
Received 25 May 2023, accepted 14 June 2023, date of publication 19 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3287405

Synthesis of Fault-Tolerant Reliable Broadcast
Algorithms With Reinforcement Learning
DIOGO VAZ , (Graduate Student Member, IEEE), DAVID R. MATOS , (Member, IEEE),
MIGUEL L. PARDAL , (Member, IEEE), AND MIGUEL CORREIA , (Senior Member, IEEE)
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1000-029 Lisbon, Portugal

Corresponding author: Diogo Vaz (diogo.vaz@tecnico.ulisboa.pt)

This work was supported by the National Funds through Fundação para a Ciência e a Tecnologia (FCT) under Grant UIDB/50021/2020
(INESC-ID) and Grant 2022.10788.BD.

ABSTRACT Fault-tolerant algorithms, such as Reliable Broadcast, assure the correct operation of modern
distributed systems, even when some of the system nodes fail. However, the development of distributed
algorithms is a manual and complex process, where slight changes in requirements can require a complete
redesign of the algorithm. To automate the process of developing such algorithms, this work presents a
new approach that uses Reinforcement Learning to synthesize correct and efficient fault-tolerant distributed
algorithms. This work shows the first application of the approach on the synthesis of fault-tolerant Reliable
Broadcast algorithms. The presented technique is capable of synthesizing correct and efficient algorithms
with the same performance as others available in the literature as well as a new Byzantine tolerant algorithm,
in only 12, 000 learning episodes. Based on the success of this implementation, we aim, in the future,
to extend this technique to other distributed algorithms such as Consensus.

INDEX TERMS Fault-tolerant distributed algorithms, reliable broadcast, program synthesis, reinforcement
learning, program verification, model-checking.

I. INTRODUCTION
Distributed systems are made of multiple components inter-
connected by communication networks. Examples of modern
andwidely used distributed systems are cloud applications [2]
and blockchains [65]. During normal operation, some of these
components may fail, e.g., due to power loss, software bugs,
or malicious attacks. These faults can compromise the normal
functioning of the entire system. Therefore, it is necessary
to provide fault-tolerance properties so that the distributed
system can maintain its normal execution, even in the pres-
ence of faults. For this purpose, it is important to design and
implement fault-tolerant distributed algorithms [11], [61].
Fault-tolerant distributed algorithms have been widely

studied and developed over the years [6], [8], [9], [16], [47],
exploring different aspects such as the problem to solve [6],
[47], the fault model [26] or the system architecture [8],
[16]. However, the process of studying and designing a
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fault-tolerant algorithm is a manual, time-consuming and
complex endeavor [26]. This is especially true when mali-
cious faults are considered, where algorithms are compli-
cated, and slight changes often require a complete redesign.
Furthermore, current research on fault-tolerant algorithms
does not focus only on correctness: efficiency is also a very
important concern, leading to an increase in the complexity
of the algorithm development process.

The journey to develop a fault-tolerant algorithm starts
with defining the problem the algorithm will solve, e.g.,
Reliable Broadcast, shortened in this paper as RBcast. Next,
assumptions about the environment (systemmodel) aremade,
e.g., if the system is synchronous or asynchronous (i.e.,
if there are assumptions about time or not) and the failures
that can occur. The researchers then consider the strategy to
design the distributed algorithm. In this stage, in addition
to the difficulty in creating the algorithm, researchers may
be biased by previous related papers and algorithms. After a
trial-and-error process, the distributed algorithm is obtained.
This also involves a verification process to assess whether the
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generated algorithm achieves the goal and solves the problem
correctly. This can be done by writing a manual proof or by
doing verification using a model checker [14] or a theorem
prover [7].

In this work, we present a new approach to automate
the process of synthesizing fault-tolerant Reliable Broadcast
algorithms. Although only applied to this class of algorithms,
we believe this approach can be extended to the synthesis
of other distributed algorithms. Therefore, this can be the
beginning of a new path of research in the field of distributed
computing that can be adopted to improve and design new
distributed systems. This comes at a time when there is an
increasing need for higher scale and even more geograph-
ically dispersed deployments of distributed systems with
the emergence of technologies such as Internet of Things
(IoT) [42] and Distributed Ledger technologies (DLTs) [40].

Our technique is based on the idea of Generative Artificial
Intelligence (AI): from a specific description of the algorithm
needed and some previous knowledge, the approach will
be capable of synthesizing a correct, efficient, potentially
new algorithm. Besides first appearing associated with Gen-
erative Adversarial Networks (GANs) [34], more recently,
Generative AI evolved to a broader scope of AI solu-
tions capable of generating new data based on pre-existing
knowledge [25], [41], [45]. Solutions such asChatGPT 1 and
GitHub CoPilot2 gained notoriety with the generation of text
and code.

The core of our approach is an iterative process with two
phases: generation, to obtain candidate algorithms, and ver-
ification, to evaluate their correctness. The process goes on
discovering new algorithms and converging towards one that
is correct and efficient in terms of a set of metrics. For the first
phase, generation phase, we propose an agent that, based on
a machine learning technique, Reinforcement Learning [51],
[70], [73], synthetizes distributed algorithms. For the second
phase, verification phase, we propose an additional agent
that assesses the correctness of the generated algorithms. The
search for a verification process for distributed algorithms has
been ongoing for years [23], [24], [49], [66]. We identified a
group of possible frameworks that the agent can use, such as
the TLA+ language and tools [53], the Spin framework with
the PROMELA language [46], or the ByMC framework [52],
to new a few. We opted to use Spin/PROMELA, as explained
later (see section VIII).

There are already a few works an automatic synthe-
sis of distributed algorithms: three focused on mutual
exclusion algorithms [4], [36], [37], two on consensus algo-
rithms [30], [74], one on fault-tolerant distributed algo-
rithms [56], and one on leader election algorithms [38].
However, none of them uses machine learning techniques.
As far as we know, machine learning techniques have been
used only for the generation of local, non-distributed code,
mostly using supervised and unsupervised machine learning

1https://openai.com/blog/chatgpt/
2https://github.com/features/copilot

techniques [3], [18], [58], [68]. In this work, we use Rein-
forcement Learning that allows running an agent following
a trial and error process, without the necessity of having a
dataset with fault-tolerant distributed algorithms (i.e., it is not
supervised). Such a dataset would be laborious and complex
to create, as it would require a large set of pre-existing algo-
rithms that solved the problem. In relation to Reinforcement
Learning, the most interesting works that we have found
were: a framework to improve pre-trained language mod-
els for program synthesis tasks through deep reinforcement
learning [57], a work that uses reinforcement learning to
generate matrix multiplication algorithms [22], a work that
uses reinforcement learning to generate tests for Android
GUI applications [39], and a work that uses reinforcement
learning coupled with deductive reasoning for program syn-
thesis [28]. However, all these works are very different from
ours. To the best of our knowledge, this work is the first to
present an approach based on a form of machine learning,
Reinforcement Learning, in the field of distributed comput-
ing, to generate distributed algorithms.

The main contributions of the paper are: (1) a new
approach for synthesize distributed fault-tolerant algorithms
using machine learning, instead of manual development by
human beings, (2) an intelligent agent to generate RBcast
distributed algorithms, and (3) an experimental evaluation of
the approach and the agent, showing a generation of correct
RBcast algorithms and a new efficient Byzantine-tolerant
algorithm.

II. RELIABLE BROADCAST
This section presents RBcast, the distributed problem for
which we want to find algorithms to solve.

A. SYSTEM MODEL
The system model considered for the RBcast algorithms we
want to synthesize is inspired by the modular approach to
fault-tolerant problems by Hadzilacos and Toueg [26]. The
system is composed of a static group of N processes, i.e.,
there are no joins or leaves during execution. We assume a
fully connected point-to-point network, i.e., that all processes
are connected with each other through links and communicate
by passing messages. We also assume that the system is
asynchronous, i.e., that the communication delays are neither
upper-bounded nor respect a global stabilization time.

A process is the actor of the distributed system that exe-
cutes a set of specific ordered actions, together designated as
an algorithm. All processes in the system execute the same
algorithm.

Communication links allow processes to exchange mes-
sages by transporting themessage from sender to the receiver.
We assume that the links are reliable, authenticated, and
provide integrity on the messages, meaning that there are no
corrupted, lost or duplicated messages. However, messages
may arrive out of order.

Processes use messages to share data between them. Typi-
cally, a message contains data such as the message content
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(used by the logic of the system) and an identifier that can
contain protocol type, sender, and sequence number.

System processes can be correct or faulty. We con-
sider three failure modes: No-Failure, Crash-Failure, and
Byzantine-Failure. In the simplest, No-Failure, we assume
that there are no failures. In the Crash-Failure mode [5], [20],
processes may stop operating and never recover. Assuming a
systemwithN ∈ N processes, themaximumnumber of faulty
processes F ∈ N due to a crash failure that can be tolerated in
the system is F = ⌊(N −1)/2⌋ [10]. In the Byzantine-Failure
mode [54] faulty processes may have arbitrary behavior, e.g.,
they may execute other actions not defined by the algorithm
or even not execute any action at all. Unlike a crash failure,
when a process suffers a Byzantine failure (or, ‘‘is Byzan-
tine’’), it can continue to work. Assuming a system with N
processes, the maximum number of faulty processes F due
to a Byzantine failure that can be tolerated in the system is
F = ⌊(N − 1)/3⌋ [10], [16].

B. PROBLEM DEFINITION
A RBcast algorithm ensures, essentially, that every message
broadcast by a correct process (an RB-Broadcast event) is
eventually delivered by all correct processes. The protocol is
defined by the following properties3 [16], [26]:

• RB-Agreement: if a correct process delivers a message
m, then all correct processes will eventually deliver the
same message m;

• RB-Validity: if a correct process broadcasts a messagem,
then it will eventually deliver that message m;

• RB-Integrity: for any message m, every correct process
delivers m at most once and only if m was previously
broadcast by some (correct or incorrect) process.

The term correct refers to a process that follows the
algorithm. Otherwise, we call it incorrect or faulty.

Sometimes a system requires stronger properties than
these, e.g., properties about the order of message delivery.
To provide these extra properties, variants of the RBcast
problem were specified, such as FIFO Broadcast, where
messages broadcast by the same process are delivered in the
order they were broadcast; Atomic Broadcast, that assures all
processes deliver the same messages in the same order [16],
[26], [50]; or Terminating Reliable Broadcast, that assures
that all correct processes eventually deliver something [43].
Nevertheless, in this work, we use only the default RBcast to
illustrate our approach to automated algorithm generation.

III. LEARNING THE RBcast ALGORITHM
Machine learning techniques can be divided into three broad
classes: supervised machine learning – to learn from labeled
data, unsupervised machine learning – to learn without
labeled data – and reinforcement learning – to learn from a
reward mechanism. In this task of learning how to solve a
distributed problem, we decided to emulate the trial and error

3Other works may present an equivalent definition based on additional
properties such as No-Duplication, Consistency, or Termination.

FIGURE 1. Process/dataflow of the proposed solution.

strategy used by human researchers to solve this problem.
Therefore, we decided to use Reinforcement Learning [51],
[70], [73].

Reinforcement Learning is based on the idea of an agent
choosing actions in specific states. The states are the obser-
vations that the agent receives from the environment where
it acts. The way in which the agent acts is defined by the
policy, in this case, a map from perceived states to actions
to be taken in those states. Then, by choosing an action in a
state, the agent will receive a reward, reflecting its choice.
With time, the agent will start learning the value of each
state, i.e., the total amount of reward the agent can expect
to accumulate over the future, starting from that state. While
rewards are short-term indicators, the values reflect the long-
term desirability of that state, taking into account the states
that are likely to follow and the rewards associated with them.
We use model-free Reinforcement Learning, in the sense that
the agent does not create a representation of the behavior of
the environment, unlike model-based approaches. A model-
based agent would need to have a model of the dynamics
of the environment, allowing to predict state transitions and
rewards, e.g., given the current algorithm, the agent could
plan future actions and their rewards.

In this work, we propose a novel approach to synthesize
fault-tolerant Reliable Broadcast algorithms based on the
Reinforcement Learning technique. Figure 1 presents the
entire process of the approach, divided into three phases:

1) Definition of inputs: in this phase, the user defines the
inputs in order to describe the specifications of the
algorithm to be synthesized. This is the phase where
the user will input some existing knowledge of the area
of distributed algorithms (e.g. the fault tolerance ratio);

2) Learning Phase: in this phase, the approach will learn
to solve the problem by experience, through the gener-
ation of multiple algorithms, both correct or incorrect;

3) Optimization Phase: in this last phase, the proposed
approach will generate a correct and efficient algorithm
– the optimal algorithm – based on the knowledge
obtained from the Learning Phase.

Although we believe and aim, in the future, to apply
this approach to other distributed algorithms, in this work,
we present the first study applied to a single problem:
the Reliable Broadcast problem. In the following sections,
we explain the specific synthesis process and the definitions
of the algorithm adopted in this work, namely, the structure,
messages, types, conditions, and efficiency.
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FIGURE 2. Process/dataflow of synthesizing an optimal algorithm. The learning phase is represented by the blue components and the
optimization phase is represented by the red components.

TABLE 1. Inputs used in the paper for synthesis of RBcast algorithms.

A. SYNTHESIS PROCESS
Our solution considers an agent that has the goal of synthesiz-
ing correct and efficient RBcast algorithms, i.e., algorithms
that satisfy the RBcast properties (cf. Section II-B) and
minimizes the efficiency metrics (cf. Section III-E). The
solution is composed of a main agent, RB-Learner, that col-
laborates with an auxiliary agent, RB-Oracle, as represented
in Figure 2. The entire execution of the solution for one
algorithm is designated as a simulation. The process starts
with the definition of the inputs of the simulation. Table 1
summarizes these inputs. The simulation inputs include the
number of simulations and learning episodes to run. The gen-
eration process inputs include the rewards and heuristics to
be used, the last two containing domain knowledge about the
problem (see Sections IV-C and IV-E). The verification pro-
cess inputs include the specifications to verify the algorithm,

such as the failures to model, the system architecture to
model, and the properties to be verified.

The simulation starts with the learning phase which is
composed of the execution of a set of learning episodes.
In each of these episodes, the RB-Learner agent runs the gen-
eration process, i.e., generates one algorithm and gives the
algorithm to the RB-Oracle agent, which executes the verifi-
cation process, i.e., assesses whether the generated algorithm
actually solves the problem. Then, the RB-Oracle returns the
verification result to the RB-Learner, which it uses as part of
the learning phase. When all learning episodes are executed,
the agent runs one optimization episode composed by the
execution of a single optimal generation process. In this
episode, the agent generates the optimal algorithm based
on the knowledge obtained from the learning episodes. The
optimal algorithm may not be correct because the agent may
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not be able to learn to solve the problem, so the verification
process is executed one final time to analyze the correctness
of the optimal algorithm. In the rest of the work, we often
use the term episodes to refer to learning episodes, as the
optimization episode is a single one and it has a specific goal.

With this technique, the idea is that the agent will be
able to learn/synthesize a correct and efficient algorithm by
generating multiple algorithms – either correct or incorrect –
without the need for prior knowledge of the state of the art in
RBcast.

B. STRUCTURE
RBcast has been studied extensively over the years [6], [8],
[9], [16], [47], [48]. The papers present RBcast algorithms
with different structures. For example, Bracha and Toueg
presented algorithms organized in execution steps [9], [10],
while more recent work favours a structure based on event
handling routines [47], [48]. We follow the latter, an event-
oriented structure.

We assume that the structure of the algorithm is composed
of two events: the RB-Broadcast event, triggered only once
by the process that starts the execution of the algorithm;
and a receive event, triggered every time a process receives
a message. Each event can contain a set of actions, i.e.,
instructions that are executed when the event is triggered.
The execution of the algorithm ends when there are no more
messages to be received.

C. MESSAGES AND TYPES
As discussed in Section II-A, messages contain multiple
elements, e.g., content, sender, and protocol type. To dif-
ferentiate between the different communication steps of the
algorithm, the messages must have a specific element called
type. In this work, we follow previous RBcast works [9],
[48] by representing messages in the format < t,m>, where
t symbolizes the type of the message, and m the message
itself. Previous works define types as words like echo or
init [9], [47], but in this work, we designate types as type0,
type1, type2, etc. The reason for this option is that the types
are generated automatically, not by a human. But afterward,
we can translate the type0 into init and the type1 into echo.

D. INSTRUCTIONS AND CONDITIONS
Instructions are statements defining behavior that can be
executed by the algorithm. Conditions are statements used to
evaluate when a specific instruction can be executed and are
associated with the if clause. To solve Reliable Broadcast,
we have defined instructions related to sending and delivering
messages and defined 2 types of conditions: the true and the
threshold conditions. The true condition is a neutral condition
representing an always true behavior. Threshold conditions
are defined by two properties: the message < t,m> and
the threshold expression, which is the number of messages
needed to satisfy the condition. For example, the statement

TABLE 2. Actions available to the RB-Learner.

SEND to all (< type1,m>) if received (< type0,m>)
from F + 1 distinct processes means that the instruction
SEND to all (< type1,m>) can only be executed, i.e.
send a message m of type type1 to all the processes in the
system, if the process has received a messagem of type0 from
at leastF+1 processes (the threshold isF+1). Each condition
can be associated with different instructions: if the algorithm
contains different instructions with the same condition and
the condition is satisfied, all of them are executed.

E. EFFICIENCY
To analyze the efficiency of an algorithm, we adopt a model
based on previous works [11], [67], where the efficiency is
related to three properties: (1) the number of messages sent
by the algorithm; (2) the number of communication steps
(which in the case of RBcast is the number of types, as there
are no loops) and; (3) the number of messages that have
to be received for the algorithm to stop. All these metrics
indirectly express the cost of computational power, storage,
and network to execute the algorithm. As the algorithm sends
more messages or contains more communication steps, then
the process will need more storage for messages, spend
more network resources, and take more time to execute the
algorithm.

IV. RB-LEARNER
The RB-Learner agent uses Reinforcement Learning to learn
not only an algorithm that solves the problem but also an
algorithm that is efficient. Next, we explain the elements
behind the learning process of the RB-Learner.

A. ACTIONS
An algorithm is composed of a set of event handling rou-
tines – two in the case of RBcast, each of which contains a
sequence of actions. The RB-Learner selects an action from
the set of possible actions to add to one of the routines. Each
action has two components: instruction – the part of the action
that is executed – and condition – a statement that must be
true in order for the instruction to be executed. For example,
in action

SEND to all(< type1,m>) if received (< type0,m>)
from 1 distinct process

the instruction component is the left-hand part (in red) and
the condition is the right-hand part (in blue, starting with the
word ‘‘if’’). Next, we present the instruction and condition
components that we assume in the paper.
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1) INSTRUCTION
We selected the following instruction components taken from
previous work that solve the RBcast problem [9], [26], [47]:

• SEND to all(< t,m>): sends the message< t,m> to
all processes of the system (including itself);

• SEND to neighbours(< t,m>): sends the message
< t,m> to all processes of the system (excluding itself);

• SEND to myself(< t,m>): sends the message <

t,m> only to itself;
• DELIVER(m): delivers the message m;
• STOP: end the execution of the event handler.

In addition to these, we could think of a generic component
to send a message to N − X processes, for any X > 0 and
X ∈ N. However, this generality is found only in probabilistic
algorithms [11], [21], which are out of the scope of this
work.

2) CONDITIONS
In this work, each action contains a specific condition
that defines when the instruction in the action is exe-
cuted. The true condition is only defined by the word true,
while each threshold condition is associated with a specific
threshold and a message type. From a range of works ana-
lyzed [9], [26], [47], we selected four thresholds: waiting for
1, F + 1, (N + F)/2, and N − F messages from different
processes. We assume that two threshold conditions are equal
if they wait for the same message type and have the same
threshold.

3) MESSAGE TYPE
As explained above, messages contain a type: type0, type1,
and so forth. One parameter of the problem of generating an
algorithm is how many types of messages it uses. Clearly, the
minimum number of types found in algorithms in the litera-
ture corresponds to the maximum number of types needed to
solve the problem. For RBcast we found that the number is of
two types [47]. Both SEND actions and conditions are influ-
enced by a certain type. On the contrary, the true condition is
not associated with any threshold or message type.

Table 2 presents all actions available to our agent, resulting
in a total of T = 64 possible actions – the total number
of possible combinations using the actions of the table. All
actions are associated with all possible conditions except
STOP that does not depend on messages being received (or,
equivalently, it depends only on the true condition).

We also assume that each action contains an implicit con-
dition that forbids the action to execute more than once for
the same message. This means that if a process delivers
a message with content m = 1, it will never deliver the
same message again. The same applies to SEND actions.
This inner condition is introduced by previous articles that
present RBcast algorithms: for example, in [47] we have the
conditions not yet broadcast or not yet RB_delivered and
in [26] we have the condition if p has not previously executed
deliver(R,m).

B. STATES
A typical Reinforcement Learning agent interacts with an
external environment. In our case, the environment is not
external, but internal memory. This memory stores the actions
already selected by the agent to form the algorithm. Specifi-
cally, a state is the sequence of actions selected by the agent
up to that moment. By following this representation, the agent
will be able to learn to select the best actions based on the ones
that the algorithm already contains. Each state follows the
algorithm structure defined in Section III-B, being composed
of two event handlers and expressed as State([]). We assume
that State A and State B are equal if both contain the same
actions, in the same number, in the same order and in the
same event handlers.

C. REWARDS
Rewards are used by the agent to learn which actions are
suitable or not in each state – a technique called reward shap-
ing [55]. In this work, the rewards are related to the efficiency
(cf. Section III-E) and correctness (cf. Section II-B) of the
algorithm: the most efficient correct algorithm will generate
the best reward. Rewards are defined as part of the input,
but it is important to mention that the agent synthesizes the
most efficient algorithm not because of the absolute reward
values that we have defined, but because of the relative values
between them (the absolute rewards are the result of testing
multiple possibilities).

The RB-Agent receives a reward in twomoments: (1) every
time the agent selects an action – runtime reward – and (2)
when the agent receives the verification result from the RB-
Oracle – bonus reward.

1) RUNTIME REWARDS
Runtime rewards are related to the efficiency of the produced
algorithm, i.e., more efficient algorithms will generate the
best rewards. Table 3 summarizes the values we empirically
established for calculating these rewards. The SEND actions
and the DELIVER action have a negative reward, as pro-
cesses need to spend time and resources to execute these
actions, so there is a cost involved. For the SEND actions,
the SEND to myself action has a better reward than the
SEND to neighbours and the SEND to all actions.
This happens due to the number of sent messages metric:
SEND to myself only sends 1 message, whereas the oth-
ers involve sending N − 1 and N messages, respectively. The
threshold of the conditions also influences the reward. Table 3
shows the rewards associated with each selected threshold
(c.f Section IV-A2). Considering that 1 ≤ F + 1 ≤ (N +

F)/2 ≤ N − F , the higher the threshold, the higher its cost
since processes need to wait for more messages to execute
the instruction of the action, where N is the total number of
processes and F the maximum number of faulty processes.
The true condition has a reward of 0 since does not involve
any cost such as the need for a specific number of messages
or message types.
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TABLE 3. Rewards given to each instruction and each condition.

Beyond what is presented in Table 3, the addition of a
new message type to the algorithm also involves a (negative)
reward. Specifically, the reward is added when a SEND action
introduces a new type. Each new type has an increasing cost:
type0 is associated with the reward 0, type1 is associated with
reward −1, etc. The objective is for the agent to add the
minimum number of new types to the algorithm, as each new
type involves more communication.

The last aspect that influences the reward obtained by
the agent is the event handler where the action is selected.
We defined that each action selected for the RB-Broadcast
event handler has an additional reward of 0, while the actions
selected for the receive event handler have an additional
reward of−1. These rewards favour the addition of actions to
the RB-Broadcast event handler instead of the receive event
handler; this bias is needed becauseRB-Broadcast is executed
only once per execution of the algorithm, whereas receive is
executed N times (one per process), meaning that an action
on the receive event handler will have a greater impact on the
efficiency of the algorithm when compared to an action on
the RB-Broadcast event handler, e.g, a SEND to myself
action will have a cost of 1 message if executed on the RB-
Broadcast event handler, but a cost of N ∗1 if executed on the
receive event handler.

To summarize, consider the example where the agent
chooses the action:

SEND to all(< type0,m>) if received (< type0,m>)
from N − F distinct parties

The reward for this action will be:−3 (the SEND to all
instruction) + 0 (type0 sent) −4 (the N − F threshold) = −7.
Then, if the action is selected for the RB-Broadcast event
handler, it will receive an additional reward of 0 (still a total
of −7), while if selected for the receive event handler, it will
receive an additional reward of −1 (total of −8).

2) BONUS REWARDS
After the algorithm is verified by the RB-Oracle, the
RB-Learner receives the verification result from the RB-
Oracle. The RB-Learner will use that result – correct or
incorrect – to get a bonus reward or not. In case the algorithm
is correct, there is a bonus of 100, from where we discount
the runtime rewards accumulated during the generation. For
example, if the agent generates a correct algorithmwith a run-
time reward accumulated of −14 during the state transitions
of the generation process, the bonus will be 100 + (−14) =

86. This allows the agent to receive a better bonus for themost
efficient algorithms. In the case of an incorrect algorithm, the

reward received by the agent will be −1: from the total num-
ber of possible algorithms, the number of incorrect algorithms
will tend to be greater than the correct ones, so we do not want
the agent to be severely penalized by finding an incorrect
algorithm since some actions of an incorrect algorithm can
still lead to a correct algorithm.

D. LEARNING AND OPTIMIZATION PHASES
This section explains one learning episode, from the Learning
Phase, and its generation process that builds one algorithm
and the optimization episode, from the Optimization Phase,
and its optimal generation process that generates the optimal
algorithm, both detailed in Figure 2.

During a learning episode, the generation process is exe-
cuted. This process is composed of two development steps:
the step of the RB-Broadcast event handler and the step
of the receive event handler. Both steps are based on Q-
Learning [72], a broadly adopted Reinforcement Learning
algorithm. This algorithm uses a table designated QTable to
map the values of each action to each state. Next, we explain
how the development steps generate the entire algorithm
during the generation process.

The generation process begins with the development phase
of the RB-broadcast event handler. The agent starts with the
internal state empty, i.e. an empty algorithm with State([]).
Then, comes a loop based on the current internal state, where
the agent analyses a set of heuristics (a topic we defer for
Section IV-E) to discard the actions not suitable for the
current state, from the set of all possible actions. Then, the
agent selects one of the suitable actions based on a policy.
In this work, the agent follows the Upper Confidence Bound
(UCB) policy [70], a policy based on the idea of being
optimistic under uncertainty. This policy works by defining
a confidence boundary assigned to each action that decreases
when the action is more frequently chosen, helping to solve
the exploration/exploitation problem [15] – the dilemma of
selecting new actions or keeping the same selection of actions
as before. Then, the selected action is added to the current
internal state and to the current event handler – in this case the
RB-Broadcast – originating a new state. For example, if the
agent is in state State([]) and chooses action A, the action is
added to the algorithm and the RB-Broadcast event handler,
originating the new state State([action A]). Moreover, based
on the action selected, the agent receives a runtime reward
that it uses to update its learning base, theQTable, by associat-
ing the reward received with the action selected in the current
state. Finally, the agent defines its current state as the new
state and re-executes the analysis of the heuristics to get the
suitable actions for this new state.

The agent continues to re-execute the development of
the RB-Broadcast event handler until the moment when it
chooses the STOP action. By choosing this action, the devel-
opment step of the current event handler – in this case, the
RB-Broadcast event handler – is completed, and the develop-
ment step of the next event handler – the receive event handler
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– is started. The agent executes this second development step
but now adds the actions to the receive event handler, until the
moment when it chooses the STOP action again. This marks
the end of the development step of the receive event handler.
Only after the two development steps – the development of
the RB-Broadcast and the receive events – the algorithms is
considered completed.

With the development of the algorithm completed, the gen-
eration process ends, and the RB-Learner gives the algorithm
to the RB-Oracle, which in turn, will verify it. After verifying
the algorithm, the RB-Oracle returns the verification result to
the RB-Learner which receives a bonus based on whether the
algorithm is correct or not. This bonus reward will also be
used to update the QTable of the agent.

In the first learning episodes, the generation process will
produce random algorithms, led by the policy that allows
it to explore new actions and states. As the learning phase
progresses, based on the values of the QTable, the policy used
by the agent will lead it to exploit the actions that have the best
value in each state, allowing it to converge to the most effi-
cient algorithms. We use the terms explore and exploit with
the precise meanings they have in Reinforcement Learning:
explore is related to the search for new and unfamiliar states,
while exploit refers to the examination of familiar states [15].

The agent performs the optimal generation process episode
when all the learning episodes are executed. In this final
episode, the agent generates the optimal algorithm. The pro-
cess to generate this algorithm is identical to the generation
process. However, instead of being guided by a policy, in the
optimal generation process, the agent will always select the
optimal action allowed in each state, based on the knowl-
edge obtained during the learning episodes. To be more
specific, the agent will generate the optimal algorithm by
always selecting the action that gives the best reward, fol-
lowing a policy usually called the greedy policy. With the
optimal algorithm generated, the RB-Learner gives it to the
RB-Oracle to execute the verification process and analyze
either if the optimal algorithm is correct or incorrect. After
the verification process, the RB-Learner outputs the results
of the simulation, including the distributed algorithm found
and its correctness.

E. HEURISTICS
The number of possible algorithms grows exponentially with
the base given by the maximum number of allowed actions
T in the algorithm (a constant), i.e., has complexity O(T i),
where i is the total number of possible actions. Although the
agent has i actions to choose from, there are clearly some
bad choices in some cases. For example, it is a bad option
to choose STOP as the first action since that would generate
an empty algorithm.

To reduce the explosion of possibilities and guide the agent
during the generation process, we define a set of heuristics
[59], [64] for the agent to avoid bad choices. Notice that
the heuristics do not help in obtaining correct and efficient

TABLE 4. Heuristics used on the generation process.

algorithms; they only reduce the number of possibilities to
explore by discarding invalid actions in specific states and,
consequently, reducing the time required to find solutions.

Table 4 presents the generation heuristics (GH) that we use
to guide the agent in the case of RBcast. These heuristics
were defined on the basis of a logic of discarding undesirable
actions. Every time the agent is in a state, the agent uses the
heuristics to know which actions are available in this specific
state, thus reducing the options from T to Th < T .

GH1 says that the entire algorithm cannot contain duplicate
actions (except the STOP action). GH2 allows to define the
actions available in each event handler. For RBcast, we define
that the agent can select all actions in both event handlers,
except the DELIVER action on the RB-Broadcast event han-
dler; as the RB-Broadcast event handler is only executed by
one process, the DELIVER action must exist on the receive
event handler, so that all processes can deliver the message,
thus the possible existence of the DELIVER action on the
RB-Broadcast event handler is redundant. GH3 allows to
define the conditions available in each event handler. Based
on this heuristic, we define that on the receive event handler,
all considered conditions are allowed (see Section IV-A2).
In the RB-Broadcast, we only allow conditions based on
condition 0, since in that event handler the processes do not
receive any message. GH4 allows to define that, for each
condition and message type sent, the agent must choose
between sending to all, to the neighbours, or only to itself.
GH5 allows to define a message type for the first communi-
cation step of the algorithm (RB-Broadcast event handler).
GH6 allows to restrict the size of the algorithm generated
in terms of the number of actions for each event handler.
As previously explained, we took inspiration from one of
the most efficient RBcast algorithms [47], so we defined a
minimum number of 2 and a maximum number of 4 actions
in each event handler. GH7 forbids the agent to select actions
based on invalid conditions, e.g., we forbid the agent to select
actions that wait for message types not yet contained in the
algorithm. GH8 forces the generation of algorithms with at
least one DELIVER action, as that action clearly must exist
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in the algorithm. GH9 allows to decrease the convergence
time by discarding incorrect algorithms that are not related
to the solution, which is equivalent to giving an infinite cost.
GH10 allows to define the maximum number of types that
the algorithm can contain – in this work, we defined only two
possible types (cf. Section IV-A3).

V. RB-ORACLE
The RB-Oracle is the agent responsible for verifying the algo-
rithms created by the RB-Learner agent, i.e., to implement
the verification process. This section explains the verification
process executed in the context of one episode.

The verification process is responsible for assessing the
correctness of the algorithms generated, i.e., for assessing if
each algorithm satisfies the RBcast properties (Section II-B)
within one of the variants of the systemmodel (Section II-A).
Every episode, the RB-Learner generates an algorithm, and
the RB-Oracle verifies it.

Automatic verification of a fault-tolerant distributed
algorithm can be achieved using different techniques such as
model checking [23], [49] or theorem proving [66]. In this
paper, we use a model checking tool called Spin [46],
a widely used framework on the verification of fault-tolerant
algorithms [19], [23], [49], [62] that allows to build models
and verify them.

Spin supports a few modes. We use Spin in simulation
mode, i.e., we use it to simulate the execution of the created
algorithm in a specific system model, doing an exhaustive
exploration of the state space. In essence, during the state
space exploration, Spin verifies if none of the three RBcast
properties (RB-Agreement, RB-Validity, and RB-Integrity) is
violated. The three properties, the protocol, the values of N
and F , the system architecture, the behavior of each failure
mode (No/Crash/Byzantine-Failure mode), the process that
initiates the verification (randomly selected), and the faulty
processes (also randomly selected, for F > 0) are all spec-
ified in PROMELA (Process or Protocol Meta Language).
This is achieved by creating a system model in a PROMELA
language file (.pml extension). Then, based on the .pml file,
RB-Oracle builds a verification file (pan.c) – aC program that
performs a verification of the correctness requirements for the
system – and compiles it using gcc, generating an executable
file. Lastly, the agent uses Spin to run the executable file and,
with that, check the correctness of the algorithm.

The RB-Oracle verifies algorithms considering three
failure modes: No-Failure, Crash-Failure, and Byzantine-
Failure.

For the No-Failure mode, the RB-Oracle verifies the
algorithm considering that all processes are correct, i.e.,
by following the actions of the algorithm without deviations.
In this mode, in the experiments, we assume a system with
N = 3 processes and F = 0. Moreover, we model only one
possible verification of the system: since the algorithm that
runs in each process is the same, more than one model would
be redundant.

TABLE 5. Number of lines of code and programming language used.

In the Crash-Failure mode, we simulate the crash of the
process assuming the worst case possible: crash failures hap-
pen between the sending of messages since the impact of a
crash failure is the highest when it leads a message to be
delivered only to a fraction of the processes. In this mode,
in the experiments, we assume a system with F = 1 faulty
processes and N = 3 processes, the minimum necessary to
have F = 1 failures (see Section II-A). Moreover, for this
mode, we build two models: when the process that initiates
the algorithm is correct and when it is faulty. This allows
verifying cases when either of the event handlers fail.

For the Byzantine-Failure mode, the RB-Oracle models a
range of attacks where all faulty processes send the same
malicious message to a predefined group of correct pro-
cesses – from a group with 0 processes, and consequently,
not sending to anyone, to sending to N − F processes, and
consequently, sending to all correct processes. In this mode,
in the experiments, we assume a system with F = 1 faulty
processes and N = 4 processes, which is the minimum num-
ber of processes necessary to have F = 1 faulty processes
(see Section II-A). Moreover, similar to the process on the
Crash-Failure mode, in this mode we also build two models:
one to model a failure on each event handler of the algorithm.

VI. IMPLEMENTATION
As explained in the previous sections, our implementation4

is based on two agents: RB-Learner and RB-Oracle. Table 5
shows the number of lines of code and the programming
language used to implement the entire solution. The Client
component is where the user defines the inputs and starts
the execution of the solution. The Generator component is
the one responsible for the generation of the algorithms,
containing the RB-Learner. RB-Learner uses the Q-Learning
algorithm and the UCB policy to implement the generation
and learning of the algorithms. The Verifier component is
the one that contains the RB-Oracle, responsible for the ver-
ification of the algorithms. RB-Oracle models a distributed
system with N processes and F faulty processes, simulat-
ing the execution of the algorithm generated using the Spin
framework. RB-Learner was implemented in Python3. RB-
Oracle was implemented using both Python3, PROMELA (a
verification modeling language used for Spin), and the Spin
model checker.

VII. EXPERIMENTAL EVALUATION
Our experimental evaluation aims to assess the effectiveness
and correctness of our solution. It will answer the following
questions:

4https://diogolvaz.github.io/FAULTAGE/
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TABLE 6. Experimental evaluation inputs.

1) How many states does the agent explore until the first
correct algorithm and the most efficient algorithm are
found?

2) How many algorithms are generated in total in each
experiment?

3) How many algorithms are generated until the first cor-
rect algorithm is generated?

4) What is the proportion of correct and incorrect algo-
rithms from the total number of generated algorithms?

5) How does each proposed heuristic influence the learn-
ing process?

6) Is the agent able to generate a new algorithm, i.e.,
an algorithm that as far as we know has not been
generated by humans?

We ran our experiments on a single machine with
32 vCPUs, 64 GB of memory, and Debian 10. We made
experiments for three cases: (1) No-Failure mode; (2) Crash-
Failure mode ; and (3) Byzantine-Failure mode. All results
shown in the next sections are, except when noticed, aver-
ages of 5 simulations runs, each with 12, 000 episodes –
the minimum number of episodes that we have found to
be possible for the agent to converge to the most efficient
algorithms in all experiments. The 12, 000 episodes took
±9 hours to run on the No-Failure experiment,±3 days to run
on the Crash-Failure experiment, and ±7 days to run on the
Byzantine-Failure experiment. This increase in time is due
to the time needed for Spin to verify the models. Table 6
summarizes the inputs considered for the experimental
evaluation.

A. STATES EXPLORED
For each algorithm generated, the agent explores multiple
states when selecting the actions. This first set of experiments
assesses the number of states explored in each experiment.
Figure 3 shows the total number of states explored by the
agent for each episode, on the entire experiment. Table 7
shows the number of states explored until the agent generated
the first correct algorithm.

As expected, we can see in both figures that the agent
needs to explore more states when the complexity of
the problem to solve increases, i.e., the agent needs to
explore more states when trying to find a Byzantine-tolerant

FIGURE 3. Number of states explored during each experiment.

TABLE 7. Number of states generated until the first correct algorithm is
generated.

FIGURE 4. Number of algorithms generated during each experiment.

algorithm – almost 20, 000 states – when compared to a
Crash-tolerant or a non-fault-tolerant algorithm – around
12, 000 and 3, 000 states, respectively. Additionally, the
agent also takes more time to converge when trying to
find a Byzantine-tolerant algorithm – between 8, 000 and
10, 000 episodes – when compared to the other cases –
between 1, 000 and 2, 000 episodes for the No-Failure
algorithm and between 4, 000 and 6, 000 episodes for the
Crash-Failure algorithm.

B. ALGORITHMS GENERATED
The agent generates multiple algorithms with the objective
of learning from them. Therefore, we decided to assess how
many algorithms the agent generates in each experiment.
Figure 4 shows the number of algorithms generated by the
agent per episode. Table 8 shows the number of correct
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TABLE 8. Number of correct and incorrect algorithms generated in each
experiment and number of algorithms generated until the first correct
algorithm.

and incorrect algorithms generated, as also the number
of algorithms generated until the first correct algorithm.
As expected, and similarly to what happens with the number
of states, the agent needs to generate more algorithms, as also
takes more time to converge, with the increase of the com-
plexity of the problem to solve. Moreover, another interesting
aspect is the percentage of incorrect algorithms generated
by the agent in each test: ±60% on the No-Failure test,
±89% on the Crash-Failure test, and 99.9% on the Byzantine-
Failure test, which means that, even with all the Heuristics
defined, the agent still has a difficult task generating a correct
algorithm.

Algorithm 1 Most Efficient RBcast Algorithm for a
No-Failure Experiment Generated by the RB-Learner
1: when RB-Broadcast(m) do:
2: SEND to all(< type0,m>) if true and not already

sent;
3: STOP if true;
4: when receive(< t,m >) do:
5: DELIVER(< m>) if true and not already delivered;
6: STOP if true;

In the No-Failure mode, the agent converged to
Algorithm 1 in 4 of the simulations executed. This algorithm
is equivalent to one presented in [11]: both exchange, at most,
N messages, require 1 communication step and 1 message
type (or none), and need to receive 1 message.

On the Crash-Failure mode, the agent also converged to
Algorithm 2 in 4 of the simulations executed. Note that the
algorithm sends a new message type on the receive event
handler (type1) when it could send the type0. This happens
because of the heuristic GH5, which only allows sending
messages of type0 on the RB-Broadcast event handler. This
algorithm is similar to the one presented in [26] and [67]:
both exchange, at most, N 2

− N + 1 messages, require 1
communication step and 1 message type (or none) and need
to receive 1 message.

On the Byzantine-Failure mode, Algorithm 3 is one of
the algorithms generated by the agent in all the simula-
tions executed. This algorithm is one of the most efficient
algorithms developed and it is similar to the one presented
in [47]: both exchange, at most, N 2

+ N messages, require 2
communication steps and 2 message types, and need to
receive (N + F)/2 messages. However, in this experiment,
the agent converged to a new efficient algorithm discussed in
Section VII-D

Algorithm 2 Most Efficient RBcast Algorithm for a
Crash-Failure Experiment Generated by the RB-Learner
1: when RB-Broadcast(m) do:
2: SEND to myself(< type0,m>) if true and not

already sent;
3: STOP if true;
4: when receive(< t,m >) do:
5: SEND to neighbours(< type1,m>) if true and

not already sent;
6: DELIVER(< m>) if true and not already delivered;
7: STOP if true;

Algorithm 3 Most Efficient RBcast Algorithm for a
Byzantine-Failure Experiment Generated by the RB-Learner
1: when RB-Broadcast(m) do:
2: SEND to all(< type0,m>) if true and not already

sent;
3: STOP if true;
4: when receive(< t,m >) do:
5: SEND to all(< type1,m>) if received (<
type0,m>) from 1 distinct party and not already sent;

6: DELIVER(< m>) if received (< type1,m>) from
(N + F)/2 distinct parties and not already delivered;

7: SEND to all(< type1,m>) if received (<
type1,m>) from F + 1 distinct parties and not already
sent;

8: STOP if true;

C. IMPACT OF THE HEURISTICS
The heuristics we defined (see Section IV-E) guide the agent
by helping it to avoid incorrect algorithms. They do not help
to obtain algorithms or algorithms that are more correct but
reduce the number of states to explore. In this evaluation,
we analyzed the importance of each heuristic with the Crash-
Failure experiment.

To achieve this, we ran one experiment with each GH
turned off and all others turned on. There were two excep-
tions. In GH6, we increased the maximum number of actions
in each event from 4 to 5, but did not turn this heuristic off,
to avoid the agent of generating algorithms with too many
actions. For GH10, we increased the maximum number of
types from 2 to 3 but did not turn it off, as the agent could
explore too many types. We executed one simulation with
10, 000 episodes for each experiment.
Figure 5 shows the evolution of the number of algorithms

generated with each GH turned off, from where we conclude
that all heuristics are important to reduce the number of states
explored until a correct and efficient algorithm is obtained.

D. A NEW BYZANTINE-TOLERANT ALGORITHM
This section answers the last question, i.e., the possibility of
our agent finding new algorithms. On the Byzantine-Failure
simulations, the agent converged to Algorithm 4, a new
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FIGURE 5. Number of algorithms generated during each experiment
without the identified GH. The All line represents an experiment with all
GH turned on.

Algorithm 4 New Byzantine-Tolerant Algorithm Generated
by the RB-Leaner
1: when RB-Broadcast(m) do:
2: SEND to neighbours(< type0,m>) if true and

not already sent;
3: STOP if true;
4: when receive(< t,m >) do:
5: SEND to neighbours(< type1,m>) if received

(< type0,m>) from 1 distinct parties and not already
sent;

6: SEND to neighbours(< type1,m>) if received
(< type1,m>) from F+1 distinct parties and not already
sent;

7: DELIVER(<m>) if received (< type1,m>) from F+

1 distinct parties and not already delivered;
8: STOP if true;

and efficient Byzantine-tolerant algorithm for F = 1 and
N ≥ 4 ∈ N.
When comparing the efficiency of Algorithms 3 and 4,

we see two improvements on Algorithm 4: (1) Algorithm 3
instructs processes to send messages to all, meaning a total of
N 2

+N messages sent, while Algorithm 4 instructs processes
to send messages only to the neighbours, saving the cost of
processes sending a message to themselves and meaning a
total of (N − 1) + N (N − 1) messages sent. Table 9 summa-
rizes the total number of messages sent by each algorithm,
assuming different system configurations; (2) Algorithm 3
needs (N + F)/2 messages of type1 to deliver a message,
while Algorithm 4 only needs F + 1 messages of the same
type to deliver. Since, for F = 1 and N ≥ 4 ∈ N we have that
(N +F)/2 > F + 1, then Algorithm 4 is more efficient from
the message delivery point of view. More precisely, the new
generated Algorithm 4 will always require F + 1 = 1 + 1 =

2 messages, while on Algorithm 3, the number of messages
needed increases with the increase of the total number N of
processes, since threshold (N + F)/2 depends on N .

TABLE 9. Total number of messages during the execution of both
algorithms.

This result shows the capability of RB-Learner to adapt
to the specified problem with modifications and learn to
generate efficient algorithms for that case also. Moreover,
reinforces the possibility of this approach to help develop new
distributed fault-tolerant algorithms, allowing to advance the
state-of-the-art in the distributed computing field.

VIII. RELATED WORK
Fault-tolerant algorithms have been widely studied over the
years [6], [8], [9], [12], [13], [16], [17], [33], [47], [48],
[60], [67]. These algorithms: solve different problems, such
as Reliable Broadcast [47], Consensus [12] or Leader Elec-
tion [63]; tolerate different failuremodes, likeCrash [26] and
Byzantine [17]; use different communication models, namely
fully-connected [16] and partially-connected [8]; and tolerate
different fault ratios, such as ⌊(N−1)/3⌋ [9] and ⌊(N−1)/2⌋
[17], where N is the number of components in the system.
However, as far as we know, all works are based on manual
processes.
Program Synthesis [29], [35] is the task of automat-

ically discovering and developing programs that satisfy
requirements expressed in some form of specification by a
user. In this work, our goal is to develop a tool capable
of developing algorithms – in pseudo-code – that, later,
can be implemented by a program – in a specific pro-
gramming language. Program synthesis has been applied
to generate security protocols [69] , control plane opera-
tions [27] or switch code [32]. Applied to the field of
distributed algorithms, we identified seven works: three
focused on the generation and discovery of mutual exclusion
algorithms [4], [36], [37], two that automatically generate
consensus algorithms [30], [74], another that synthesizes
fault-tolerant distributed algorithms [56], and one focused
on the synthesis of leader election algorithms [38]. How-
ever, all previous work is based on techniques different from
machine learning, such as brute-force approaches that gener-
ate all possible algorithms [4], [30], [74] or solutions using
genetic programming [36], [37], [38]. Moreover, a majority
focus on shared memory systems [4], [30], [36], [37] and
some only consider the correctness of the algorithms gener-
ated [4], [30], [56]. In this work, we present a novel solution
that generates correct and efficient Reliable Broadcast using
a machine learning technique – Reinforcement Learning – so
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that the software can learn to generate fault-tolerant dis-
tributed algorithms.

Recently, supervised machine learning techniques have
been used to automatically generate local and non-distributed
code [3], [18], [58], [68]. In this work, we propose the use of a
different machine learning technique – Reinforcement Learn-
ing – to generate fault-tolerant distributed code. Based on this
technique, we have found a work that presents a framework to
improve pre-trained language models for program synthesis
tasks through deep reinforcement learning [57], a work that
uses reinforcement learning to generate matrix multiplication
algorithms [22], a work that uses reinforcement learning
to generate tests for Android GUI applications [39], and a
work that uses reinforcement learning coupled with deductive
reasoning to program synthesis [28]. However, unlike ours,
the first work uses deep reinforcement learning only for the
optimization of the pre-trained language models, and the
others are focused on a problem very different from ours.
Program Verification [31], [44] is the process of ensur-

ing that a given program behaves as intended and meets its
specified requirements, helping to ensure the correctness,
reliability, and security of the programs. For the verification
of fault-tolerant algorithms [23], [24], [53], [66], we have
identified and used the Spin/PROMELA [46] model checker
[23], [49] framework. This decision is based on the fact that
Spin is a very flexible tool that allows modeling different
fault-tolerant distributed algorithms such as Consensus [71],
Reliable Broadcast [49] or Leader Election [1]. Moreover,
Spin is a very mature and robust framework with extensive
documentation and an active community.5

IX. CONCLUSION
Fault-tolerant algorithms have been studied over the years,
discussing different problems and variants. However, this
study is complex and has always been based on human-based
processes. To automate such processes, we propose a novel
solution based on a machine learning technique. We present
a first implementation of the approach based on two agents,
RB-Learner and RB-Oracle, capable of learning to synthe-
size the RBcast algorithm. As we have presented during the
experimental evaluation, our solution can synthesize correct
and efficient algorithms, depending on the properties of the
problem, proving the effectiveness of the proposed approach
in solving distributed problems when compared with the
manual process. To our knowledge, this work is the first
that merges both areas of generation and verification into an
automatic process capable of generating correct and efficient
RBcast algorithms using machine learning techniques. For
further research, we aim to apply our approach to different
distributed problems, like Consensus, and try to decrease
the number of inputs needed, to further decouple our agent
from knowledge based on previous works, e.g. the threshold
expressions.

5https://spinroot.com/spin/whatispin.html
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