$$\boldsymbol{H}_{w_{vec}} = \operatorname{diag}(\boldsymbol{H}_1, \boldsymbol{H}_2, \dots, \boldsymbol{H}_m) = \boldsymbol{I}_m \otimes (2\boldsymbol{X}\boldsymbol{X}^T)$$
(11)

where \otimes denotes the Kronecker product, and I_m is the $m \times m$ identity matrix. The size of $H_{w_{vec}}$ is $(nm \times nm)$.

2.6 Jacobian of Residuals (for Gauss-Newton Method)

The Gauss-Newton method is applied to non-linear least-squares problems of the form $\min \frac{1}{2} \sum_k r_k(\boldsymbol{\theta})^2$. Our objective, as defined in Eq. (2), is $\mathcal{E}'(\boldsymbol{W}) = \sum_{j=1}^N ||\boldsymbol{r}_j(\boldsymbol{W})||_2^2$, where the residual vectors are $\boldsymbol{r}_j(\boldsymbol{W}) = \boldsymbol{W}^T \boldsymbol{x}_j - \boldsymbol{y}_j \in \mathbb{R}^m$. Let the overall matrix of residuals be $\boldsymbol{R}(\boldsymbol{W}) = \boldsymbol{W}^T \boldsymbol{X} - \boldsymbol{Y} \in \mathbb{R}^{m \times N}$. Let $\boldsymbol{r}_{vec} = \text{vec}(\boldsymbol{R}(\boldsymbol{W})) \in \mathbb{R}^{mN \times 1}$ be the vectorized residuals, stacking columns of \boldsymbol{R} . The parameters are $\boldsymbol{w}_{vec} = \text{vec}(\boldsymbol{W}) \in \mathbb{R}^{nm \times 1}$. The Jacobian of \boldsymbol{r}_{vec} with respect to \boldsymbol{w}_{vec}^T is an $mN \times nm$ matrix, denoted $\boldsymbol{J}_{\boldsymbol{r}_{vec}}$. Using standard results for derivatives of vectorized matrix products:

$$J_{r_{vec}} = \frac{\partial \text{vec}(\boldsymbol{W}^T \boldsymbol{X} - \boldsymbol{Y})}{\partial (\text{vec}(\boldsymbol{W}))^T} = \boldsymbol{X}^T \otimes \boldsymbol{I}_m$$
(12)

This matrix has dimensions $(mN \times nm)$.

2.7 Iterative Optimization Algorithms

The general update rule for the parameter matrix W at iteration k is:

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k + \alpha_k \boldsymbol{A}_k \tag{13}$$

where α_k is the step size (determined by backtracking line search) and $A_k \in \mathbb{R}^{n \times m}$ is the update direction matrix.

2.7.1 Steepest Descent

The update direction is the negative gradient (from Eq. (4)):

$$\boldsymbol{A}_{k}^{SD} = -\nabla_{\boldsymbol{W}} \mathcal{E}'(\boldsymbol{W}_{k}) = -2(\boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{W}_{k} - \boldsymbol{X} \boldsymbol{Y}^{T})$$
(14)

So the update rule is:

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k - 2\alpha_k (\boldsymbol{X} \boldsymbol{X}^T \boldsymbol{W}_k - \boldsymbol{X} \boldsymbol{Y}^T)$$
(15)

2.7.2 Newton's Method

The update for the vectorized parameters \boldsymbol{w}_{vec} is $\text{vec}(\Delta \boldsymbol{W}_k) = -\boldsymbol{H}_{w_{vec},k}^{-1} \text{vec}(\nabla_{\boldsymbol{W}} \mathcal{E}'(\boldsymbol{W}_k))$. Using $\boldsymbol{H}_{w_{vec},k} = \boldsymbol{I}_m \otimes (2\boldsymbol{X}\boldsymbol{X}^T)$ from Eq. (11), its inverse is:

$$H_{w_{vec},k}^{-1} = (I_m \otimes (2XX^T))^{-1} = I_m \otimes (\frac{1}{2}(XX^T)^{-1})$$
 (16)

So, $\operatorname{vec}(\Delta W_k) = -(I_m \otimes (\frac{1}{2}(XX^T)^{-1}))\operatorname{vec}(2(XX^TW_k - XY^T))$. This simplifies to $\operatorname{vec}(\Delta W_k) = -(I_m \otimes ((XX^T)^{-1}))\operatorname{vec}((XX^TW_k - XY^T))$. Using the property $\operatorname{vec}(PQR) = (R^T \otimes P)\operatorname{vec}(Q)$, if we let $P = (XX^T)^{-1}$, $Q = (XX^TW_k - XY^T)$, and $R = I_m$, then: $\operatorname{vec}((XX^T)^{-1}(XX^TW_k - XY^T)I_m) = (I_m \otimes ((XX^T)^{-1}))\operatorname{vec}(XX^TW_k - XY^T)$. Thus, the update direction in matrix form is ΔW_k :

$$\boldsymbol{A}_{k}^{Newton} = \Delta \boldsymbol{W}_{k} = -(\boldsymbol{X}\boldsymbol{X}^{T})^{-1}(\boldsymbol{X}\boldsymbol{X}^{T}\boldsymbol{W}_{k} - \boldsymbol{X}\boldsymbol{Y}^{T})$$
(17)

The update rule (Eq. (13)) becomes:

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k - \alpha_k (\boldsymbol{X} \boldsymbol{X}^T)^{-1} (\boldsymbol{X} \boldsymbol{X}^T \boldsymbol{W}_k - \boldsymbol{X} \boldsymbol{Y}^T)$$
(18)

Note that for this method, (XX^T) must be invertible. For its implementation, a regularizer should be added.

2.7.3 Gauss-Newton Method

For a linear least-squares problem, the objective function $\mathcal{E}'(W)$ is quadratic. The Gauss-Newton method approximates the Hessian of a general sum-of-squares objective $\frac{1}{2}\sum r_i^2$ by J^TJ . For our objective $\mathcal{E}'(W) = \sum ||r_j(W)||_2^2$, the exact Hessian is $2\sum_j (J_j^TJ_j + \sum_i r_{ji}\nabla^2 r_{ji})$. Since the residuals $r_j(W)$ (defined in 2.6) are linear in W, their second derivatives $\nabla^2 r_{ji}$ are zero. Thus, the Gauss-Newton approximation of the Hessian, $2J_{\text{eff}}^TJ_{\text{eff}}$, becomes identical to the true Hessian of $\mathcal{E}'(W)$. Consequently, for linear least-squares problems, the Gauss-Newton method converges to Newton's method. The update direction A_k^{GN} is therefore the same as A_k^{Newton} :

$$\boldsymbol{A}_{k}^{GN} = -(\boldsymbol{X}\boldsymbol{X}^{T})^{-1}(\boldsymbol{X}\boldsymbol{X}^{T}\boldsymbol{W}_{k} - \boldsymbol{X}\boldsymbol{Y}^{T})$$
(19)

And the update rule is:

$$\boldsymbol{W}_{k+1} = \boldsymbol{W}_k - \alpha_k (\boldsymbol{X} \boldsymbol{X}^T)^{-1} (\boldsymbol{X} \boldsymbol{X}^T \boldsymbol{W}_k - \boldsymbol{X} \boldsymbol{Y}^T)$$
 (20)

The practical implementation will be identical to Newton's method.

2.8 Backtracking Line Search

To determine the step size α_k in Eq. (13) at each iteration k, backtracking line search is employed. It starts with an initial estimate for α (e.g., $\alpha_{init}=1$) and iteratively reduces it by a factor $\tau \in (0,1)$ (e.g., $\tau=0.5$) until the Armijo-Goldstein condition is satisfied:

$$\mathcal{E}'(\boldsymbol{W}_k + \alpha \boldsymbol{A}_k) \le \mathcal{E}'(\boldsymbol{W}_k) + c_1 \alpha \text{Tr}((\nabla_{\boldsymbol{W}} \mathcal{E}'(\boldsymbol{W}_k))^T \boldsymbol{A}_k)$$
(21)

where $c_1 \in (0,1)$ is a constant (e.g., $c_1 = 10^{-4}$) and \boldsymbol{A}_k is the current search direction. The term $\text{Tr}((\nabla_{\boldsymbol{W}}\mathcal{E}'(\boldsymbol{W}_k))^T\boldsymbol{A}_k)$ represents the directional derivative $g_k^Tp_k$. For descent directions, this term is negative.

3 Experiments and Methodology

3.1 Datasets

Two distinct datasets were used for training and evaluation:

- 1. **ICVL Hand Tracking Dataset:** A high-dimensional dataset where the task is to predict hand keypoint locations from depth images. It consists of n = 2048 features and m = 63 targets. The dataset was partitioned into 16,008 training samples and 1,596 testing samples.
- 2. **Student Habits and Performance:** A low-dimensional dataset exploring the relationship between students' habits and their academic performance. It contains n=7 features and m=2 targets, with 800 samples for training and 200 for testing.

3.2 Optimization Algorithms

We implemented and compared four iterative optimization algorithms against the direct analytical solution:

- Steepest Descent (SD).
- Stochastic Gradient Descent (SGD): A variant of gradient descent that computes the gradient on a small, random subset (mini-batch) of the training data (batch size of 128).
- Newton's Method (NM): The system was solved efficiently via a pre-computed LU decomposition of XX^T . A small regularization term ($\lambda=10^{-5}$) was used. It is worth noting that for the linear least-squares problem, the Gauss-Newton method is mathematically equivalent to Newton's method. Thus, a separate implementation was not required.
- Limited-memory BFGS (L-BFGS): A quasi-Newton method that approximates the inverse Hessian using a history of the last 10 updates.

3.3 Experimental Setup

All experiments were conducted on a machine with an Apple M1 processor and 16GB of memory. For iterative methods, we ran two variants: one with weights initialized to zeros, and another with random initialization. Each run was subject to a 60-second time limit, a 500-iteration maximum, or a gradient norm tolerance of 10^{-8} . Performance was evaluated by the Mean Squared Error (MSE) on the test set.

4 Results and Discussion

The performance of the optimization algorithms was analyzed based on their convergence speed and the final test set MSE, using the analytical solution as a baseline. The results are available at https://github.com/guilherme-marcello/linear-regression-optimizer-benchmark.

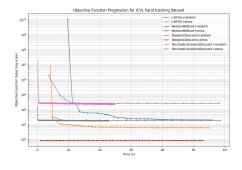
4.1 ICVL Hand Tracking Dataset

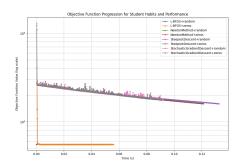
On this high-dimensional dataset, the analytical solution provided a strong baseline with an MSE of 0.00088, computed in approximately 1.39 seconds.

As shown in Table 1 and Figure 1a, Newton's Method came closest to matching the analytical solution's accuracy, albeit at a much higher computational cost. Interestingly, **L-BFGS with zero-initialization achieved an even lower MSE (0.00061)** than the regularized analytical solution, suggesting it found a better minimum. However, its sensitivity to initialization highlights a potential lack of robustness. The first-order methods (SD and SGD) failed to converge to a competitive solution within the time limit.

4.2 Student Habits and Performance Dataset

The performance differences were more dramatic on the low-dimensional dataset. The analytical solution was computed almost instantaneously (less than 0.1ms) and achieved an MSE of 35.077.





- (a) ICVL Hand Tracking Dataset
- (b) Student Habits and Performance Dataset

Figure 1: Convergence plots for the optimizers on both datasets. The y-axis represents the objective function value on a logarithmic scale, and the x-axis represents the computation time in seconds.

Table 1: Performance on the ICVL Hand Tracking Dataset.

Optimizer	Initialization	Test MSE	Time (s)
Analytical	-	0.00088	1.39
Newton's Method	random	0.00096	52.6
	zeros	0.00096	53.0
L-BFGS	zeros	0.00061	55.1
	random	0.00262	55.9
Steepest Descent	zeros	0.00191	58.4
	random	0.01837	58.2
SGD	zeros	0.00175	22.8
	random	0.01690	24.6

Table 2: Performance on the Student Habits and Performance Dataset.

Optimizer	Initialization	Test MSE	Time (s)
Analytical	-	35.077	< 0.001
Newton's Method	random	35.077	< 0.001
	zeros	35.077	< 0.001
L-BFGS	random	35.077	0.054
	zeros	35.077	0.056
Steepest Descent	zeros	95.547	0.121
	random	95.456	0.132
SGD	zeros	104.746	0.091
	random	105.884	0.092

Here, both **Newton's Method and the analytical solution were unequivocally superior**, finding the optimal solution in negligible time (Table 2). L-BFGS also achieved the same MSE but took longer. This demonstrates that for low-dimensional, well-conditioned problems, direct or second-order methods are vastly more efficient. As seen in Figure 1b, first-order methods were again unable to find the optimal solution.

5 Conclusion

The analytical solution serves as a critical performance benchmark. For low-dimensional problems, it is exceptionally fast and accurate. For high-dimensional problems, its computational cost increases, but it remains a strong baseline. Iterative methods become necessary when the direct solution is too costly. Among them, second-order (Newton's) and quasi-Newton (L-BFGS) methods consistently outperform first-order techniques, converging to solutions of similar or even better quality than the regularized analytical solution.