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ABSTRACT Microservice architectures allow complex applications to be developed as a collection of
loosely coupled components. The heterogeneous architecture of these applications makes the process of
recovering from intrusions especially complex, error-prone, and time-consuming. Although there are several
recovery mechanisms for monolithic applications, applying such mechanisms in microservices would not
work due to the distribution of the components, the different technologies used by each service, and their
scale. Moreover, it can be difficult to trace the services affected by an intrusion and which actions to
revert. We propose µVerum, a framework for recovering microservices from intrusions that corrupt the
application state. Our approach allows recovery of large-scale microservice applications by logging user
requests and the operations that are propagated through several microservices. When a system administrator
detects a faulty request, µVerum can execute compensating operations in each of the affected microservices.
We implemented, evaluated, and made the code of µVerum available. Our experiments show that µVerum
is able to revert the effects in an intrusion in one second while the application is running.

INDEX TERMS Microservices, cloud computing, intrusion recovery.

I. INTRODUCTION
The development of complex web applications has shifted
from the traditional monolithic architecture to a distributed
architecture that allows developers to organize in small teams,
each one responsible for one self-contained component (or
small set of components) of the application, and/or simply
to reuse existing components. Each component is called a
microservice [1], [2], [3], [4], [5] and communicates with
other microservices through network interfaces [6].
Microservice applications rely on network communication

and, as such, require isolation mechanisms, such as firewalls.
Despite the best protection efforts, malicious users may still
be able to bypass security, for example, by exploiting a
misconfiguration or a previously unknown bug [7], leading
to an intrusion. When such an attack occurs, it can corrupt
the state of microservices, i.e., modify data for the benefit of
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the attacker. Moreover, its effects will tend to propagate to
other microservices. Using the built-in rollback mechanism
of database management systems is not an option because
these mechanisms aim to revert a database transaction that
did not complete successfuly. This is not the case of an intru-
sion in a microservices application in which the malicious
operation is an HTTP request that was completely executed,
meaning that any database transaction associated with it was
also completely executed and cannot be rollbacked. Another
approach would be to revert the state of the application to a
previous point in time prior to the attack (a checkpoint) and
continue execution from that point forward [8]. However, this
approach has some drawbacks: it requires consecutive and
consistent checkpoints of the state and synchronization across
multiple machines, which may be unfeasible in microser-
vices; the application must be offline during recovery; and
any legitimate operation after the attack is lost.

There is previous work on intrusion recovery for stor-
age and databases [9], [10], [11], [12], [13], [14], [15], for
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monolithic web applications [16], [17], [18] and for other
applications [10], [11], [19], [20]. Each of these intrusion
recovery systems was designed for recovering intrusions on a
specific kind of system (databases, web applications, etc.).
It is not possible to use these systems with a microservice
application for these reasons:

• Each microservice may be written in a different
programming language and may use a different
kind of database (SQL, NoSQL). This heterogene-
ity may require a different recovery scheme for each
microservice;

• As opposed to a monolithic application, in which a
user interaction generates a single HTTP request,1 in
a microservice application, a user interaction generates
multiple HTTP requests across several microservices.
This correlation of HTTP requests and database state-
ments is necessary in order to coordinate recovery;

• Some of the existing works require the application to
be temporarily unavailable while recovery is carried
out [10], [11], [18], [19], [21], [22], [23]. In a microser-
vice application composed of hundreds of microser-
vices, having to shut down the entire application is
complex, time-consuming, and can result in significant
monetary costs for the organization.

We present µVerum, a novel framework for allowing
microservice applications to recover from intrusions with-
out being shut down during recovery. µVerum recovers the
affected services by executing compensating operations [24]
that undo the effects of intrusions while preserving the valid
data recorded in the system.µVerum assumes a system archi-
tecture with the components that can be found in typical
microservice applications, e.g., routers and a discovery ser-
vice [25]. Developers can setup µVerum progressively in a
subset of microservices and gradually extend it to the entire
application.

The malicious operations to revert can be identified by
the administrator of the application using the µVerum search
engine or an intrusion detection system (IDS) [26], [27], [28],
[29], [30], [31], [32]. It is possible to combine µVerum with
an IDS to reduce recovery time; however, we do not discuss
intrusion detection in detail, as it has been widely studied
for decades and is mostly orthogonal to intrusion recovery.
We also do not consider the general problem of protecting
microservice applications of intrusions, something that has
been studied before [33], [34] and that is also orthogonal to
intrusion recovery.

We evaluated µVerum by performing experiments with
two open-source microservice applications: SockShop [35]
and Piggy Metrics [36]. Our experiments show that µVerum
affects the performance of the application by less than 14%
with asynchronous logging, which can be further reduced
by scaling the agents of the most accessed microservices.

1Although nowadays it is more prevalent to use the HTTPS protocol,
in this paper, for simplicity, we refer to the requests of the HTTP and HTTPS
protocols as HTTP requests.

µVerum has shown to be capable of recovering faulty
requests while maintaining the availability of the application.

This paper provides the following contributions: a novel
framework for the development of microservice applications
that allows practical intrusion recovery with consistency
guarantees; a prototype of the recovery systemµVerum 2; and
an experimental evaluation with real-world applications.

The paper is structured as follows: Section II explains the
microservices approach, Section III discusses the problem
of the dependency graph, Section IV presents the µVerum
approach, Section V describes the experiments we per-
formed, Section VI compares µVerum with the state-of-the-
art, finally, Section VII concludes the paper.

II. MICROSERVICE APPLICATIONS
The microservice architecture allows software systems to be
developed as a set of small, independent, and self-contained
services. Each service can be deployed in a specific execu-
tion environment on a different physical infrastructure and
developed in its own programming language. Microservices
communicate using a RESTful (Representational State Trans-
fer) [6] or RPC-based API [1]. In this way, services can
be developed by independent teams that only share APIs
among them. This gives many benefits to the implementation
of complex business applications, as developers can adopt a
divide-and-conquer approach and add new features without
the need of redeploying the entire application.

A. MICROSERVICE API
A microservice API is provided by a server to clients or
consumers. It is assumed that the server and clients are dis-
tributed and that the API is invoked through the network.
There are different types of interfaces; some rely on a formal
definition of the available functions enforcing the consumer
of the service to use the same technology as the server (tight
coupling), whereas others are more open, allowing different
technologies to be used (loose coupling). Some examples of
technologies used by microservices are Java RMI [37],.NET
Remoting [38], SOAP [39], REST [6] and gRPC [40]. AnAPI
of a service can be synchronous if the consumer of the service
blocks until a response is returned, or asynchronous if the
consumer proceeds with computation without waiting for a
response from the provider.

B. ARCHITECTURE
The architecture of a microservices application can differ.
Some applications use routers to guide traffic to the corre-
sponding services [25], [36], others use a central message bus
where requests are published by clients and then consumed
by the corresponding servers [41], and some use a hybrid
approach [35]. To deal with these alternatives, in most of the
paper, we consider what we believe is the most commonly
adopted architecture – orchestration – and in Section IV-H

2Source code available at: https://github.com/davidmatos/uVerum
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FIGURE 1. Common architecture of a microservices application and flow
of processing a request.

we discuss the changes necessary for the main alternative –
choreography.

The microservices orchestration architecture we consider
is inspired by Netflix’s architecture [25], [42] (Figure 1).
We have chosen it given the contribution it has had in the
development of systems to support microservice applications,
such as Zuul [43], Eureka [44] and Ribbon [25].
Next, we present the main components of the architecture:

HTTP server, router, discovery service, and microservices.
The HTTP server is the only component of the appli-

cation that must be publicly available to users. Typically,
it is deployed in the DMZ (demilitarized zone, the perimeter
network that is located between an organization’s internal
network and the external network) of the network and serves
different types of users of the application (web browser,
mobile devices, and other applications). This server is state-
less, allowing it to be replicated, while having a load balancer
coordinating the distribution of requests. It is also possible to
deploy cache systems that optimize traffic alongside HTTP
servers. For simplicity, we assume that there is only one
HTTP server that serves clients and interacts with the APIs
provided by the microservices.

The router forwards requests to the corresponding ser-
vices, translating HTTP requests to the server into service
requests. The router can be replicated to cope with traffic.
Routers are useful for modifying or verifying requests on the
fly using filters. This allows developers to incorporate meta-
data in requests or to perform integrity checks and encrypt
data.

The discovery service is responsible for keeping a record of
the microservices addresses in the network. They translate a
service name into an address when the router does not know
it. They may also provide fault detection alerts so that the
router knows that the service is not available. The use of
discovery services is encouraged [1], [45].

The microservices themselves are self-contained. They
provide APIs for consumers and communicate over the net-
work. The consumers of the microservices can either be the

routers that are forwarding requests from the HTTP server
or other microservices. We will assume that services are
reachable by any service.

C. FLOW OF A REQUEST
A user request passes through the different components of
the application before a response is returned to the user.
In Figure 1, when a request reaches the application, it is
handled by an HTTP server with a public IP. This server will
redirect the request to a router, which in turn will generate a
service request. It may first consult with the discovery service
to translate the address of the service to an IP address. Once
a microservice receives a request, it can then generate other
requests.

More specifically, the flow goes this way:
(1) a user issues a request using aweb ormobile application

and that request reaches the HTTP server; (2) if the HTTP
request corresponds to a service, then the server will forward
it to the router; (3) (optional) if the router does not know
the IP address of the corresponding microservice, it will
first query the discovery service, otherwise it will contact
the microservice directly; (4) the request reaches a front-end
microservice responsible for dealing with application level
requests; (5) the front-end microservice may contact other
back-end microservice or return a response to the router;
(6) the router forwards this response to the HTTP server;
(7) the HTTP server sends an HTTP response to the client
that issued the initial request.

III. THE DEPENDENCY GRAPH
The dependency graph is a tree graph, i.e., an undirected
graph in which any two nodes are connected by a single
edge, that describes the execution of a user’s request in the
microservice application. This graph is similar to a stack-
trace [46] or stacktraceback [47] which are tools that detail
the stack frames that are active during the execution of a
program. These tools are commonly used to debug faulty
code, since they allow developers to navigate through the
execution flow of erroneous code and to reason about what
caused the program to crash.

µVerum traces the user’s request from the moment it
reaches the application (from the HTTP servers in the form of
an HTTP request) through every microservice it invokes until
it leaves the application (in the HTTP servers in the form of
an HTTP response).

The elements of the dependency graph are:

• root: the user’s request, i.e., theHTTP request that comes
from outside of the application and reaches the HTTP
servers;

• nodes: microservice operations that are directly or
indirectly executed by the user’s request. The same
microservice operation can be present in several nodes,
e.g., if a user’s request aims to delete two files the same
deleteFile operation can be executed twice, this will
result in two nodes with the deleteOperation;
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• edges: describe the invocation of an operation. For
example, the edge (x, y) means that the microservice
operations x executed the microservice operation y.

A. BUILDING THE DEPENDENCY GRAPH
To build the dependency graph, it is necessary to collect infor-
mation about the user’s requests and the microservice oper-
ations they executed. For each executed operation, µVerum
collects the microservice operation that executed it, creating
a pair (operation x, operation y). The values x and y are
unique IDs that unmistakably identify every executed oper-
ation in the application. These pairs are stored as is, in a log
(µVerum log), since there is no need to calculate a graph
for every user’s request since the graph is only used for
recovery.

µVerum generates the dependency graph for a request
when the administrator selects that request to be reverted,
e.g., because the request was malicious. µVerum does this
by selecting the malicious HTTP request in the log, the only
pair that has the first member empty and the second one has
the ID of the malicious HTTP request (null, malicious HTTP
request). Then it collects every pair in the log with the same
request ID in the first member, in other words, every request
that was issued by the malicious HTTP request (every pair
(malicious HTTP request, *)). Then, for every collected pair,
this process is repeated recursively until there are no more
microservice operations that match (operation, *).

B. RECOVERY WITH THE DEPENDENCY GRAPH
The dependency graph guides the recovery process. When
the administrator selects an HTTP request to recover from,
µVerum calculates the dependency graph of that request and,
starting from the root of the graph, it executes the com-
pensating operations in each affected microservice. By fol-
lowing the dependency graph, it is ensured that every
affected microservice is recovered from the undesired HTTP
request.

The recovery process takes time and is done while the
application is available to its users, so users may experi-
ence some inconsistencies. Furthermore, while recovery is
being performed, it is not desirable to allow users to modify
or access the data that is being recovered. For example,
if an attacker manages to modify the price of an item in an
e-commerce application, we do not want any user to be able to
purchase that item at the wrong price. To avoid this, µVerum
allows developers to limit access to certain operations while
the application is recovered. This is done in the form of invari-
ants, and their usage is explained in detail in Section IV-G

IV. THE µVerum APPROACH
The µVerum approach requires the coordination of several
components and their integration with the application code,
following a set of guidelines. As long as the application
follows the µVerum guidelines then it will be possible to
trace the effects of intrusions and later recover from their
effects.

A. SYSTEM MODEL
µVerum recovers from intrusions that affect applications
composed of a set of microservices (Figure 1). These appli-
cations are available to users with limited privileges, and
maintained by system administrators with higher privileges.
Users interact with web servers that redirect their requests to a
subset of microservices. User requests are encoded as HTTP
requests, which in turn generate microservice requests. More
rigorously, we make the following assumptions:

• S1: the API is RESTful;
• S2: user requests reach the application’s microservices
from web servers;

• S3: users cannot access the microservices directly,
as they are not publicly available;

• S4: only microservice requests intercepted by µVerum
agents are recovered;

• S5: the HTTP PATCH method [48] is available to use
for the recovery process of µVerum (this method is
rarely used and its use allows a normalized way to fix
a previous request);

• S6: the microservices can be written in different pro-
gramming languages and use different types of data
repositories.

B. THREAT MODEL
We define an intrusion as a malicious request that leads an
application to a faulty state. When this happens, there are
two challenges in terms of recovery: first, it is necessary to
detect the trail of the faulty operation, that is, the subset of
microservices that were affected by the malicious request and
need to be corrected; and second, it is necessary to define
which compensating actions should be executed to lead the
system back to the valid state. At the end of the recovery, the
state of the application should be the same as if the malicious
request had never occurred.

Intrusions can occur when a malicious user exploits a
vulnerability in the application front-end (top of Figure 1),
e.g., a SQL injection vulnerability [49] or an authentication
flaw [7], [50]. Accidental operations that corrupt the state
of the application are also taken under the term ‘‘intru-
sion’’, as their effects can also be fixed using µVerum. More
specifically, an intrusion is the effect of an HTTP request
that reaches the application which, in turn, generates several
microservice operations causing unwanted changes to the
state of the application. We assume that there is no other way
for the attacker to cause an intrusion.

The threat model is as follows:

• T1: intrusions come from outside the application net-
work and enter the application through the HTTP
servers;

• T2: intrusions cause state modifications to the microser-
vices’ data stores;

• T3: neither the application nor µVerum’s microservices
are compromised or disabled, that is, they are part of the
Trusted Computing Base (TCB) [51].
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With T1 we assume that an attacker does not have access
to the network in which the microservices are running. This
is a reasonable assumption given that most attacks against
web applications come through the front-end [7], [50], [52].
In relation to T2, we focus only on recovering from intrusions
that illegally modified the state of the application. Intrusions
that do not modify the state of the application are not covered
in this work, as there is nothing to recover from them. T3
clarifies that our problem is the recovery of the state of the
application, not protecting services from attacks that modify
their code or configuration.

C. COMPENSATING OPERATIONS
Compensating operations are used to revert the intermediate
state of an incomplete/failed transaction. This approach was
arguably introduced with the Sagas pattern [53]. A saga is
a set of operations that can be interleaved with other opera-
tions. Each operation should be reversible by a compensating
action. This ensures that either every operation in the saga
is executed or that the compensating actions are performed
to revert the incomplete process. This pattern was recently
adapted for microservice applications [54]. µVerum imple-
ments this pattern to perform recovery. To do so, µVerum
requires that every operation that should be reversible has a
compensating operation that reverts its state. The compen-
sating operations can be implemented by the developers of
the application, since they know what actions need to be per-
formed to recover a microservices operations. This gives the
benefit of implementing a more sophisticated compensating
operation that, for example, besides reverting the state from
the attacker’s actions, it also notifies the user that the state
of the application was reverted intentionally. It also reduces
the overall implementation overhead because compensating
operations are also used in the implementation of microser-
vices such as Sagas.

D. SYSTEM ARCHITECTURE
In this section, we describe the architecture of a microser-
vices application extended with the µVerum components
(Figure 2). In the figure, some microservices (those in
red/darker) are wrapped by a µVerum agent that intercepts
the requests so they can be logged. µVerum requires two
databases to keep, respectively, operation logs (µVerum Log
Database) and configuration values (µVerum Config Data).

1) µVerum ADMIN
Admin is a microservice that runs alongside the other
microservices of the application and controls the recovery
process (‘‘µ’’, gray in the figure). It is the only component
of µVerum that is accessed by the administrator. When it is
necessary to recover microservices, this component fetches
the logs and contacts the agents to execute the recovery oper-
ations. It is also throughµVerum admin that the administrator
configures the agents.

FIGURE 2. System architecture of an application adopting the µVerum
approach.

2) µVerum ROUTERS
The routers (dark blue in the figure) add metadata to every
request to allow correlation and ordering of requests. These
metadata consist of a unique serial ID. This request tainting
technique of adding metadata to trace the data flow has been
explored in previous works [55], [56], [57]. With this serial
ID, it is possible to order the HTTP requests that reach
the application (from the HTTP servers) and retrieve every
microservice operation that was executed as a result of that
HTTP request.

3) µVerum LOG
The log is a distributed database in which user requests and
microservice operations are logged. This approach of collect-
ing every log entry of several microservices in the same log
database is a recommended practice for microservice appli-
cations, as it allows the administrator to view and analyze the
application history as a whole rather than as a collection of
parts [1], [58]. Another advantage of using a single log for
every microservice is that it facilitates the task of correlating
every operation that was issued by a user’s request.

4) µVerum AGENTS
Agents are proxies that intercept requests that reach the
microservices. The agents log every HTTP request that
reaches a microservice, regardless of whether the service
is stateless or not. This information allows µVerum to
generate the dependency graph. This process does not
interfere with the microservice operation, since the agent
only intercepts the requests to log them and does not
perform any modifications to them. The agents can be
configured to work synchronously, by forwarding requests
only after they are logged, or asynchronously, by for-
warding the requests immediately and logging them in
background.
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In addition to requests that reach microservices, µVerum
agents also collect the corresponding status codes and
response timestamps. Status codes (e.g., 404 Not Found)
are used to discard failed operations from the log. Times-
tamps will be used to order and correlate the execution
of requests. During recovery, µVerum executes concurrent
requests in parallel to reduce the overall recovery time.
Concurrent requests occur when their execution overlaps.
More formally, two operations o1 and o2 with timestamps
start_tso1 , end_tso1 , start_tso2 and end_tso2 are concurrent
if: start_tso2 ≤ end_tso1 ∧ start_tso1 < end_tso2 .

E. SETTING UP A µVerum APPLICATION
To use µVerum in a microservice application, developers
have to follow a set of guidelines.

First, microservices have to interact with each other exclu-
sively through HTTP using REST APIs. Operations that use
different protocols may exist, but are not traced by µVerum
and, as a result, cannot be undone.

Second, the developers are responsible for implementing
the PATCH method for each operation that may have to be
undone. This is an important aspect of the µVerum approach.
Given the heterogeneous architecture of microservice appli-
cations, only developers can be fully aware of what needs to
be done locally in the microservice to undo an operation and
they should leverage existing local recovery mechanisms.

Third, external operations must be handled differently.
Examples include cloud storage services, social networks,
banking, serverless computing services, and accountability
systems. These operations may require a specific recovery
approach that uses compensating operations made available
by the external service provider.

Fourth, the application shall have an architecture similar
to the one presented in Figure 1, that is, there are routing and
discovery servers that are used to redirect operations through
theµVerum agents and append the required metadata (unique
IDs) to the executed operations.

Fifth, if some operations need to be executed atomically or
in a specific order then it is the responsibility of the developer
to return that information when the PATCH method of an
operation is executed. In this way µVerum knows how to
process these operations without violating the consistency
requirements of the application.

F. INTRUSION RECOVERY WITH µVerum
µVerum logs user requests and microservice operations dur-
ing normal execution. This information is later used to per-
form recovery. In this section, we describe how µVerum logs
requests and operations and how the recovery process works.

1) NORMAL EXECUTION
During normal execution, µVerum routers and µVerum
agents log user requests and microservice operations.
Requests are intercepted and logged without interfering with
the application. For each logged operation, µVerum records
the following information:

• request_id: a unique serial ID assigned when the
request reaches the application;

• start_ts: a timestamp of the moment the operation
was logged;

• end_ts: a timestamp of themoment the response of the
operation was logged;

• service: the address (IP or hostname) of the service;
• sender: the address of the issuer of the request
• method: the HTTP method of the request;
• operation: the payload of the HTTP request.

2) RECOVERY
Recovery is done when the administrator of the application
detects faulty requests and wants to undo their effects on
the affected microservices. When the administrator selects
faulty requests from the log, µVerum presents him with a
list of operations that were executed by the microservices
and will be reverted. This will allow the administrator to
preview what will be recovered. Once the administrator
confirms the recovery, µVerum executes compensating oper-
ations, one per operation, that will revert the effects of the
attack. The compensating operations are invoked by µVerum
using the PATCH verb. All microservices should be running
when the administrator issues the recovery operation, but that
may not be the case, as a set of the microservices that need to
be recovered may be offline. In this case, µVerum schedules
the recovery actions to be executed as soon as possible.

Algorithm 1 describes the procedure to identify and undo
microservice operations given a faulty HTTP request. It takes
as input req (line 1), the log entry with the malicious HTTP
request that the administrator identified. First, it initializes an
empty list to store the undo operations that failed (line 2). This
will happen if somemicroservices happen to be offline during
the recovery process and µVerum needs to postpone the
undo operation. Then it collects every microservice operation
that was caused by req (line 4). With these operations, it is
possible to build the dependency graph (line 5) that illustrates
how a user request relates to the executed operations inside
the microservice application. This graph is created using the
service and sender fields of each log entry. Every two
operations that have a service equal to a sender are
connected in the graph. Then this graph is presented to the
administrator (line 6) for confirmation (line 7) to undo every
operation in the graph. If confirmed, the recovery process
starts at the root node of the graph (lines 8 and 9).

The undo function is recursive (lines 11 to 31). It takes as
input a node from the graph. Then, it gets the service address
from the log entry (line 12) and probes for invariants (line 13).
Invariants can be of two forms: ORDER (lines 14 to 16) or
ATOMIC (lines 17 to 19). These special cases will be treated
by the appropriate functions presented in algorithms 2 and 3.
If there are no invariants, the algorithm proceeds to execute
the PATCH function of this service (line 21). This PATCH
function was previously implemented by the developers of
the application, and it will undo the effects of the execution
of the operation from the state of the microservice. If it
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Algorithm 1 Recovery Without Order or Atomicity Require-
ments
1: INPUT req // malicious HTTP request
2: pending←⊥
3: request_id ← req.request_id
4: log_entries← get_log_entries(request_id)
5: graph← trace_graph(log_entries)
6: print(graph)
7: if admin_confirms_recovery() then
8: root ← graph.get_root()
9: UNDO(root)

10: end if

11: function undo(node)
12: service← node.service
13: (invariant, nodes) ←

invariant(service.operation,PATCH )
14: if invariant == ORDER then
15: UNDO_ORDERED(0, nodes,PREPARE)
16: end if
17: if invariant == ATOMIC then
18: UNDO_ATOMIC(nodes)
19: end if
20: if invariant == NULL then
21: result ← execute(service, service.operation,PATCH )
22: if result.STATUS ̸= SUCCESS then
23: pending← pending ∪ node
24: end if
25: end if
26: children← node.children
27: for child ∈ children do
28: UNDO(child)
29: end for
30: print(pending)
31: end function

failed to execute the PATCH method then it will be stored in
the pending list to be re-executed later. Then, the algorithm
fetches the next nodes in the graph, children, and for each
one of them it recursively invokes the undo function (lines 27
to 29). Finally, the list of services that failed to be executed
is presented to the administrator (line 30) and the function
terminates. This pending list will be used by a background
task that runs periodically to complete the recovery operation.
In fact, the first time µVerum connects to a service, it will
execute all pending operations before forwarding any new
requests.

G. RECOVERY CONSISTENCY
To avoid creating an inconsistent state after recovery, the
developer may force µVerum to respect the order of oper-
ations. This enforcement is defined by the developers in
the PATCH methods by invariants, i.e., conditions that
µVerum ensure that are not broken during recovery. The
two kinds of invariants that will be respected by µVerum
during recovery are ordering and atomicity, defined as
follows:
• Ordering invariant: any operation o that takes as a pre-
decessor another operation o′ is always executed after o′

was completely and successfully executed.

• Atomicity invariant 1: if an atomic operation o in a set of
operations Sa was completed and executed successfully,
then any other operation in Sa was also completely and
successfully executed.

• Atomicity invariant 2: if an atomic operation o in a set
of operations Sa fails to be executed, then every other
operation in Sa is not executed or rolled back.

1) ORDERING INVARIANTS
Ordering invariants are applied to operations that require
a specific order to be executed. For example, an operation
called transfer, which debits a user account balance and
credits another user account, should execute these two steps
in this exact order: first the debit, then the credit. In this way,
if the account being debited does not have enough funds, then
the transfer should be canceled. Switching between these two
steps can result in money being ‘‘created’’ for a moment.
The PATCH method of such an operation should return such
ordering requirements. This way, whenµVerum is recovering
the PATCH of transfer it knows that it should invoke debit
before credit.

Ordering invariants are expressed as an ordered list,
ORDER, of microservice operations. This list will be used
by µVerum during a pre-recovery process, during which
µVerum probes every microservice operation for any invari-
ants. Once µVerum consulted every operation in the graph,
it will order the operations that need to be executed based on
theORDER lists it collected. Following the previous example,
the PATCH method of the transfer operation should return
ORDER← {debit, credit}. With this list,µVerumwill inves-
tigate the PATCH methods of the debit and credit operations
before starting recovery. If either of these two operations
have other ordering dependencies, then µVerum will take
such dependencies and join them in the list of operations to
be executed in recovery. After examining every operation,
µVerum can finally proceed to the execution of compensating
operations. The invariant for this example would be expressed
as follows:

order:{ debit(amount), credit(amount) }

Algorithm 2 describes the undo_ordered function and how
it performs recovery, preserving the execution order of the
requests. This function takes as input: an index value pointing
to the current node in the list, index, an ordered list with
the services that need to be recovered by the correct order,
ordered_queue, and a flag indicating in which phase the
algorithm is, phase. First, the algorithm extracts from the list
the current service that should be executed (line 2). Then, the
algorithm follows one of two branches. In the prepare branch
(lines 3 to 13), µVerum will execute the services in the queue
until it reaches the end of the graph. Each service will be
executed (line 4) with the parameter phase set to PREPARE.
This is just to fill the queue with every invariant from the
services. If any of the services fail to execute in the prepare
phase (lines 5 to 7) then the recovery is aborted. This happens
because if µVerum cannot determine the order in which the
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Algorithm 2 Recovery With Ordering Requirements
1: function UNDO_ORDERED(index, queue, phase)
2: service← queue[index].service

3: if phase == PREPARE then
4: result ← execute(service,PATCH ,PREPARE)
5: if result.STATUS ̸= SUCCESS then
6: abort()
7: end if
8: children← queue[index].children
9: for child ∈ children do

10: index ← child .index
11: queue ← UNDO_ORDERED

(index, queue,PREPARE)
12: end for
13: end if

14: if phase == COMMIT then
15: block_services(queue)
16: for node ∈ queue do
17: service← node.service
18: result ← execute(service.operation,PATCH )
19: if result.STATUS ̸= SUCCESS then
20: rollback(queue)
21: abort()
22: end if
23: end for
24: resume_services(queue)
25: end if
26: end function

services will be executed, then it cannot guarantee that the
invariants are not violated. If the operation preparation is
successful, then it will fetch the next nodes from the graph
(line 8). For each of the next nodes in the graph, the function
undo_ordered will be invoked recursively (lines 9 to 12)
until it reaches the end of the graph, then it will perform the
recursive invocation with the variable phase set to COMMIT.
In commit (lines 14 to 25), the services are executed in

the given order. This is done by isolating the services from
the user’s request (line 15). This does not mean that the
requests are discarded, instead they are stored in a list to be
executed after the recovery finishes. The algorithm proceeds
by iterating through the queue (line 16) and each of the
services is executed synchronously (lines 17 and 18), that is,
each service starts execution after the previous one has ended.
If any execution fails, then a rollback is issued (line 20) and
the recovery process is aborted (line 21). At the end of the
function (line 24) the blocked services are resumed.
Algorithm 2 follows essentially a 2-phase commit pattern.

This algorithmmight be triviallymodified to follow a 3-phase
commit pattern to improve its resilience to certain (unlikely)
fault scenarios at the cost of higher time complexity in normal
execution.

2) ATOMICITY INVARIANTS
When a developer enforces the atomicity of an operation,
it specifies a list of operations that have atomicity require-
ments, i.e., either all of them are executed or none of them

Algorithm 3 Recovery With Atomic Requirements
1: function undo_atomic(atomic_bag)
2: block_services(atomic_bag)
3: for node ∈ atomic_bag do
4: service← node.service
5: callback ← UPON_SERVICE_RESULT
6: execute_async(service.operation,PATCH , callback)
7: end for
8: end function

9: function upon_service_result(service, result)
10: atomic_bag← atomic_bag ∼ service
11: if atomic_bag == ⊥ then
12: resume_services()
13: end if
14: if result.STATUS ̸= SUCCESS then
15: rollback()
16: end if
17: end function

is. During recovery µVerum ensures that every service in the
atomicity list executed the recovery operation. If any of the
operations fails to run, then recovery must be aborted. For
example, an operation that updates the access key of a user
requires two operations to be executed: a revocation of the
current access key and the generation of the new one. In this
example, there is no intermediate state in which the appli-
cation generated a new key without revoking the previous
one. The invariant of this example would be given by the
microservice that triggers both operations, and it would be
described as follows:

atomic:{ revoke_key(user),
grant_new_key(user) }

Algorithm 3 describes how µVerum recovers services that
have an atomic invariant. Function undo_atomic (lines 1 to 8)
iterates through the bag with the services. After blocking
them from user requests (line 2), it will asynchronously exe-
cute the PATCH method of each service (line 6). When a
service finishes executing the PATCH method (lines 9 to 17),
it is removed from the bag (line 10). When the bag is empty
(line 11), µVerum resumes the services that were blocked at
the beginning of recovery (line 12). When a service fails to
execute the PATCH method (line 14), a rollback is executed
to revert the partially recovered services (line 15).

H. µVerum FOR THE CHOREOGRAPHY PATTERN
Now we discuss the changes for applications that use the
choreography pattern, in which microservices interact with
each other through a message bus that allows publishing and
subscription to operations.

In relation to logging, the µVerum agent provides the
means of intercepting and logging operations. For the alterna-
tive architecture, this agent can be coupled with the message
bus in such a way that any operation that is invoked is logged.

For recovery, µVerum performs compensating operations
that undo the effects of the intrusion. For the alternative
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TABLE 1. Experimental setup.

architecture, the compensating operations are published in
the message bus. The main challenge with this approach is to
ensure consistency for operations that have ordering or atom-
icity requirements.µVerum admin cannot directly coordinate
the recovery process, instead it needs the message bus to act
as an intermediate in the process. This can be accomplished
using message topics that are specific to recovery and are
subscribed to by all services. More specifically, the algorithm
works as follows:

1) µVerum admin publishes a message with a topic name
composed of the name of each of the affected services
concatenated with the tag RECOVERY;

2) each affected service reads the RECOVERY message
and publishes another message that has one of the fol-
lowing types: (a)RECOVERED, meaning that the patch
was successfully executed and recovery is completed;
or (b) ORDERING or ATOMICITY, containing the list
of operations that need to be executed;

3) for each of the services in the list, µVerum admin
publishes a message with a topic equal to the name of
the patchmethod’s name. After amicroservice executes
the patchmethod, it publishesRECOVERED so that the
µVerum admin can proceed to the next microservice.

For this to work, each microservice must be implemented
so that it prioritizes RECOVERY operations above any other
operation. Every microservice is also required to publish
RECOVERED messages once recovery is complete. In this
way, µVerum is able to coordinate the recovery process
through the message bus.

V. EXPERIMENTAL EVALUATION
With our experiments, we want to answer these questions:
(A) Is the µVerum approach capable of recovering from
intrusions in real-world applications? (B) What is the cost,
in terms of performance, of using the µVerum agents to log
every operation? (C) How long does it take to assess damage
and undo unintended actions?

We performed the experiments using Google Compute
Engine [59], which allowed us to deploy each microser-
vice on a single and isolated virtual machine. This way we
are able to recreate an environment similar to a real-world
deployment. We choose the n1-standard-2 flavor for every
virtual machine, which provides 2 CPU cores with 7.5GB of
memory. Table 1 summarises the setup used in the different
experiments.

A. µVerum IMPLEMENTATION
µVerum was implemented in Java, since most of the compo-
nents were alsowritten in Java or provide a JavaAPI.µVerum
admin is a Spring Boot [60] microservice. The µVerum
agent is a Java program that uses Little Shoot Proxy [61]
to intercept requests. The log is a MongoDB [62] database.
The router is a Zuul [43] instance with a special filter that
appends the metadata to the requests. The discovery service
is a non-modified Zookeeper [63] instance. We chose Zuul
and Zookeeper because they are widely used in the industry,
especially for microservice applications.

We evaluated µVerum experimentally with two microser-
vice applications: SockShop [35] and PiggyMetrics [36].
We chose these applications for our use case for the follow-
ing reasons: they are open-source, so they can be used by
anyone who wants to extend µVerum; they follow a system
architecture similar to the one presented in Section IV-D; they
differ in terms of architecture, PiggyMetrics uses an orches-
tration approach, while SockShop has an hybrid architecture
with some components working in orchestration and other
components working in choreography. These characteristics
allow us to evaluate how µVerum works in different types
of applications. Both applications have a significant size:
SockShop is made up of 9 microservices and 6 datastores,
while PiggyMetrics has 6 microservices with 4 databases.
SockShop was developed using Java, Go, and NodeJS. Pig-
gyMetrics was developed with SpringBoot.

In our implementation, the compensating operations
ranged from 6 to 30 lines of code. We consider this length of
code to be short enough for the developers of the application
to write it in a single cycle (sprint) of software development.

B. VALIDITY OF µVerum RECOVERY
µVerum successfully recovers an application if it manages to
undo malicious operations from the state of the microservice
database as if they had never occurred. To evaluate this aspect,
we compare a recovered database with one that was never
attacked. Specifically, we wrote a script that allows us to exe-
cute a diff-like operation between two databases: one that has
the state of the application after it was recovered by µVerum
(database C) and another (database A) that has the state after
the application received the exact same operations except the
ones that are malicious (thus, that were undone in the case
of database C). The script compares all the deterministic val-
ues of each database, meaning that non-deterministic values
generated by the database itself, such as automatic identifiers
and timestamps, are not compared. We are not interested in
comparing non-deterministic values since they are outside
of the control of the application, which cannot be logged
and recovered by µVerum, which only logs application-level
requests.

To create both databases, we executed a workload (work-
load A) with 10,000 requests using the SockShop load test
in database A. Then we created workload B by adding to
workload A an extra percentage of malicious requests. These
malicious requests are similar to the ones in workload A
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FIGURE 3. Performance overhead of µVerum with in different URLs of
SockShop. The results refer to the application without µVerum (orange
bar), the application with µVerum intercepting the requests
asynchronously (blue bar) and with µVerum intercepting the requests
synchronously (green bar).

FIGURE 4. Performance overhead of µVerum in Piggy Metrics. The results
refer to the application without µVerum (orange bar), the application with
µVerum intercepting the requests asynchronously (blue bar) and with
µVerum intercepting the requests synchronously (green bar).

but they are tagged as malicious to be reverted by µVerum.
These malicious requests modify the state of the applica-
tion by executing update operations in the database. The
affected microservices have invariants to ensure that data
integrity is maintained.More specifically, there are one order-
ing invariant and one atomic invariant. Finally, we recovered
database B to produce database C and used our script to
compare it with database A.

We repeated these experiments ten times to recreate dif-
ferent states that allowed us to verify the validity of µVerum
recovery. We started by having two identical workloads of
10,000 valid operations. Then, in each experiment, we added
10% malicious requests. In all experiments µVerum was
able to achieve a state C equivalent to A. This was expected
given that the PATCH methods that we implemented were
tested beforehand, and we validated that they were capable
of reverting any executed operation.

C. PERFORMANCE OVERHEAD
To evaluate the performance overhead of logging opera-
tions with the µVerum agents, we performed a series of
experiments in which we measure the number of requests

TABLE 2. Performance overhead of the different recovery approaches.
The overhead is in percentage range and it refers to the decreased
performance in terms of throughput (T) or additional latency (L) for each
request.

per second with and without having µVerum logging the
operations. To do so, we use the SockShop loadtest scripts
configured to issue 10,000 requests simulating 5 concurrent
users. First, we tested with SockShop, then we repeated the
same workloads with µVerum logging the requests. We per-
formed the tests using both the log methods of µVerum
(asynchronous and synchronous).

Figure 3 shows the performance in requests per sec-
ond of SockShop, with and without µVerum. The overhead
of µVerum is around 3.7% for asynchronous logging and
6.4% for synchronous logging. Some endpoints (details.html)
reveal lower overheads. This happens because these end-
points are not being logged, and the caching mechanisms of
the applications allow the resource to be presented to the user
without executing microservice operations.

In addition to SockShop, we also evaluated the perfor-
mance overhead of using µVerum to log every user request
in Piggy Metrics. Since Piggy Metrics does not have a load
test tool, we created a test case with Apache JMeter [64].
JMeter allows us to create a workload in which a set of
URLs are randomly invoked. In our test case, JMeter executed
the 11 URLs available by the Piggy Metrics application until
it reached 10,000 executions. Then we calculated the average
operations per second of each of the URLs. The results,
shown in Figure 4, show that there is a performance penalty
for using µVerum to log every user operation that varies
from 1.8% to 13.3% for asynchronous logging and from
11.2% to 31.1% for synchronous logging. The overhead of
using µVerum in PiggyMetrics is higher, compared to using
µVerum in SockShop, because we used a different load test
tool. In Piggy Metrics, since we did not have an embedded
load testing tool, we used JMeter, which allowed us to create a
heavier workload than the one used in SockShop. Read oper-
ations that do not need to be logged (issued using the GET
method) present lower overheads than the ones that modify
the state of the microservice (PUT and POST methods). The
overall results can be reduced by improving the computing
capacities of the virtual machines that host the microservices.
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FIGURE 5. Total time to recover with atomic invariants changing the
number of intrusions to undo.

FIGURE 6. Total time to recover with order invariants changing the
number of intrusions to undo.

Table 2 presents a comparison of various recovery mech-
anisms for different recovery systems, including a cloud file
system, databases, web applications, and µVerum. The table
shows that the overhead of recovery mechanisms can vary
widely across the different target systems. In the table the per-
formance overhead values were calculated either by measur-
ing the extra time it takes to execute operations (latency - L)
or reduction in the number of operations executed by sec-
ond (throughput - T). µVerum offers both synchronous and
asynchronous recovery mechanisms, with overheads rang-
ing from 1.8% to 31.1%. In comparison, the other recovery
mechanisms for web applications have overheads ranging
from 3.99% to 30.35%. For file systems and databases, the
overheads are relatively lower, ranging from 6% to 26%.

D. MEAN TIME TO RECOVER
Mean Time to Recover (MTTR) is the time that it takes since
the moment the system administrator starts recovery until
every PATCH method is successfully executed. To evaluate
the MTTR we executed recovery in SockShop and reverted
a set of intrusions that ranged from 10 to 100. We repeated
this process 10 times. We performed these experiments with
the two recovery methods of µVerum: with atomic invariants
and with order invariants.

FIGURE 7. Latency of the application before, during and after recovery
with atomic invariants, changing the number of intrusions.

TABLE 3. MTTR of the different recovery approaches.

Figure 5 presents the results for the MTTR with atomic
invariants. The time to recover increases linearly, varying
from 5 seconds (for 10 intrusions) to around 50 seconds
(for 100 intrusions). Undoing a single intrusion would take
0.5 seconds.

Figure 6 presents the MTTR from 10 to 100 intrusions
using order invariants. The MTTR varies linearly from
11 seconds (for 10 intrusions) to 107 seconds (for 100 intru-
sions). We implemented a PATCH method that required
5 operations to be performed in a specific order.

The PATCH method that we implemented executes
6 microservices requests that affected 5 services. The MTTR
varies depending on two factors: the scale of the application
and the complexity of the PATCH method.

In Figure 7 we show the time it takes for a user request to
be processed before, during, and after recovery. We repeated
these tests by varying the number of intrusions from 1 to 10.
During these experiments, we also performed the same load
test described in Section V-C to simulate a real-world appli-
cation with several concurrent users. The peaks in the graph
correspond to when the administrator initiates a recovery
process. Users experience a delay in the application for a
while, but once recovery finishes, the application resumes
normal operation. The latency ranged from around 30 ms
during normal operation to a couple of seconds (from 1 to 5)
during recovery. It is a significant downgrade in performance
but we consider that this is an acceptable cost given the
benefit of reverting an intrusion of the application without
sacrificing the availability. This is the worst case, as the
performance impact of recovery can be eased with request
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TABLE 4. Comparison of the µVerum approach with other intrusion recovery systems.

execution throttling. However, this makes the recovery pro-
cess take longer to complete.

Note that the throughputs and times presented in this
evaluation are necessarily valid only for the microservice
applications that we tested. More complex applications,
or applications with different characteristics, might provide
different results.

Table 3 presents a comparison of the MTTR µVerum with
other recovery mechanisms for different recovery systems.
The table shows that the recovery time varies in the different
recovery systems, which is expected given the heterogeneity
of the different target systems. In the table there are two
columns for the MTTR: batch and unit. The batch refers to
the MTTR a set of operations, while the unit refers to the
MTTR of a single operation. The batch size varies because
each author uses a different size in their own experiments. For
comparison purposes we added the unit column to somehow
compare the different systems.The MTTR in the different
systems varies widely, from 16ms (Aire [12]) to 700s in
NoSQL Undo [9].

VI. RELATED WORK
The problem of intrusion recovery based on the use of log-
ging operations was explored for databases and is covered
in textbooks in the area, e.g., [13]. This work follows a
more recent line of work on recovering databases [14], [15],
operating systems [10], web applications [16], [17], [18] and
other services [11] by assuming an architecture in which
the components of the application are distributed and were
implemented in distinct programming environments.

Undo for Operators implements the ‘‘three R’s’’ model
(Rewind, Repair, Replay. It logs every message in a log
(Timeline Log) with the help of a proxy (Undo Proxy) and
provides a control panel (Undo Manager) that is controlled
using an interface (Control UI) by the system administrator.
The µVerum approach is inspired in some of the components
of Undo for Operators, more specifically, the use of logs to

record user requests, the implementation of a Control UI that
allows the administrator tomonitor and perform recovery, and
the use of proxies to intercept operations.

Warp [67] is a recovery system for web applications.
It works by rolling back a part of the database to a point in
time prior to the intrusion and then applying compensation
operations to correct the state of the database. Warp uses a
browser web browser extension to re-execute HTTP requests.
The µVerum approach differs from Warp in the sense that
it does not roll back the application to recover, and µVerum
agents are used for HTTP requests instead of a browser.

Bezoar [21] is a recovery system that logs file system
operations triggered by a virtual machine that supports the
application. It requires a virtual machine to host the applica-
tion to work. In this systemmodel, in which themicroservices
are deployed in distinct environments, the system administra-
tor may not have control of the virtual machine and therefore
is not able to use Bezoar.

The problem of intrusion recovery for web applications
deployed in PaaS was explored in Shuttle [16]. LikeµVerum,
Shuttle requires the developers of the application to imple-
ment some functionalities to be able to recover the appli-
cation. Shuttle was designed for monolithic applications;
it cannot be used for microservice applications. Another
work that explores intrusion recovery for web applications,
thus with the same limitation, is Rectify [17]. Rectify does
not require software modifications to the application, since
machine learning algorithms are used to find the database
effects of HTTP requests.

Aire [12] is an intrusion recovery system for applications
composed of interconnected web services. Aire works by
propagating repair actions across services to address the
unavailability of some services and ensuring consistency
when not all repair actions have been propagated yet. Like
µVerum, Aire logs operations during normal execution of the
application, and once the administrator marks a request as
malicious, it undoes its effects in the state of the application.
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However, Aire employs a selective reexecution approach to
recover from the intrusion, while µVerum executes compen-
sating operations. Additionally, Aire assumes a systemmodel
in which some web services may be compromised by an
adversary who will try to sabotage the recovery process.

Table 4 compares the µVerum approach with other intru-
sion recovery systems.

VII. CONCLUSION
We propose µVerum, an intrusion recovery approach for
microservice applications in both choreography and orches-
tration architectures. The design, implementation, and eval-
uation of our proposal show that it is possible and practical
to recover from intrusions in microservices, as demonstrated
with experiments using two distinct applications. The effort
to implement the necessary compensating operations for
µVerum is equivalent to implementing the required compen-
sating operations used in sagas transactions. Our results show
that it is possible to have the application available to users
during recovery, at the expense of only a momentary degra-
dation of performance. To maintain data consistency during
and after recovery, we presented two algorithms that allow
developers to define invariants for microservice operations
that have ordering and atomic requirements. This makes it
feasible to have recovery capabilities as soon as possible, and
start delivering value to customers through fast and reliable
intrusion recovery.
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