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Abstract 

At the Joint European Torus (JET), the reference diagnostic to measure electron density is 

Thomson scattering. However, the low sampling rate of this diagnostic makes it impractical to study 

the dynamics of the density profile. In this work, we use machine learning to predict the density 

profile based on data from another diagnostic, namely reflectometry. The proposed model is trained 

to transform reflectometry data into Thomson scattering profiles, and is able to generate density 

profiles at a much higher sampling rate than Thomson scattering, and more accurately than 

reflectometry alone. This enables the study of pedestal dynamics and other edge phenomena. 

 

1. INTRODUCTION 

High resolution Thomson scattering (HRTS) is the reference diagnostic for measuring the 

density profile at JET (Pasqualotto et al., 2004). This diagnostic provides good accuracy in terms of 

radial position (Frassinetti et al., 2012) but has a low sampling rate (20 Hz), which makes it 

infeasible to analyze pedestal dynamics in detail, namely phenomena such as edge localized modes 

(ELMs). These occur on faster time scales and would require a sampling rate on the order of at least 

1 kHz to capture the transient processes associated with ELM crashes. 

On the other hand, the reflectometry diagnostic at JET (Sirinelli et al., 2010) provides a high 

temporal resolution, and is able reconstruct the density profile at a sampling rate that is typically in 

the range of 1–10 kHz. However, this diagnostic is not as accurate in terms of the radial position of 

its density measurements, and over the years new and improved methods have been developed for 

the reconstruction of the density profile from reflectometry data (Morales et al., 2017). 

The two diagnostics are based on different principles. Thomson scattering, which we will refer 

to as HRTS, is based on laser scattering, where density values are measured at fixed positions from 

the intensity of scattered light. On the other hand, the reflectometry diagnostic, which we will refer 

to as KG10 (its internal name at JET), is based on probing the plasma with electromagnetic waves 

over a wide range of frequencies (44–150 GHz). Each frequency value corresponds to a density 

value that is known beforehand, because that is the point where reflection occurs; however, the 

position of that point will have to be calculated from the travel time of the reflected wave. 

In summary, HRTS measures density values at precise positions but with some uncertainty in 

those measurements, whereas KG10 measures precise density values but with some uncertainty in 

the positions of those measurements. Our goal is to take advantage of the high temporal resolution 

of reflectometry in order to derive Thomson scattering profiles at a much higher sampling rate than 

this diagnostic is able to provide. For this purpose, we use machine learning to train a neural 

network that maps KG10 to HRTS data. Once trained, the model can generate density profiles 

similar to HRTS at the sampling rate of KG10, even when HRTS is not available. This can be used, 

for example, to study pedestal dynamics in detail, as we illustrate in the sections below. 

 

2. MACHINE LEARNING APPROACH 

Figure 1 shows two examples of how the two diagnostics may agree or disagree on the density 

profile. On the left-hand side, Figure 1 shows an example where both diagnostics are in good 

agreement: KG10 is able to probe the profile further inwards, but both diagnostics agree on the 



position of the pedestal, for example. On the right-hand side, Figure 1 shows an example where 

there are miscalculations in the positions of the density values measured by KG10. When those 

errors occur, they tend to accumulate over subsequent positions, resulting in a density profile that 

does not match the one provided by HRTS. Fortunately, these problems occur in a small percentage 

of cases (~5%) and it would be desirable, if possible, to correct them via machine learning. 

 

  
Figure 1. Comparison of HRTS and KG10 profiles at two different times in the same pulse. 

 

To train a machine learning model to map KG10 to HRTS data, it is necessary to have instances 

where data from both diagnostics are available. In other words, we need training examples where 

both the HRTS and KG10 profiles are known. Since the sampling rate of KG10 is much higher than 

that of HRTS, in general for any given HRTS profile it is possible to find a KG10 profile that is 

close in time. The difference in time will be at most half the sampling period of KG10, which is on 

the order of 10-4 s. We refer to this process as the time-syncing of HRTS and KG10. 

After the model is trained, it can be used to predict the HRTS profile when only the KG10 

profile is known. This yields a virtual HRTS diagnostic with the sampling rate of KG10. 

The model itself is a 4-layer neural network with a 100-dimensional input, which corresponds to 

the size of a KG10 profile, and a 63-dimensional output, which corresponds to the size of an HRTS 

profile. As shown in Figure 2, each dense layer has 1024 units, and it includes a ReLU (rectified 

linear unit) activation. The total number of parameters exceeds 3×106. The generous number of 

layers and parameters are motivated by the need to transform KG10 into HRTS data as accurately 

as possible, while overcoming the occasional issues with KG10 profiles. For this purpose, it turns 

out that having more layers, and hence more non-linearities, is more beneficial than having fewer 

and wider layers, and the model is also easier to train. 

 

 
Figure 2. Structure of the machine learning model. 

 

3. TRAINING DATA 

Before collecting the training data, we ensured that both diagnostics were fully operational for 

any experimental session that we selected for the training examples; this is the case from December 

2020 onwards. In addition, the training examples should be representative of the type of 

experiments performed at JET; for this purpose, we selected experimental sessions from the 

baseline and hybrid scenarios (Garzotti et al., 2019). Specifically, we focused on the baseline and 



hybrid experiments performed in the C40 campaign (March–July 2021) and in the C41 campaign 

(August–December 2021), which was the second Deuterium-Tritium campaign at JET (DTE2), 

after the first D-T campaign back in 1997. 

From these experiments, we identified a total of 170 pulses, in the range of pulse numbers from 

98794 to 99953. Since HRTS has a sampling rate of 20 Hz, and each pulse lasts for about 30 s, we 

expected a number of training examples on the order of 170×30×20 ≈ 105. In practice, we obtained 

43 531 training examples of KG10–HRTS profile pairs. This was due to a number of reasons, 

including the fact that, while HRTS is operational during the entire pulse, KG10 has a shorter 

operating window because of limited data buffer capacity. 

The training examples have been split into 90% for training and 10% for validation, and the 

model took 5 minutes to train on a single GPU (graphics processing unit). To analyze the variance 

of the results, we repeated the training procedure across a 10-fold cross validation. 

 

4. RESULTS 

Figure 3 shows the predictions of the density profile for the same pulse and times that were 

illustrated before in Figure 1. Here, the red line is the mean prediction of the 10 models trained by 

cross validation, and the light-red band around it denotes the standard deviation. On the left-hand 

side in Figure 3, where KG10 and HRTS agree, the prediction also coincides with HRTS. The band 

around the prediction is hardly noticeable because all the models yield almost identical results. In 

the plot on the right-hand side, the model again provides a prediction that coincides with HRTS, 

despite the large gap that exists between the HRTS and KG10 profiles. We conclude that all those 

models can overcome the problems in the KG10 profile by providing predictions that are 

consistently close to the HRTS profile. 

 

  
Figure 3. Prediction of HRTS profile from KG10 data at two different times in the same pulse. 

 

The pulse that has been used to produce these results is in fact the record-breaking JET pulse of 

the Deuterium-Tritium campaign (DTE2). This pulse has not been used for training or validation, so 

the results in this section are meant to illustrate how the model performs on unseen data. 

Our main goal, however, is to use the model to study the pedestal dynamics, particularly the 

processes at the time scale of an ELM cycle. Figure 4 illustrates two views over an ELM cycle at 

around t = 50.0 s in the same pulse. The density profile is predicted at the sampling rate of KG10, 

and is averaged over a sliding window of 1 ms. Figure 4 shows how the top of the pedestal (at 

around position R = 3.8 m) gradually builds up, until it crashes abruptly and a new build-up process 

is initiated. This particular ELM cycle lasts for about 30 ms, which is consistent with the range of 

15–40 Hz for ELM frequencies at JET (Lennholm et al., 2015). 

 



  
Figure 4. Two views of the course of an ELM cycle at around t=50.0s in pulse 99869. 

 

5. CONCLUSION 

The proposed model predicts HRTS-like profiles from KG10 data assuming that HRTS provides 

the ground truth for the density profile, but it should be noted that HRTS itself is sometimes 

calibrated on KG10. Although our focus is on predicting the HRTS profile, we have not relegated 

KG10 to secondary importance; on the contrary, KG10 is essential to enable this approach, even 

with its occasional issues in position accuracy. These issues were mitigated by using a non-linear 

model with multiple layers and a large number of parameters. Still, the model is fast to train and 

use, and can be applied on any pulse with KG10 data, enabling the analysis of pedestal dynamics, 

ELMs, and other features of the density profile. 
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