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Figure 1: 1D Electrostatic Sheet Model. Plasma is represented by a set of equally 
negatively charged sheets moving over a neutralising ion background.  
Image adapted from Dawson [4].

Motivation

Figure 2: Schematic of Graph Network Simulator developed to simulate the 1D Electrostatic Sheet model. 
a) Graph for different boundary conditions b) Node/edge vectors c) Graph Neural Network architecture

Graph Network Simulator (GNS)

a)

Figure 3: a) Rollout Earth Mover’s Distance [6] between predicted and ground truth test set trajectories. Metric is averaged 
over simulations, sheets and time-steps. Error bars indicate worst/best performance. b) Example of predicted sheet trajectories 
versus ground truth test data. Only the initial positions and velocities are provided.

Generalization to different system sizes and boundary conditions

Figure 5: Examples of kinetic processes recovered by the GNS and comparison with theoretical predictions. 
Results are averaged over multiple simulations performed with varying numbers of particles. 

Recover known plasma kinetic processes
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The GNS was trained only on simulations consisting of 10 sheets inside a periodic box
but it generalizes to different numbers of sheets and boundary conditions without retraining.

The GNS conserves energy better than the 
Sheet Model (SM) at equivalent simulation time-steps.

Figure 4: Comparison of energy loss rates for systems 
consisting of 1000 sheets with different initial thermal velocities
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b)

ϕe, ϕv- NN (2-layer MLP) εe, εv, δv - Linear

Conclusions

Developed a general purpose1D Kinetic Plasma Simulator using Graph Neural Networks 
Advantages: Better energy conservation than original Sheet Model and enables simulations at large 
Limitations: Simulator must run at fixed  and does not generalise to out of training distribution data (high )
Future work: Showcase differentiability capabilities and improve performance at high 
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We modified the architecture of Sanchez-Gonzalez et al. [3] in order to embed some of the key 
structure and symmetries relevant for the electrostatic sheet model. Implemented in JAX [5].

Is it possible to develop kinetic plasma physics simulators where 
charged particle dynamics are fully (and correctly) predicted by a 
neural network? If yes, what are the advantages and limitations compared to 
traditional solvers? Inspired by previous works on Graph Network Simulators 
(GNS) for fluid simulations [2,3] we aim to provide an answer to these 
questions. 

For this initial work [1] we use as a test scenario the 1D Electrostatic 
Sheet Model introduced by Dawson [4]. This algorithm is a predecessor of 
Particle in Cell codes that still models a wide range of kinetic plasma 
processes.  We use the synchronous version of the algorithm [4] to generate 
both training and test data.
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