

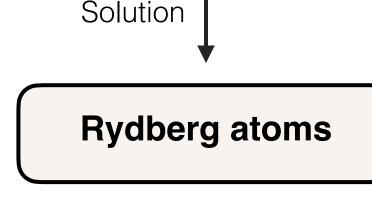
Quantum Walks with Rydberg atoms

Gabriel Almeida^{1,2,3}, Raúl Santos^{3,4}, Lara Januriek³, Mario Szegedy^{3,5}, Yasser Omar^{1,2,3}

- (1) Instituto Superior Técnico, Universidade de Lisboa, Portugal
- (2) Physics of Information and Quantum Technologies Group, Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Portugal
- (3) PQI Portuguese Quantum Institute, Portugal
- (4) Eindhoven University of Technology, Netherlands
- (5) Rutgers University, USA

1. Motivation

- * Many optimisation problems can be cast into **graph problems**
- * However, these are often difficult to encode due to connectivity limitations

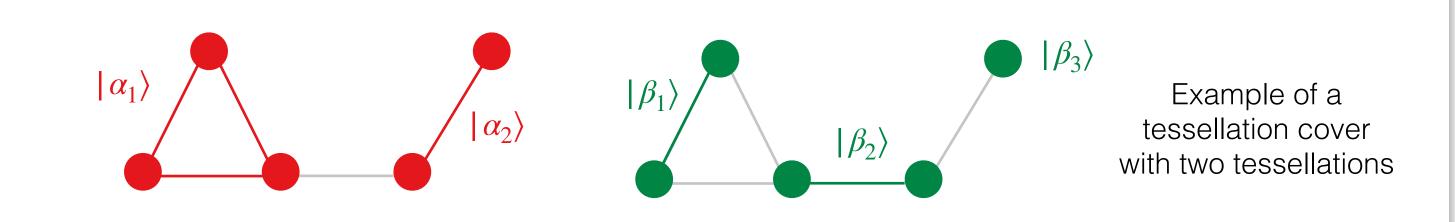


- * Long-range interactions
- * Reconfigurable geometry
- Native multiqubit gates
- Quantum walks are the quantum analogue of random walks
- * They are a natural **algorithmic** tool to address graph problems
- * Although there are implementations for special graphs (e.g., lattices [1]), an efficient general implementation is **not known**

Can Rydberg features enable the implementation of quantum walks on arbitrary graphs?

2. The staggered quantum walk

* To define a staggered quantum walk [2], we need some additional structure in the graph



* To each clique associate a superposition of vertices and define:

$$W_{\alpha} = 1 - 2 \sum_{k} |\alpha_{k}\rangle\langle\alpha_{k}|$$

$$W_{\beta} = 1 - 2 \sum_{k} |\beta_{k}\rangle\langle\beta_{k}|$$

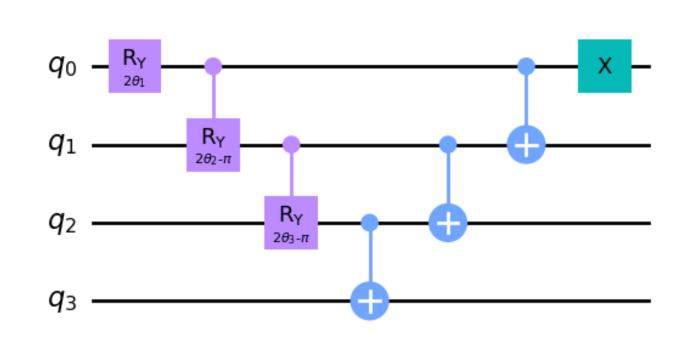
$$W = W_{\alpha}W_{\beta}$$
Walk operator

3. Our proposal

- * Use N atoms with **excitation encoding** $|i\rangle = |0...1_i...0\rangle$
- * Diagonalize each walk operator

 $W_{\alpha} = \bigotimes_{k} U_{k}(\alpha) \quad \mathbf{C}^{\mathbf{n}} \mathbf{Z} \quad U_{k}^{\dagger}(\alpha)$

* U_k , which prepares state $|\alpha_k\rangle$, can be implemented with a **linear** amount of gates



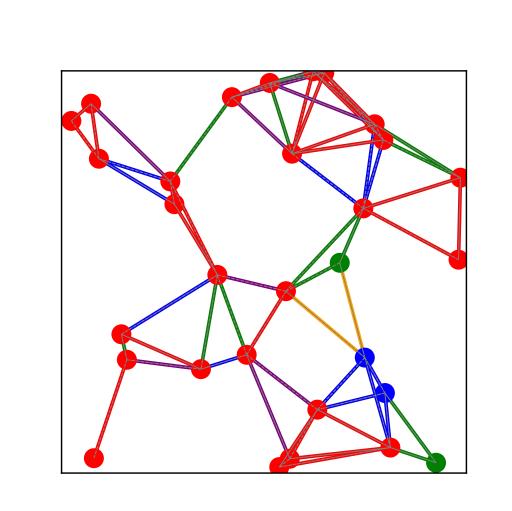
Due to the **locality** of the evolution, our proposal is especially suited for

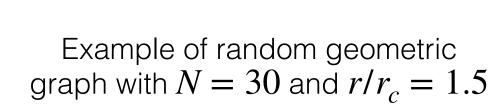
Spatial networks

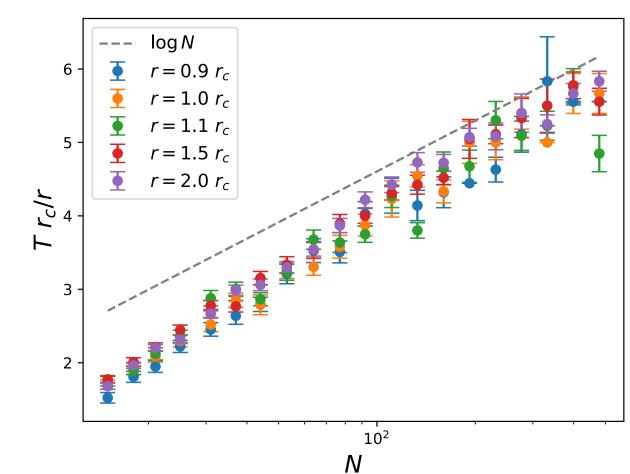
Example of U_k for a clique of size 4

4. Tessellation cover algorithm

- * We developed a **constructive** algorithm to find a tessellation cover in time $O(N \operatorname{polylog} N)$
- * We analysed its performance on random geometric graphs RGG(N, r)
- * We set the **natural scaling** of r to the critical radius of connectivity $r_c = \sqrt{\log n/(\pi n)}$





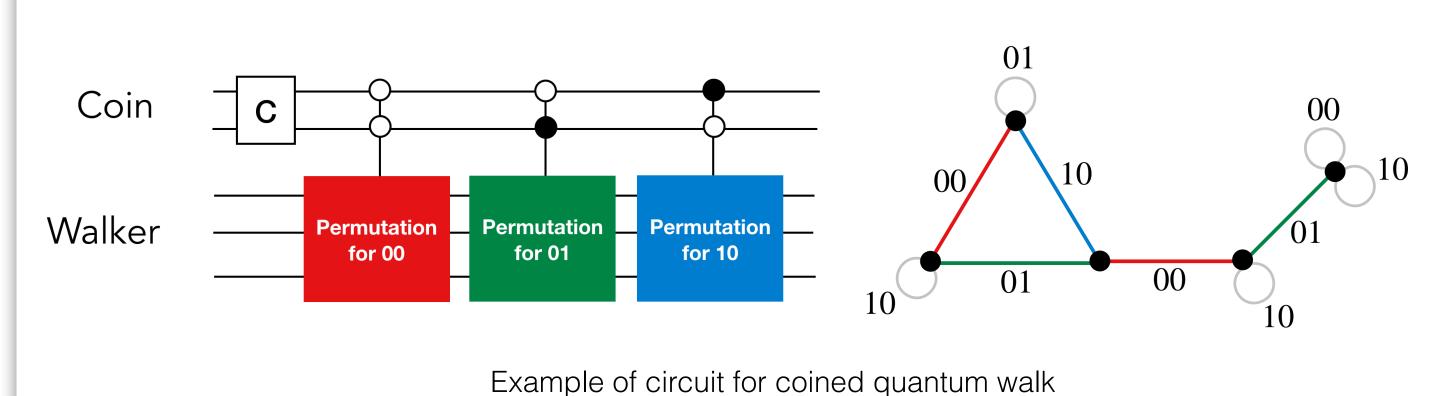


We found that the **number of tessellations** $T \text{ scales as } T \sim \frac{r}{r_c} \log N$

5. Comparison with coined quantum walks

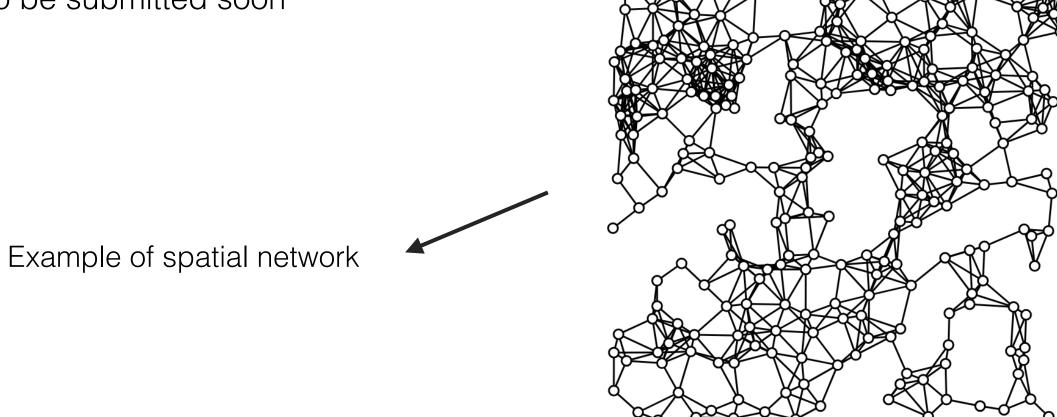
- * A general quantum circuit for **coined** quantum walks has been proposed [3]
- * Although it uses only $\log N + \log \Delta$ qubits, we found that it requires $\Delta \cdot \Omega(N \log N)$ gates
- * Thus, the parallelised circuit depth is exponentially larger than the staggered approach

	Number of qubits	Number of gates	Parallelised depth	Classical costs
Staggered walk	N	$t \cdot T \cdot O(N)$	$t \cdot T$	$O(N \operatorname{polylog} N)$
Coined walk	$\log N + \log \Delta$	$t \cdot \Delta \cdot \Omega(N \log N)$	$t \cdot \Delta \cdot \Omega(N)$	$O(N \log N)$



6. Conclusions and outlook

- * We developed a novel Rydberg implementation of staggered quantum walks
- * Our proposal is well suited for **spatial networks** due to the locality of the evolution
- * When compared to coined quantum walks, our implementation has an exponential advantage in **parallelised depth**, at the cost of using exponentially more **qubits**. Nevertheless, achieving efficient depth is critical for reducing the overall time complexity of algorithms
- * Paper to be submitted soon



EuRyQa

[1] Young et al., *Science* 377, 885 (2022)

[2] Portugal et al., *Quantum Inf. Process.* 15, 85 (2016)

[3] Chakrabarti et al., IEEE Comput. Soc. Annu. Symp. VLSI, 2012

Acknowledgements

The authors would like to thank the support from FCT — Fundação para a Ciência e a Tecnologia (Portugal), namely through project UIDB/ 04540/2020, as well as from project EuRyQa — European infrastructure for Rydberg Quantum Computing (GA 101070144) of the Horizon Europe Programme of the European Commission.