Rectify: Black-Box Intrusion Recovery in PaaS Clouds

David R. Matos

Miguel L. Pardal

Miguel Correia

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Lisboa, Portugal
{david.r.matos,miguel.pardal,miguel.p.correia}@tecnico.ulisboa.pt

Abstract

Web applications hosted on the cloud are exposed to cyberat-
tacks and can be compromised by HTTP requests that exploit
vulnerabilities. Platform as a Service (PaaS) offerings often
provide a backup service that allows restoring application
state after a serious attack, but all valid state changes since
the last backup are lost. We propose Rectify, a new approach
to recover from intrusions on applications running in a PaaS.
Rectify is a service designed to be deployed alongside the ap-
plication in a PaaS container. It does not require modifications
to the software and the recovery can be performed by a sys-
tem administrator. Machine learning techniques are used to
associate the requests received by the application to the state-
ments issued to the database. Rectify was evaluated using
three widely used web applications — Wordpress, LimeSurvey
and MediaWiki — and the results show that the effects of ma-
licious requests can be removed whilst preserving the valid
application data.

CCS Concepts + Computer systems organization Main-
tainability and maintenance;

Keywords PaaS, Rollback, Recovery, Intrusion Removal

ACM Reference format:

David R. Matos Miguel L. Pardal Miguel Correia. 2017. Rec-
tify: Black-Box Intrusion Recovery in PaaS Clouds. In Proceedings
of Middleware 17, Las Vegas, NV, USA, December 11-15, 2017,
13 pages.

https://doi.org/10.1145/3135974.3135978

1 Introduction

Platform as a Service (PaaS) is a cloud computing model
that allows easy deployment of elastic web applications in
public clouds [11, 29, 39, 40]. In a PaaS offering, a system
administrator is able to configure and maintain complex ap-
plications without the burden of managing the full software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

Middleware ’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4720-4/17/12... $15.00
https://doi.org/10.1145/3135974.3135978

stack in a set of servers. Automatic scaling allows having
stable throughput even when dealing with high peaks of traf-
fic. The PaaS model provides more versatility to run user
applications than the Software as a Service (SaaS) model, and
easier management than the Infrastructure as a Service (IaaS)
model [29]. Three well-known examples of PaaS offerings
are: Red Hat OpenShift [35], Google App Engine [10], and
Force.com [43].

As with any other application, those running in PaaS ser-
vices may also be attacked and have their state illegitimately
modified. PaaS offerings allow developers and system admin-
istrators to focus on the application, as they tend to hide most
of the complexity underneath. However, developers/admi-
nistrators can introduce implementation and configuration
vulnerabilities, which may allow adversaries to execute suc-
cessful attacks. Moreover, web applications are known for
being plagued by a variety of vulnerabilities that allow com-
promising their state in the database, e.g., authentication and
session management issues, cross-site request forgery, and
SQL injection [38, 44].

When an adversary illegitimately modifies the state of a
web application running on a PaaS offering, its administrator
may have to recover the state by rolling it back to a point in
time before the intrusion, e.g., by restoring a backup or by
using a checkpointing mechanism. This approach removes
the effects of the intrusion, but will most likely discard many
legitimate state modifications that occurred after the intrusion.
The latest correct state is usually old, meaning that a large
portion of valid data is lost.

Older work used logs and snapshots to recover databases
[12], but there is a more recent line of research concerned
with recovering from requests (operations) at the application
layer, not at the data layer. This line of research aims to
remove the effects of intrusions (and mistakes) from system or
application state without discarding all modifications after the
intrusion [1, 6-8, 14, 20, 32]. For instance, the administrator
may want to recover from an illegitimate request with data
filled in a web form that is inserted in the database using
several SQL statements. He wants to undo the effect of the
request which implies undoing all the statements, and possibly
undoing any statements that used this data afterwards.

The problem of web application recovery has been studied
in the past decade [1, 7, 8], including more recently web ap-
plications running in PaaS [30]. Although these services are
capable of removing the effects of intrusions in web applica-
tions, they require modifications to the applications source

https://doi.org/10.1145/3135974.3135978
https://doi.org/10.1145/3135974.3135978

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

code, i.e., to support intrusion recovery an application has to
be modified to support the recovery service. Such modifica-
tions are needed at least to allow mapping requests to database
statements, e.g., for the recovery service to understand that a
certain type of request causes a certain update statement to
the database. This is a significant drawback. First, in some
cases the organization does not even have access to the source
code of the application. Second, it may be difficult to find
skilled programmers with adequate knowledge about how
the application was built to safely implement the required
modifications. Finally, the cost, in terms of time and money,
of implementing the required modifications for the recovery
system have to be considered, since most companies usually
run under constrained budgets and tight schedules.

In this paper we propose a new approach that allows undo-
ing the effects of intrusions in web applications without any
software modifications, thus considering that the application
is a black-box, solving this limitation of previous works. Rec-
tify leverages a log of requests (i.e., application operations)
and a log of database statements. Given an illegitimate opera-
tion executed by the application, Rectify is capable of finding
its effects in the database and automatically remove them.
As far as we know, this is the first recovery tool that allows
a system administrator to identify malicious requests at the
application level and automatically remove the intrusions at
the database level without modifying the application.

Rectify was designed to be deployed in PaaS offerings. It is
installed as an add-on module that can be attached to the web
application through the PaaS administration console. It works
with both open source and proprietary applications. Rectify
recovers an application by executing compensation operations
at the database, which undoes the statements that were issued
by malicious HTTP requests. The detection of intrusions
and the identification of illegitimate requests may be done
automatically using an intrusion detection system (IDS) [19,
23, 31, 36] or by the administrator, e.g., by searching in the
request log for any requests coming from a suspect IP address.
Either way this problem has been widely studied for a couple
of decades and is different from the problem of intrusion
recovery, so we do not aim to solve it in this paper.

The main challenge we had to solve was the association
between the requests received by the application and the state-
ments it issues to the database. By modifying the application
it would be possible to annotate the statements with additional
information about the request that caused them [30], but we
want to avoid such modifications. Another solution would
be to inspect the two logs after running the application for a
while and to write a set of rules that associated the statements
to requests. However, this would be a tedious and error-prone
procedure.

Our solution uses supervised machine learning [22] al-
gorithms to automatically find correlations between HTTP
requests and the issued database statements. A learning pro-
gram analyses the two logs obtained during a teaching phase

D. R. Matos et al.

and produces two classifiers that are able to do the association
automatically during runtime. With this technique it is possi-
ble to setup Rectify to different applications without the effort
of modifying the code of the application or writing rules to
associate requests to statements. Our technique requires the
web application to be implemented using good practices, i.e.,
the URLs have to follow a clear and predictable structure.
Rectify does not understand Web applications that use URL
parameters to load different pages, since it assumes that the
parameters are simply variables of the request.

We implemented Rectify in Java and configured it as a
container ready to be deployed in PaaS offerings. This imple-
mentation is available online.! We run it in the Google App
Engine [10]. Rectify was evaluated using three widely used
web applications — Wordpress, LimeSurvey and MediaWiki
— and the results show that the effects of malicious requests
can be removed whilst preserving the valid application data.
Moreover, they show that it is possible to undo one malicious
request in less than one minute.

The main contributions of this paper are the following: (1)
an approach for recovering from intrusions in PaaS applica-
tions without deleting all modifications since the intrusion
and without modifying the applications source code, i.e., con-
sidering the application is a black-box; (2) a novel service
that implements this approach, provided as a container easily
deployable in a PaaS offering; (3) a machine learning scheme
to automatically associate database statements to the request
that generated them.

2 Platform as a Service

Platform as a Service is one of the three original cloud com-
puting models, alongside IaaS and SaaS [29]. This model
supports automated configuration and deployment of appli-
cations in data-centers. These applications are typically web
applications, i.e., software that runs in web servers, backed
by databases, and that communicates with browsers using the
HTTP protocol. PaaS offerings normally support elastic web
applications that scale horizontally by deploying more virtual
machines when there is an increase in demand.

Figure 1 presents the basic architecture of a PaaS platform.
The application delivery controller (ADC) is responsible for
directing client requests to the adequate servers, based on
the application being accessed and the server load. Appli-
cations are deployed in a virtualized environment called a
container, e.g., in a Linux container provided by Docker [34].
Containers are logically isolated from other containers using
mechanisms such as cgroups (or control groups), which allow
limiting the resources used (CPU, I/O, etc.), and namespaces,
which provide an abstract layer for names of resources (pro-
cesses, users, network interfaces, etc.). Each container has a
runtime environment that depends on the application. For ex-
ample, a Java EE application container can include a Tomcat

Ihttps://github.com/davidmatos/Rectify.git

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

HTTP HTTP
Requests Responses

‘ Application Delivery Controller ‘

Container / Container \ Container
User User User User User
Application Application || Application Application || Application

User

PaaS Application

APIs

PaaS PaaS
APIs APIs

Database Access and Replication Middleware ‘

=B E 8-

DBMS DBMS DBMS DBMS DBMS

laaS ‘

Figure 1. Typical PaaS Architecture.

server with a Java Virtual Machine; for PHP applications the
container includes an Apache 2 server with the Zend engine.
Containers provide APIs for applications to access the func-
tionality provided by the PaaS environment. An important
example are the APIs for accessing the data layer, i.e., the
database management systems (DBMSs). These APIs inter-
act with the database access and replication middleware that
hides the complexity of interacting with databases that often
are replicated in several physical servers.

In this paper we consider the following main players. A
user is an individual or a company that owns and deploys
applications in the PaaS platform. The clients are the indi-
viduals who access applications deployed in the PaaS. The
system administrator is the responsible for the configuration
of an application running in a PaaS offering.

3 Rectify

Rectify denominates both an approach and a service for undo-
ing the effects of intrusions in web applications. The objective
is for the service to be deployed at PaaS offerings without
modifications to the source code of the applications. Rectify
is concerned with the infegrity of applications’ state, not with
data confidentiality.

3.1 System Model

A web application that is configured to be recoverable by
Rectify is called a protected application. A protected applica-
tion receives HTTP requests (at the application level) from its
clients. These HTTP requests generate database statements
that alter the state of the application by inserting, deleting or
updating database records. Although we frequently mention
HTTP, the requests may equally be received over HTTPS.
The state of the protected application becomes corrupted
when it receives a malicious request (at the application level)
which in turn generates malicious statements (at the database

level). A malicious request is any request that is illegitimate
for some reason, e.g., because it is issued by someone who
should not have access to the application (e.g., a hacker). We
consider that all statements caused by a malicious request
are themselves malicious. Nevertheless, select queries do not
tamper the state, as they only read data and do not modify the
database, so there is no need to remove their effects.

The way Rectify recovers an application consists in undo-
ing malicious requests by undoing malicious statements. We
use the term undo [6] because after recovery the state of the
application is intended to be such as if the malicious oper-
ation never took place in the past. One of the ways Rectify
undoes malicious operations is by executing a special opera-
tion, called compensation operation [21], which removes the
modifications that resulted from a malicious operation.

3.2 Threat Model

Our threat model considers that the state of a protected appli-
cation can be tampered only by malicious requests. In other
words, we assume the computational infrastructure of the
PaaS and of the Rectify service are not compromised by ad-
versaries. This does not mean that such problems may not
occur — they can — only that we do not consider them in this
paper as we focus on recovering the state of the application.

3.3 System Architecture

Rectify contains two sets of components: HTTP and DB.
The HTTP components are in charge of intercepting and
logging the HTTP requests issued to the application. The DB
components play a similar role for the database, i.e., they
intercept and log the statements the application issues to the
database. The Rectify service was designed to be deployed in
a different container than the application.

The logs, as well as the configuration values of Rectify,
are stored in a database management system (DBMS). Hav-
ing the logs in a DBMS makes it easier to do searches and
perform complex queries with multiple criteria in order to
find malicious HTTP requests. Keeping old logs allows us to
recover from malicious operations that took a long time to
detect. However, logs grow indefinitely with time. A solution
is to move old parts of the log to a data archival service (cold
storage) in the same cloud (e.g., AWS Glacier [41]). This
allows keeping the logs for longer periods for a fraction of
the price (e.g., in AWS, the cost for normal storage is around
$0.02 per GB per month, whereas in Glacier it is only around
$0.005 per GB per month).

Figure 2 shows the architecture of Rectify. The user runs
the protected application in Container 1 and Rectify in Con-
tainer 2. During normal operation, when a client sends a
request to the protected applications it is forwarded to the
HTTP proxy (arrow a in the figure). This proxy logs the client
request in the HTTP log and redirects it to the protected ap-
plication (arrow b in the figure). Every time the protected
application issues a statement to the database the statement is

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

HTTP
Requests

HTTP
Responses

Application Delivery Controller ‘

@\

Container 1 ontainer (d)
Rectify
b) L»
Protected ‘,y/ Admin
" HTTP Proxy
Application Console
T
s Rectify Libs
DB Proxy HTTP Parser
DB Parser

’ Database Access and Replication Middleware ‘

==

Protected HTTP DB Knowledge
Application DB Log Log Base

Figure 2. Rectify system architecture. Rectify itself is the set
of components inside Container 2.

intercepted and logged by the DB proxy (arrow c in the figure),
which is configured with the address and access credentials
of the database used by the application. The administrator
accesses the recovery service using the admin console (d),
after providing his authentication credentials (e.g., password).

Next we present these in more detail.

HTTP proxy: reverse proxy responsible for intercepting
every HTTP request to the application and storing them in the
log. HTTP requests do not receive any special treatment since
that would reduce the overall performance of the application.

HTTP log: data-store used by the proxy to keep every
request. It records: the entire payload of the HTTP request,
the address of the host that triggered the request, a timestamp
and the URL of the request. Each request stored in the log is
called a HTTP log entry.

DB proxy: component responsible for intercepting every
statement to the database and logging it in the DB log. It
only saves the statement in the log if the execution returned
without errors. Invalid statements are not recorded since they
do not have to be recovered.

DB log: data-store that saves every successfully executed
database statement that changed the state of the database.
Besides the executed statements, the DB log also saves a
timestamp, the identifier given by the DB proxy and the pri-
mary key of the affected records. Each statement stored in the
log is called a DB log entry.

Admin console: component that allows the system admin-
istrator to manage Rectify and to recover the protected ap-
plication. It provides a graphical user interface with a search
engine to navigate and find incorrect operations in both the
HTTP and the DB log. It also provides an interface to run the

D. R. Matos et al.

learning phase, so it can later successfully correlate an HTTP
request with the corresponding DB queries.

Rectify libs: software libraries required to parse requests
and database statements. These libraries are used by the re-
maining components of the service. The main libraries are
the HTTP parser and the DB parser. The HTTP parser breaks
requests into parts so that the classification model is able to
analyze these parts and associate the request with the database
queries. The parts extracted by the parser are: HTTP method,
URL, timestamp, names and values of parameters, and the
host that issued the request. The DB parser breaks a SQL
statement into parts to identify the signature of the statement.
Some of these parts will be found in the HTTP request that
generated the statement. The relevant parts that identify a
SQL statement are: statement type (insert, select, etc.), table
affected by the statement, columns used by the statement and
timestamp. The HTTP parser and the DB parser are used by
Rectify to analyze the requests and queries in two phases:
during the training phase, when the knowledge base is being
constructed; and during the recovery process, when Rectify
needs to find the queries issued by the malicious requests.

Knowledge base: In order to correlate HTTP requests with
their corresponding database operations, a collection of ex-
amples (HTTP request — database statements) is necessary.
These examples are stored in a data-store called the knowl-
edge base. A detailed explanation of how the knowledge base
is loaded can be found in Section 4.

4 Rectify Learning Phase

Rectify uses supervised machine learning to find relations
between the faulty HTTP request and the corresponding data-
base statements. Rectify considers that the application is a
black-box, so it observes HTTP requests and DB statements
and finds the relations between them without looking into the
application code or requiring modifications to that code. As
any other supervised learning algorithm, it is necessary to pro-
vide Rectify with samples or examples. Each sample allows
Rectify to learn that a specific HTTP request will generate a
certain kind of database statement.

Each example in the knowledge base is identified by an
application route. A route is a URL pattern that is mapped to
a resource of the web application. For example, the follow-
ing URL www.app.com/posts/welcome is derived from
the route www . app . com/posts/{title}. This route in par-
ticular points to a web page that displays a post with the
title welcome. By analyzing the route, there is a fixed part
(www . app.com/posts/) and a variable part (t it 1e) which
is replaced by the title of the post.

The loading of the knowledge base with samples is done
by setting the operation mode of Rectify to learning and let
it execute a list of all the routes of the application. Rectify
will then automatically execute each HTTP request for each
route in the list, one at a time. While this happens, both the

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

Table 1. Example of a signature record

Feature Example
Method GET
URL /posts/new_post.php
HTTP | Nr. of parameters | 2
Parameters [title, content]
Values [t, c]
Nr. of statements 2
Type UPDATE
Nr. of columns 1
SQL1 | Columns {id}
Values {1}
Tables [users]
Type INSERT
Nr. of columns 2
SQL2 | Columns [title, content]
Values [t, c]
Tables [posts]

HTTP request and the database statements generated will
be captured and stored in the knowledge base. For Rectify
to learn which database statements are issued by the HTTP
request being executed each HTTP request has to be executed
at a time, with some delay before executing the next one; if
there were HTTP requests being executed simultaneously, it
would be hard to know to which request corresponded the
database statements.

Rectify is assisted by a web crawler to discover all routes,
as it is crucial to execute every possible route of the appli-
cation in the learning phase. A route that is not learned by
Rectify cannot be undone later, since there is no information
in the knowledge base that allows to later recognize the data-
base statements issued by the HTTP request. Also, routes that
are not learned by Rectify will generate database statements
that cannot be associated to any HTTP request and, as ex-
plained in Section 5.3, these statements will be marked as
suspected. The crawler systematically browses the web appli-
cation and identifies all existing requests and the correspoding
routes. It is similar to other web crawlers [18], although it
obtains information of a single application, not of a large
portion of the web.

The knowledge base contains one association between each
HTTP request and a set of database statements. Each entry in
the knowledge base is denominated a signature record and is
divided in parts. For example, consider the URL:

r = /posts/new_post.php?title=t&content=c
that generates the three database statements:

SELECT name FROM users WHERE id = 1

UPDATE users SET ts = NOW() WHERE id = 1

INSERT INTO posts VALUES (t, c)

Table 1 presents the signature record of the HTTP request
r. The record is divided in HTTP and SQL parts: an HTTP
request part; SQL parts for each statement (SQL1 and SQL?2)
issued by the HTTP request that modifies the database. The
column feature contains the name of each part and the column

example contains an example of such feature based on the
example given above.

5 Two-Step Classification

In order to identify the database statements issued by a mali-
cious HTTP request, Rectify needs to solve two classification
problems. The first, signature matching, consists in identi-
fying the signature record of the malicious HTTP request.
The second, DB statements matching, consists in finding in
the DB log the actual statements that were created by the
malicious HTTP request.

Figure 3 presents a level-0 data flow diagram with the tasks
performed in these two classification problems. In the figure,
the system administrator queries the HTTP log for a malicious
request. This malicious request generated a set of database
statements that corrupted the database. Given the malicious
HTTP request, Rectify will first solve a classification prob-
lem to identify the signature record of such HTTP request
(signature matching). Once Rectify has the signature record,
in other words, once it knows the kind of application request,
it is able to obtain the database statements that may be is-
sued by that HTTP request. This is only possible because the
knowledge base contains examples of the HTTP requests and
corresponding database statements. The second step uses the
obtained database statements to find the malicious database
statements present in the DB log. Both steps are explained in
more detailed in the following sections.

5.1 Step 1 - Signature Matching

In the first step, Rectify solves the classification problem of
identifying the signature record of an HTTP request. Figure 4
presents a data flow diagram describing the tasks done to
identify the signature. In the figure, a malicious HTTP re-
quest, given by the system administrator, is parsed in order

Sys_tem Protected App DB
Administrator

Query \\ Malicious

HTTP Request

Compensating
DB Statements

Rectify \
Malicious Signature
HTTP Request Signature Record DB Statements
Matching Matching
Query Query
Signature Malicious
Record DB Statements
? HTTP Log Knowledge Base DB Log

Figure 3. Level-0 data flow diagram of the tasks performed
to solve the 2-step classification problem.

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

HTTP request parts
System
Administrator

Classify

Malicious to find

<Method, route, # params, params, values>

HTTP Request example

D. R. Matos et al.

Signature Record
<HTTP Request example,

Create
Signature

HTTP
Request

Signature
Record

cortespending HTTP
Request
HTTP Request
Parse HTTP d example

example
request

HTTP Requests examples

Record DB Statements examples>

RHWP t DB Statements
eques examples
example

DB Statements
Matching

HTTP and issued DB
statements examples

Figure 4. Level-1 data flow diagram with the tasks performed to identify the signature record of a malicious HTTP request.

to extract its relevant parts (shown in Table 2). Using the
parts of the malicious HTTP request, the classification algo-
rithm is executed to find the corresponding signature record
(a pair containing an example of an HTTP request and its
corresponding database statements) in the knowledge base.

The classification algorithm works in two phases: first, the
knowledge base, which is structured by features, is loaded by
a machine learning algorithm. This algorithm runs a training
phase in which it creates a model, based on the features, that
defines a classifier. Later, when an HTTP request needs to be
identified, it is processed by the classifier which will predict
the most likely class for that HTTP request. In this case the
class is a signature record. A more detailed explanation of how
classifiers work can be found in [22]. We did not implement
a new classification algorithm to solve this problem because
we found that there are several well studied algorithms that
are capable of solving this problem.

5.2 Step 2 - DB Statements Matching

In second step, the list of database statements issued by the
malicious HTTP request is identified. Using this signature, ob-
tained in the first step, it is possible to find the corresponding
database statements issued by the malicious request. Figure 5
presents the various tasks needed to find the malicious data-
base statements. As shown in the figure, first a set of generic
database statements is calculated. This process is described
in detailed in Algorithm 1.

Algorithm 1 begins by getting all the database statements
of the signature record (line 2). Then, each statement from the
signature record is cloned (line 3). The rationale behind this
step is that the database statements generated by mr should

Table 2. Features used to classify HTTP requests

ID | Feature | Description
Cl1-1 | Method GET, POST, PUT, etc.
C1-2 | URL The address

C1-3 | Nr. of param. | Number of parameters
C1-4 | Parameters Attributes’ names

Algorithm 1 Calculates an approximation of the DB state-
ments issued by mr (malicious request) based on sr (signature
record).

INPUT mr // malicious HTTP request
INPUT sr // signature record
RETURNS GenericStmts // candidate list of DB statements generated
by mr
1: GenericStmts < L
2: for stmt € sr.getDBStatements() do
3: p_stmt « stmt
4. for col € p_stmt.getColumns() do
5 if sr.valueComesFromHTTPRequest(stmt, col) then
6: attr « sr.getHTTPAttrFromDBCol(col)
7
8

value <« mr.getValue(attr)
: p_stmt.setColumnValue(col, value)
9: else

10: p_stmt.setColumnValue(col, NULL)
11: end if

12: end for

13: GenericStmts < GenericStmts U p_stmt
14: end for

15: return GenericStmts

be very much like the ones in the signature record, except for
the values that should come (in part) from the HTTP request.
Then it verifies in each column if the value comes from the
HTTP request (line 5). If so, then it will modify p_stmt to
include the values from mr (lines 6 to 8). If the value did not
come from the HTTP request, then that column is set to NULL
(line 10). Finally, the calculated database statement is added
to GenericStmts (line 13) and returned (line 15).

With this set of generic statements it is possible to solve a
classification problem in which we want to find, in the DB log,
the database statements most similar to the generic statements.
This classification problem is solved using the features listed
in Table 3.

The classification problems presented in Sections 5.1-5.2
can be solved using several classification algorithms. In our
work we studied several types of algorithms for this prob-
lem: logistic regression, naive Bayes, decision tree, k-Nearest

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

Signature DB Log Protected App DB
Matching
. Query for Malicious Execute
Signature Record most similar DB Compensating

<HTTP Request example, DB Statements examples>

DB Generic DB Generic Statements

Statements

DB statements

Generator

”\ Malicious DB
Statements

Statements Statements

Classify
to find

Generate

Malicious DB Statements

» Compensating
Statements

Figure 5. Level-1 data flow diagram with the performed tasks to identify the malicious database statements issued by the

malicious HTTP request and generate compensation statements.

Table 3. Features used to classify database statements

ID | Feature | Description

C2-1 | Statement type | select, insert, etc.

C2-2 | Nr. columns The number of columns in the statement
C2-3 | Columns The column names

C2-4 | Values Values of the columns

C2-5 | Tables Tables’ names

Neighbors and many others. A full list of the studied algo-
rithms is presented in Section 8.

5.3 Dealing with SQL Injection

One of the most common attacks against web applications is
SQL injection [15].2 In this kind of attack, an attacker is able
to illegally inject database statements by sending an HTTP
request containing special SQL characters, e.g., OR 1 = 1#.
Such an attack would create corrupted database statements
that are not present in the knowledge base, so they cannot
be identified using the approach we have presented. It is
not possible to teach Rectify SQL injection examples as the
possibilities are unlimited.

To cope with this issue, Rectify does not look directly
for the database statements caused by the malicious HTTP
request, but for the statements that were not caused by the
non-malicious HTTP requests received more or less at the
same time. Specifically, Rectify searches the HTTP log for the
set Ryo0q Of all requests received in the period [ty — Tpax, to +
Tmax] excluding the malicious request, where ¢, is the in-
stant when the malicious request was received and T;,4x an
estimate of the maximum time it takes to execute the last
statement caused by any request. Then, Rectify does the two
steps of Sections 5.1 and 5.2 for all the requests in Ryo04, and
obtains a set Sy404 Of all statements issued to the database in
consequence of these requests. Then it extracts from DB log
the set of all statements S issued in the interval [y, tg + Tnax]-

2Despite the term SQL in the name, all data access languages based on
statements are vulnerable to such attacks including NoSQL statements [28].

Finally, it identifies as caused by the malicious HTTP request
all the statements in S that are not in Sgpo4-

6 Recovery with Rectify

Rectify removes the effects of an incorrect statement from the
database by calculating a set of database statements that undo
what the malicious statement corrupted. These statements
are called compensation operations or compensation trans-
actions [21]. In a simplistic scenario in which tables have no
relations and a statement that affects a record does not affect
other records, we know that in order to undo an insert it is
necessary to execute a delete; to undo an update it is necessary
to update the record back to its previous value; and to undo a
delete to execute an insert with the latest value. However, this
problem becomes more difficult to solve in relational DBMSs.
This kind of database allow the existence of relations between
records (defined by foreign key columns that link to records
of different tables). It is not recommended (in some cases it is
not even allowed) to remove a record that is related with other
records. It could happen that a record that was created by a
malicious statement is related to different records that are to
be kept. This means that deleting the malicious record would
make the database inconsistent. A variant of this problem was
already investigated [2, 26].

We based our approach to deal with dependencies on the
work presented in [2]. In this work an algorithm to calculate a
graph of dependencies among transactions is presented. Rec-
tify uses this algorithm to calculate the graph of dependencies
which will be used to execute the compensation operations.
However, an attack can cause transitive effects that are visi-
ble in the application level. For instance, a record that was
created by a malicious HTTP request can be later read by
another, non-malicious HTTP request, which propagates it.
Currently Rectify does not include a mechanism to track the
transitive effects of attacks. A mechanism similar to Shuttle’s
dependency graphs might be added for this purpose [30].

The algorithm to calculate and execute the compensation
operations is the two pass repair algorithm [2] modified to

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

allow undoing single statements instead of only undoing com-
plete transactions. It works as explained next.

Undoing an insert: An insert can be undone by deleting the
malicious record. Rectify will produce an equivalent delete
in the form, DELETE FROM table-1 WHERE pk = PK.As
explained in Section 3.3, PK, the primary key value, is stored
alongside every insert, update and delete operation. By us-
ing the primary key, Rectify does not affect valid records
with its compensation operations. After calculating the delete
statement of the malicious record, it is necessary to calculate
the equivalent delete statements for the dependent records
that were calculated earlier. To do so, Rectify will calculate a
delete operation for each depended record created that refer-
ences the faulty record.

Undoing an update: An update can affect several records.
Since Rectify stores the primary key of each affected record
in the log, it is possible to reconstruct each affected record
separately. For each affected record, Rectify will obtain from
the log every operation that affected it. From the insert that
create it until the very last update. Rectify only queries the
log for valid operations; the faulty ones are discarded. Then,
Rectify can build a record in memory, i.e., without actually
executing statements in the database. When every valid op-
eration of the log that affected that record was executed in
memory, Rectify will have a version of the record that corre-
sponds to a valid record that was never affected by any faulty
operation. Finally, Rectify executes an update to set every
column of the affected record with the values of the valid
record calculated in memory.

Undoing a delete: A delete, like an update, may affect sev-
eral records. Rectify undoes a delete the same way it undoes
an update. It first collects a lists of all affected records. Then
it reconstructs, in memory, the record. At the end it will have
the record, the way it was before it was removed by the faulty
operation. Finally, Rectify will execute an insert with the
record calculated in memory.

Undoing a drop table: A drop table operation is recovered
in a different way. Instead of reconstructing each record in
memory, Rectify will execute every valid statement that tar-
geted the deleted table. Reconstructing every affected record
in memory would require too much memory.

Undoing a drop database: The drop database is undone in
the same way as a drop table. Every valid operation in the log
is executed on the database.

Note that for undoing the update, the delete and the drop
statements, we assume that every statement was present in
the log. That may not be true, since as it was explained in
Section 3.1, some statements may be so old that they are
not present in the logs anymore. In this case Rectify will
ask the system administrator to provide the old log archive
in order to retrieve the most valid recent version of the af-
fected records. Then Rectify is able to reconstruct the affected
database records on top of that version.

D. R. Matos et al.

In summary, at setup time, Rectify requires a system ad-
ministrator to perform a learning phase. Then, when an attack
occurs, the administrator indicates to Rectify a list of mali-
cious HTTP requests that need to be undone. Rectify then
uses its two-step classification in order to find the malicious
database statements in the DB log. Finally, Rectify calculates
the compensation statements that undo the effects of the at-
tack. It is possible to execute the compensation statements
in an application that is either online or offline. However, if
the application is online, users may observe inconsistencies
in the application state.

7 Implementation

This section describes our implementation of Rectify and how
it can be deployed in a PaaS offering.

7.1 Rectify

To evaluate our proposal we implemented Rectify as an ap-
plication ready to be deployed in a PaaS container. All the
components of the system were written using Java Enterprise
Edition (JEE), making it easy to deploy in any PaaS that
supports Java. The HTTP and database logs, as well as the
knowledge base of Rectify, are stored in a MySQL database.
By using a relational database it is possible to easily search
for entries in the log and store relationships between requests
and responses.

Our implementation supports web applications that use
a MySQL database, but it is simple to extend for different
DBMSs. Table 4 lists the number of classes and lines of code
of each module in our implementation.

Table 4. Number of classes and lines of code of our imple-
mentation of Rectify

Module name Number of classes | Lines of code
Common Classes 3 1898
DBParser 1 287
DBProxy 1 244
HTTPProxy 1 224
HTTPParser 1 342
Recovery 3 1203
Machine Learning 2 895

7.2 Deployment in a PaaS

Rectify was designed to be deployed in a PaaS offering. All its
components are installed in a single container. The data-stores
containing the DB and the HTTP logs are also deployed in
the same container. This approach gives two main benefits:
modularity, Rectify is an additional module to the protected
application and can be easily added to an existing PaaS con-
figuration; automatic scaling, in terms of the data-stores con-
taining the DB and HTTP logs as well as the HTTP and DB
proxies that intercept every request and operation. This way,
Rectify does not introduce a bottleneck in the application.
We deployed Rectify in the Google App Engine [10] PaaS
offering, which provides JEE containers.

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

8 Experimental Evaluation

With our experiments we wanted to answer to the following
questions: (a) What is the cost, in terms of performance, of
using Rectify with real world web applications? (b) How
much space does Rectify require to store its logs and knowl-
edge base? (c) How much time does it take to recover a web
application in different scenarios? (d) How accurate are the
algorithms used in steps 1 and 2 of the classification?

To evaluate Rectify we setup three web applications that are
diverse in terms of the executed database statements and func-
tionality: Wordpress [4], LimeSurvey [25] and MediaWiki [3].
Wordpress is a widely-adopted content management system
(CMS) that provides a blog and a news page, as well as user
registration. These features are interesting to test with Rectify
since the state of a Wordpress application includes articles,
posts and comments that are dependent between them. For in-
stance, an article and a blog post are written by a user and can
be commented by a group of users. The comments themselves
can also be commented by users. Rectify needs to take this
into consideration when calculating dependencies in order
to ensure consistency of the database. LimeSurvey is a sur-
vey application that allows users to create and answer polls.
Unlike Wordpress, LimeSurvey stores database records (with
the polls and respective answers) that tend to be smaller than
the records of a CMS?. This in turn will generate different
HTTP requests which contain less information to work with.
With this application we will assess if Rectify is capable of
calculating correlations with less information. MediaWiki is
similar to Wordpress in the sense that both applications can
do content management. However, MediaWiki was designed
to be open, meaning that all content is accessible to all users,
while in Wordpress and LimeSurvey some contents may be
only visible and editable by a restricted group of registered
users. In both Wordpress and LimeSurvey, executed database
statements store information about the user that performed
them. If a malicious user performs an attack it is possible to
query the log for every operation that he performed. Since
MediaWiki allows unregistered users to perform modifications
to the database, it is impossible to know the actions taken by
an attacker.

8.1 Performance Overhead

Rectify uses two proxies to intercept HTTP requests and data-
base statements respectively. These components impose an
overhead to the web application, since every request needs to
be logged before being handled. To evaluate the performance
overhead of both proxies, we setup Wordpress, LimeSurvey
and MediaWiki in separate containers of the Google App en-
gine. Then, for each application we setup Rectify in a different
container. Each container was a nl-standard-8 (8 vCPUs, 30
GB memory). Every container was setup in the same geo-
graphic zone (Western Europe) so that the network latency

3Blogs and articles are usually records with hundreds or thousands of words

would not affect the results. Then, in a separate container, we
executed a workload using JMeter [16] with 1,000 concurrent
users, with each user issuing 1,000 requests (chosen randomly
from a list of 10 HTTP URLs for each application). At the end
of the experiments, 1,000,000 HTTP requests were issued in
each application. JMeter is a testing framework that collects
statistics about the execution of complex workloads. It is a
Java application which can be deployed and executed in a
PaaS container.

400 - T -

Without Rectify ===
With Rectify m—

350 - — —]

w
o
o
T
L

n
o
o
T
L

(6]
o
T
L

Throughput (ops/s)
3
o

o
o
T
L

o))
o
T
L

Wordpress LimeSurvey MediaWiki

Figure 6. Performance overhead of using Rectify with three
different applications measured in operations per second.

Figure 6 shows the overhead of using Rectify in all three
applications. The results are shown in requests per second.
The first bar of each group represents the throughput of the
application without Rectify and the second bar represents the
throughput of each application with Rectify logging the HTTP
requests. There is a performance degradation between 14%
to 18% in using Rectify to log the requests. This is expected
since every request needs to be logged first before being
resolved. This overhead might be reduced if our interception
code was made more efficient, as we did not make a big effort
to optimize it. Moreover, we consider the present overhead is
acceptable for many applications, given the benefit provided
by the service.

8.2 Space Overhead

Over time the space occupied by the logs of Rectify will grow.
We wanted to know how much space does Rectify need to
store the logs of a certain amount of requests. After the exper-
iments presented in Section 8.1, we checked how much space
the logs were taking in the database (uncompressed). Table 5
lists the space occupied by Rectify logs. After one million
requests the log size varies from 5.13GB, for LimeSurvey, to
8.2GB, for MediaWiki. It is a considerable amount of space
but since the data in the log is only read to perform recovery,
it is viable to consider to store the logs in an external cloud
storage service, such as Amazon S3 [33]. This way the scala-
bility of Rectify would be managed automatically and the cost
would be lower than storing the logs in the PaaS container.

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

Table 5. Space occupied by the Rectify logs in each applica-
tion after 1,000,000 HTTP requests.

Application | HTTP Logs (GB) | DB Logs (GB) | Total (GB)

Wordpress 5.50 1.76 7.26
LimeSurvey 3.60 1.53 5.13
MediaWiki 7.00 1.20 8.20

8.3 Total Time to Recover

The total time to recover (TTTR) is the time elapsed between
the moment the system administrator clicks the button re-
cover, after selecting the malicious operations to undo, and
the moment the application is recovered. TTTR varies de-
pending on the size of the log and the number of incorrect
operations to undo. To understand how the TTTR varies in
these different scenarios we used the WordPress, MediaWiki
and LimeSurvey applications that were deployed in the con-
tainers presented in the previous section. Then we injected
1,000,000 HTTP requests in each application. Finally, we per-
formed several recovery operations by undoing sets of HTTP
requests, from a single request to 1,000 in intervals of 100.
Each experiment was repeated 10 times.

Figure 7 shows the average time to recover each set of re-
quests with the standard deviation. The time to recover grows
linearly with the number of operations to undo. Undoing a
single request took an average of 12 seconds while undoing
1,000 requests took around 16 minutes.

1200

Total Time to Recover ——

1000 - } 1

. | |

400 | 8
I

Total Time to Recover (seconds;

200 - 1
1

E3

.
00 100 200 300 400 500 600 700 800 900 1000

Number of faulty requests to undo

Figure 7. Total time to recover the protected application.

8.4 Accuracy of the Classification Algorithms

There are several algorithms that can be used to solve the
classification problems presented in Section 5. We executed
every classification algorithm available in Weka [17], using
the default configurations. Weka is a machine learning tool
which provides several well-known classification algorithms
and data mining tools. We used different datasets of all three
applications. Each dataset was modified by us to include the
results that should be given by the classification algorithms,

D. R. Matos et al.

this way it is possible to calculate the accuracy, which is mea-
sured by the total of instances well classified and is given by:
Accuracy = (TP + TN)/(P + N), where P and N correspond
to the positive and negative classes given by the Weka algo-
rithms and TP and TN correspond to the true positive and true
negative classes that should have been given by the classifiers.

8.4.1 Signature matching accuracy

For the signature matching we collect a dataset with 3,000
HTTP requests, 1,000 requests for each application. These
datasets contain the classes and the identifier of the signature
record that should be assigned by each classification algo-
rithm. The HTTP requests were again generated by JMeter. In
our experiments JMeter executed a list of 10 URLs randomly
until it reached a list of 1,000 requests per application. These
10 URLs are a representative number of the types of requests
that can be made using the APIs of the applications. For in-
stance, in WordPress there are about 15 different operations,
however, the 10 URLs used in this experimental evaluation
are the most relevant ones. Then, every available classification
algorithm of Weka was executed using the default configura-
tion values.

The accuracy results of each algorithm are listed in Table 6.
The first column lists the names of the algorithms, the second
column the percentage of correctly classified HTTP requests
and the third column the percentage of incorrectly classified
HTTP requests.

There are several algorithms that reach 100% accuracy
for the three studied applications (Wordpress, LimeSurvey
and MediaWiki). Analysing the results we concluded that a
reason for such good performance is that these applications
were built taking into account good software development
practices, namely the routes (URLs patterns of the several
web pages) used in the application obey to strict rules, such
as, the first part usually corresponds to a controller of the
application, the second part to an action and the remaining
parts to the parameters. These rules help the classification
algorithms to correctly identify the requests.

8.4.2 Signature matching with irregular routes

To understand the difference with other applications that do
not follow such good practices, we tested the signature match-
ing algorithm in a sample application created by the Yii2 [37]
framework. Yii2 is a PHP framework that allows to implement
PHP applications with the Model View Controller (MVC) par-
adigm. The sample application created by Yii2 contains user
registration, blog features and a set of static web pages. By de-
fault Yii2 does not use strict rules for the routes. For example,
the route

www.app.com/controller/action/?p=user-login
points to the login page, whereas the route

www.app.com/controller/action/?p=contact

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

Table 6. Accuracy of the tested classification algorithms per-
forming the first classification problem.

Algorithm Correct | Incorrect
bayes.BayesNet 100% 0%
bayes.NaiveBayes 100% 0%
bayes.NaiveBayesMultinomial Text 26% 73%
bayes.NaiveBayesUpdateable 100% 0%
functions.Logistic 100% 0%
functions.MultilayerPerceptron 100% 0%
functions.SimpleLogistic 100% 0%
functions.SMO 100% 0%
lazy.IBk 100% 0%
lazy. KStar 100% 0%
lazy. LWL 100% 0%
meta.AdaBoostM1 57% 42%
meta.AttributeSelectedClassifier 100% 0%
meta.Bagging 100% 0%
meta.ClassificationViaRegression 100% 0%
meta.CVParameterSelection 26% 73%
meta.FilteredClassifier 100% 0%
meta.IterativeClassifierOptimizer 100% 0%
meta.LogitBoost 100% 0%
meta.MultiClassClassifier 100% 0%
meta.MultiClassClassifierUpdateable 100% 0%
meta.MultiScheme 26% 73%
meta.RandomCommittee 100% 0%
meta.RandomizableFilteredClassifier 100% 0%
meta.RandomSubSpace 100% 0%
meta.Stacking 26% 73%
meta.Vote 26% 73%
meta. WeightedInstancesHandlerWrapper 26% 73%
misc.InputMappedClassifier 26% 73%
misc.SerializedClassifier 100% 0%
rules.DecisionTable 100% 0%
rules.JRip 100% 0%
rules.OneR 100% 0%
rules.PART 100% 0%
rules.ZeroR 26% 73%
trees.DecisionStump 56% 43%
trees.HoeffdingTree 100% 0%
trees.J48 100% 0%
trees. LMT 100% 0%
trees.RandomForest 100% 0%
trees.RandomTree 100% 0%
trees.REPTree 100% 0%

points to a contact form. This characteristic, which may be
present in other web applications, makes the classification
algorithm identify both routes with the same signature record.
This happens because the parameter p is treated as a param-
eter and not as the name of the page. After running every
classification algorithm in this application we reached an ac-
curacy below 20%. This issue might be solved by configuring
Yii2 to use strict routes or performing an additional URL
normalization step to make for better URLSs.

8.4.3 DB Statements matching accuracy

The second classification problem, DB statements matching,
can also be solved using existing machine learning classifica-
tion algorithms. To evaluate which algorithms are the best to
use in this problem, we generated a dataset with 1,000 HTTP
request per application. In this dataset we added an id to iden-
tify the dependencies between the requests and the statement.
Then we executed every available classification algorithm
from Weka and compared how it classified the requests with
how it was supposed to classify them. Table 7 lists the clas-
sifications algorithms (first column) and their accuracy rate

Table 7. Accuracy of the tested classification algorithms per-
forming the second classification problem

Algorithm Correct | Incorrect
bayes.BayesNet 100% 0%
bayes.NaiveBayes 100% 0%
bayes.NaiveBayesMultinomial Text 72% 28%
bayes.NaiveBayesUpdateable 34% 66%
functions.Logistic 54% 46%
functions.MultilayerPerceptron 100% 0%
functions.SimpleLogistic 100% 0%
functions.SMO 100% 0%
lazy.IBk 100% 0%
lazy. KStar 100% 0%
lazy. LWL 100% 0%
meta.AdaBoostM1 3% 97%
meta.AttributeSelectedClassifier 100% 0%
meta.Bagging 100% 0%
meta.ClassificationViaRegression 100% 0%
meta.CVParameterSelection 54% 46%
meta.FilteredClassifier 100% 0%
meta.IterativeClassifierOptimizer 100% 0%
meta.LogitBoost 100% 0%
meta.MultiClassClassifier 100% 0%
meta.MultiClassClassifierUpdateable 100% 0%
meta.MultiScheme 87% 13%
meta.RandomCommittee 100% 0%
meta.RandomizableFilteredClassifier 100% 0%
meta.RandomSubSpace 100% 0%
meta.Stacking 54% 46%
meta.Vote 50% 50%
meta. WeightedInstancesHandlerWrapper 39% 61%
misc.InputMappedClassifier 2% 28%
misc.SerializedClassifier 0% 100%
rules.DecisionTable 0% 100%
rules.JRip 0% 100%
rules.OneR 0% 100%
rules. PART 100% 0%
rules.ZeroR 28% 72%
trees.DecisionStump 19% 81%
trees.HoeffdingTree 0% 100%
trees.J48 0% 100%
trees. LMT 0% 100%
trees.RandomForest 0% 100%
trees.RandomTree 0% 100%
trees.REPTree 0% 100%

(second and third columns). There are several algorithms that
correctly identify 100% of the database statements issued by
a malicious HTTP request.

8.5 Identifying SQL Injection Statements

As mentioned in Section 5.3, SQL injection attacks generate
database statements that are not learned by Rectify during the
learning phase and, therefore, cannot be identified by the DB
statements matching algorithm. This creates a problem, since
these statements are clearly malicious and need to be removed
from the database. Our proposal to solve this problem consists
in identifying, not only the database statements issued by a
malicious HTTP request but also every database statement is-
sued in a time interval around the instant the malicious HTTP
request was received. This would result in some database
statements not being identified as being issued by any HTTP
request, which would mean that they were injected.

To evaluate this approach we tested the DB statements
matching algorithm with OWASP WebGoat [13]. WebGoat is
a Java Web application developed by OWASP which provides
several kinds of vulnerabilities. It is mainly used to study the

Middleware 17, December 11-15, 2017, Las Vegas, NV, USA

security of web applications. One class of attacks that can be
performed in WebGoat is SQL injection.

In the experiments we exploited the following SQL injec-
tion attacks: string SQL injection, parameterized SQL injec-
tion and numeric SQL injection. For each attack we executed
2 examples. In every example, our DB statements matching
algorithm was capable of identifying the injected statements
as suspected since they were not issued by any known route
of the application.

9 Related Work

The use of logs and snapshots to recover databases after a
crash is far from new and is covered in textbooks in the area,
e.g., [12]. This work follows a more recent line of work on
recovering databases [9, 26], operating systems [20], web ap-
plications [30] and other services [6] by eliminating the effect
of undesirable requests without any software modifications.
We discuss some of these works next.

The “three R’s” is a model to undo incorrect operations in
applications [6]. It consists of three basic operations: Rewind,
to rollback to the latest valid snapshot in which no incorrect
operation took place; Repair, in which invalid operations are
corrected with the aid of the system administrator; Replay,
in which the entire log is re-executed over the snapshot. A
system that implements the three R’s model is Undo for Op-
erators [5, 6]. This system consists in a recovery system for
Email Servers. It logs every message in a log (Timeline Log)
with the help of a Proxy (Undo Proxy) and provides an control
panel (Undo Manager) that is controlled using an interface
(Control UI) by the system administrator. The architecture
of Rectify was inspired by this work. It also uses proxies to
intercept operations that are stored in logs and provides a
control panel for the system administrator.

Warp [7] is a recovery system for web applications. It
works by rolling back a part of the database to a point in time
prior to the intrusion and then apply compensation operations
to correct the state of the database. This approach is similar
to Rectify’s. In order to reproduce the HTTP requests, Warp
also requires an extension to be installed on the web browser.
Rectify re-executes the requests without using a client tool.
Warp requires software modifications to the database.

Aire [8] is a recovery service for applications that use Web
Services, so they need a recovery system that propagates the
compensation operations. We assume a system model similar
to Aire, in which the application that the system administrator
intends to recover may use web services of different services.
However, currently we only recover the application, without
affecting external services, since we assume that in some
cases the external web services may not be the system admi-
nistrator is responsibility and must not be affected by recovery
of the application. In some cases it is necessary to propagate
the recovery operations across every interconnected system,
and for that Aire provides a better approach.

D. R. Matos et al.

The problem of undoing malicious operations from data-
bases was investigated in [2] and later in [26]. These works
explore the problems of dependencies between records and
the calculations of compensation operations that need to need
to respect such dependencies. The algorithm we use to find
dependencies between records is based on [2] and the algo-
rithm to undo malicious statements was also inspired by that
work.

The subject of recovering web applications deployed in
a PaaS was explored in a single work, to the best of our
knowledge. Shuttle [30] consists in a recovery service for
application deployed in a PaaS. It provides the same capa-
bilities as Rectify, i.e., it removes the effects of intrusions
without discarding correct operations that have occurred after
the intrusion. Shuttle and Rectify differ in two main aspects:
Shuttle was designed to be deployed with the application
in the same container, while Rectify is isolated in a differ-
ent container, which is important security-wise. Shuttle also
needs software modifications to work, while Rectify does not.
However, Rectify requires a configuration and training phase.

To the best of our knowledge this is the first work that au-
tomatically associates requests to statements using machine
learning. The more generic problem of relating the requests
at application level with operations at database level appeared
before, but existing solutions require modifying the applica-
tion code. In [42], the authors try to find an accurate way of
identifying these associations to reduce the errors of anomaly-
based detection systems. In [24, 27], the authors want to use
the association information to improve web caching systems.
Although in these works the authors do find a way to associate
requests with operations, in their solutions they modify the
software of the application and/or the DBMS.

10 Conclusion

This article presented Rectify, a black-box intrusion recovery
service for PaaS applications. Rectify is a novel approach
to recover attacked web applications that does not require
modifications to the source code and that can be performed
by a system administrator. Such approach can be adopted
by cloud providers to provide a valued-added service to be
used by their customers. The Rectify approach uses machine
learning classification techniques to identify dependencies
and associate database statements to HTTP requests. This
accuracy relies on the application use of regular routes (well
structured URL patterns), a common good practice of web
design. Our implementation could recover 1,000 malicious
HTTP requests in around 16 minutes.

Acknowledgements This work was supported by the European Com-
mission through project H2020-653884 (SafeCloud) and by national
funds through Fundacio para a Ciéncia e a Tecnologia (FCT) with
reference UID/CEC/50021/2013 (INESC-ID).

Rectify: Black-Box Intrusion Recovery in PaaS Cloudsliddleware *17, December 11-15, 2017, Las Vegas, NV, USA

References

[1]

[2]

[3]
[4]
[5]

[6

=

[7

—

[8

=

[9

—

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

I. E. Akkus and A. Goel. 2010. Data recovery for web applications.
In Proceedings of the 40th IEEE/IFIP International Conference on
Dependable Systems and Networks. 81-90.

P. Ammann, S. Jajodia, and P. Liu. 2002. Recovery from malicious
transactions. IEEE Transactions on Knowledge and Data Engineering
14,5 (2002), 1167-1185.

D. J. Barrett. 2008. MediaWiki. O’Reilly.

A. Brazell. 2011. WordPress Bible. John Wiley and Sons.

A. Brown, L. Chung, W. Kakes, C. Ling, and D. Patterson. 2004. Expe-
rience with evaluating human-assisted recovery processes. In Proceed-
ings of the 34th IEEE/IFIP International Conference on Dependable
Systems and Networks. 405—410.

A. Brown and D. Patterson. 2003. Undo for Operators: Building an Un-
doable E-mail Store. In Proceedings of the USENIX Annual Technical
Conference. 1-14.

R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich. 2011. Intru-
sion recovery for database-backed web applications. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles. 101-114.
R. Chandra, T. Kim, and N. Zeldovich. 2013. Asynchronous intrusion
recovery for interconnected web services. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles. 213-227.

T. Chiueh and D. Pilania. 2005. Design, implementation, and evaluation
of a repairable database management system. In Proceedings of the
21st IEEE International Conference on Data Engineering. 1024—1035.
E. Ciurana. 2009. Developing with Google App Engine. APress.

B. Cohen. 2013. PaaS: new opportunities for cloud application devel-
opment. Computer 46,9 (2013), 97-100.

H. Garcia-Molina, J. Ullman, and J. Widom. 2008. Database Systems:
The Complete Book (2nd ed.). Pearson.

M. Gegick, E. Isakson, and L. Williams. 2006. An early testing and
defense web application framework for malicious input attacks. In
ISSRE Supplementary Conference Proceedings.

A. Goel, K. Po, K. Farhadi, Z. Li, and E. De Lara. 2005. The Taser
intrusion recovery system. In ACM SIGOPS Operating Systems Review,
Vol. 39. 163-176.

W. G. Halfond, J. Viegas, and A. Orso. 2006. A classification of SQL-
injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering. 13-15.

E. H. Halili. 2008. Apache JMeter: A practical beginner’s guide to
automated testing and performance measurement for your websites.
Packt Publishing Ltd.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD Explorations Newsletter 11, 1 (2009), 10-18.

A. Heydon and M. Najork. 1999. Mercator: A scalable, extensible web
crawler. World Wide Web 2, 4 (1999), 219-229.

K. L. Ingham and H. Inoue. 2007. Comparing anomaly detection tech-
niques for HTTP. In Proceedings of the 10th International Conference
on Recent Advances in Intrusion Detection. 42—62.

T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. 2010. Intrusion
Recovery Using Selective Re-execution. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation.
89-104.

H. F. Korth, E. Levy, and A. Silberschatz. 1990. A Formal Approach to
Recovery by Compensating Transactions. In Proceedings of the 16th
International Conference on Very Large Data Bases. 95-106.

S. B. Kotsiantis. 2007. Supervised Machine Learning: A Review of
Classification Techniques. In Proceedings of the 2007 Conference on
Emerging Artificial Intelligence Applications in Computer Engineering:
Real Word Al Systems with Applications in eHealth, HCI, Information
Retrieval and Pervasive Technologies. 3-24.

C. Kruegel, G. Vigna, and W. Robertson. 2005. A multi-model approach
to the detection of web-based attacks. Computer Networks 48, 5 (2005),

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

(34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

717-738.

P. A. Larson, J. Goldstein, and J. Zhou. Mtcache: Transparent mid-tier
database caching in SQL server. In Data Engineering, 2004. Proceed-
ings. 20th International Conference on. 177-188.

LimeSurvey. 2017. An open source survey tool. (2017).
https://www.limesurvey.org.

P. Liu, J. Jing, P. Luenam, Y. Wang, L. Li, and S. Ingsriswang. 2004. The
design and implementation of a self-healing database system. Journal
of Intelligent Information Systems 23, 3 (2004), 247-269.

Q. Luo and J. F. Naughton. 2001. Form-based proxy caching for
database-backed web sites. In Proceedings of the 27th International
Conference on Very Large Data Bases. 191-200.

D. Matos and M. Correia. 2016. NoSQL Undo: Recovering NoSQL
Databases by Undoing Operations. In Proceedings of the 15th IEEE
International Symposium on Network Computing and Applications.

P. Mell and T. Grance. 2011. The NIST Definition of Cloud Computing.
National Institute of Standards and Technology (2011).

D. Nascimento and M. Correia. 2015. Shuttle: Intrusion Recovery for
PaaS. In Proceedings of the 35th IEEE International Conference on
Distributed Computing Systems. 653—663.

G. Nascimento and M. Correia. 2011. Anomaly-based intrusion detec-
tion in software as a service. In IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops.

D. Oliveira, J. R. Crandall, G. Wassermann, S. Ye, S. F. Wu, Z. Su,
and F. T. Chong. 2008. Bezoar: Automated virtual machine-based full-
system recovery from control-flow hijacking attacks. In Proceedings of
the IEEE Network Operations and Management Symposium. 121-128.
M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. 2008.
Amazon S3 for science grids: a viable solution?. In Proceedings of
the International Workshop on Data-Aware Distributed Computing.
55-64.

R. Peinl, F. Holzschuher, and F. Pfitzer. 2016. Docker Cluster Manage-
ment for the Cloud — Survey Results and Own Solution. Journal of
Grid Computing (2016), 1-18.

S. Pousty and K. Miller. 2014.
O’Reilly.

W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer. 2006. Using
generalization and characterization techniques in the anomaly-based
detection of web attacks. In Proceedings of the 13th Symposium on
Network and Distributed System Security.

M. Safronov and J. Winesett. 2014. Web Application Development with
Yii 2 and PHP. Packt Publishing Ltd.

Z. Su and G. Wassermann. 2006. The essence of command injection
attacks in web applications. In Proceedings of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles Of Programming Languages.

L. M. Vaquero, L. Rodero-Merino, and Ra. Buyya. 2011. Dynami-
cally scaling applications in the cloud. ACM SIGCOMM Computer
Communication Review 41, 1 (2011), 45-52.

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. 2008.
A break in the clouds: towards a cloud definition. ACM SIGCOMM
Computer Communication Review 39, 1 (2008), 50-55.

J. Varia and S. Mathew. 2014. Overview of Amazon Web Services.
Amazon Web Services (2014).

G. Vigna, F. Valeur, D. Balzarotti, W. Robertson, C. Kruegel, and E.
Kirda. 2009. Reducing errors in the anomaly-based detection of web-
based attacks through the combined analysis of web requests and SQL
queries. Journal of Computer Security 17, 3 (2009), 305-329.

C. D. Weissman and S. Bobrowski. 2009. The Design of the Force.com
Multitenant Internet Application Development Platform. In Proceed-
ings of the 2009 ACM SIGMOD International Conference on Manage-
ment of Data. 889—-896.

J. Williams and D. Wichers. 2013. OWASP Top 10 - The Ten Most
Critical Web Application Security Risks. Technical Report. OWASP
Foundation.

Getting started with OpenShift.

	Abstract
	1 Introduction
	2 Platform as a Service
	3 Rectify
	3.1 System Model
	3.2 Threat Model
	3.3 System Architecture

	4 Rectify Learning Phase
	5 Two-Step Classification
	5.1 Step 1 - Signature Matching
	5.2 Step 2 - DB Statements Matching
	5.3 Dealing with SQL Injection

	6 Recovery with Rectify
	7 Implementation
	7.1 Rectify
	7.2 Deployment in a PaaS

	8 Experimental Evaluation
	8.1 Performance Overhead
	8.2 Space Overhead
	8.3 Total Time to Recover
	8.4 Accuracy of the Classification Algorithms
	8.5 Identifying SQL Injection Statements

	9 Related Work
	10 Conclusion
	References

