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Motivation Graph Network Simulator (GNS)

Is it possible to develop kinetic plasma physics simulators where We modified the architecture of Sanchez-Gonzalez et al. [3] in order to embed some of the key
charged particle dynamics are fully (and correctly) predicted by a structure and symmetries relevant for the electrostatic sheet model. Implemented in JAX [5].

neural network? If yes, what are the advantages and limitations compared to
traditional solvers! Inspired by previous works on Graph Network Simulators

erse . . | t xt+1
(GNS) for fluid simulations [2,3] we aim to provide an answer to these f?t— /] ODE Sort L+
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For this initial work [I] we use as a test scenario the |D Electrostatic
Sheet Model introduced by Dawson [4]. This algorithm Is a predecessor of
Particle in Cell codes that still models a wide range of kinetic plasma cTTTTTTTTTT TN ,
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Figure I: |D Electrostatic Sheet Model. Plasma is represented by a set of equally
negatively charged sheets moving over a neutralising ion background. Figure 2: Schematic of Graph Network Simulator developed to simulate the |D Electrostatic Sheet model.
Image adapted from Dawson [4]. a) Graph for different boundary conditions b) Node/edge vectors €) Graph Neural Network architecture

Generalization to different system sizes and boundary conditions

The GNS was trained only on simulations consisting of |0 sheets inside a periodic box The GNS conserves energy better than the
but 1t generalizes to different numbers of sheets and boundary conditions without retraining. Sheet Model (SM) at equivalent simulation time-steps.

T 11 | T T T T T T 11 | . T T T Y ‘. T 0.| T ,rn;_t T | T T y |-.. ‘ T ’ T z."_
--¢- Reflecting . ) Yi ® GNS Y 10-2F
—&— Periodic - x - TN

- 10 . | Ground Truth _

N

—_
3
[\

Rollout EMD 4]

—_
3
S

B A =10""w, !
_ ‘ - : L A= 10!
—_— — ; Pt % : 3 )& ' Virain’ At = 10w,

10—6 ] L 1 o1 vl ] Lo ol 1 Lo vl . N | | i 4 L% 1 1 2 L N L L I... . \ N . Lol | | |t| L1 |cu|p|
107 01 107 i0? o o

N sheets Uth [5wp]

Figure 3: a) Rollout Earth Mover’s Distance [6] between predicted and ground truth test set trajectories. Metric is averaged
over simulations, sheets and time-steps. Error bars indicate worst/best performance. b) Example of predicted sheet trajectories
versus ground truth test data. Only the initial positions and velocities are provided.

Figure 4: Comparison of energy loss rates for systems
consisting of 1000 sheets with different initial thermal velocities

Recover known plasma kinetic processes
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Figure 5: Examples of kinetic processes recovered by the GNS and comparison with theoretical predictions. - ! fm : ’

Results are averaged over multiple simulations performed with varying numbers of particles. and many others ...
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