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a b s t r a c t 

Computer communication is at the foundation of how the modern world works, connecting people and 

machines over public infrastructure. For this reason, communication is exposed to attacks, either by pas- 

sive listening, or by active interference in the communication. Security protocols like TLS (Transport Layer 

Security) play a crucial role in ensuring the confidentiality, integrity, and authenticity of the communica- 

tion. However, like in all technologies, there may be flaws in the design, implementation, or cryptography 

of TLS that compromise the security of the communication channel. Remediation of such vulnerabilities 

takes time, leaving valuable services exposed to potential attacks. In this article, we present MultiTLS , 

a middleware based on cipher diversity and network tunneling that enables secure communication even 

when new vulnerabilities are discovered. MultiTLS creates a secure communication tunnel through the 

encapsulation of k TLS channels, where each one uses a different cipher suite. This approach allows the 

communication channel to remain protected, even when k − 1 cipher suites become vulnerable, because 

of the remaining cipher suite. The diversity of cipher suites tolerates cryptography faults. We evaluated 

the implementation of MultiTLS and concluded that it is easy to use and to maintain up-to-date, since it 

does not require code changes to any of its dependencies. We also evaluated its performance in practical 

use cases and proved that it is viable an useful for various personal and corporate contexts using Internet 

communications. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

We live in an increasingly digital age where a large part of 

ervices, such as banking, shopping, and healthcare are accessed 

hrough the public Internet. There have been many cyberat- 

acks that caused increased losses and damage to businesses 

nd Internet users ( Nadeau, 2017 ). This means that, nowadays, 

he use of cryptography-based secure communication protocols 

re a fundamental component of distributed systems and digital 

usiness. They allow entities to exchange messages through a 

rusted communication channel over the untrusted public In- 

ernet. These channels aim to guarantee the following three 

roperties: confidentiality : ensure that only the intended receiver 

s able to read the message; integrity : ensure that messages 

annot be changed without the receiver detecting it; authentic- 

ty : ensure that the identity of the sender and receiver can be 
erified. 

∗ Corresponding author. 

E-mail address: miguel.pardal@tecnico.ulisboa.pt (M.L. Pardal) . 
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Transport Layer Security (TLS) is one of the most widely used 

ecure communication protocols. The protocol allows server/client 

pplications to communicate over a channel that is designed to 

revent eavesdropping, tampering, and message forgery. The most 

ecent version is TLS 1.3 ( Rescorla, 2018 ). This protocol first ap- 

eared under the name Secure Sockets Layer (SSL). It is the final ‘S’ 

n HTTPS that stands for ‘Secure’ and is visually perceived by end- 

sers as the “padlock” in the web browser that signifies to them 

hat the communication is secure. In 1994, Netscape Communica- 

ions had developed SSL 1.0, that was never publicly released. In 

995, SSL 2.0 was released, becoming the first release. SSL 3.0 was 

eleased in 1996, bringing improvements to its predecessor such 

s allowing perfect forward secrecy using the Diffie-Hellman key 

xchange algorithm. TLS 1.0 was released in 1999 introducing sup- 

ort for extensions in Client and Server Hello messages. TLS 1.1 

nd TLS 1.2 were released, respectively in 2006 and 2008, bringing 

mprovements such as reducing vulnerability to CBC block chain- 

ng attacks and supporting more block encryption modes for use 

ith AES (Advanced Encryption Standard). In 2018, TLS 1.3 was ap- 

roved by the Internet Engineering Task Force (IETF), becoming the 

urrent standard for secure connections, even though version 1.2 is 

till the most widely used. 

https://doi.org/10.1016/j.cose.2023.103342
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103342&domain=pdf
mailto:miguel.pardal@tecnico.ulisboa.pt
https://doi.org/10.1016/j.cose.2023.103342
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.1. Secure Channel Vulnerabilities 

Protocols that allow secure communications may contain vul- 

erabilities that make them insecure. Over the years, many vulner- 

bilities have been discovered and corrected in SSL/TLS. The vul- 

erabilities with which we are concerned can be divided into three 

roups: design vulnerabilities, implementation vulnerabilities and 

ryptographic mechanisms vulnerabilities. We will discuss vulner- 

bilities at length in Section 2.2 . 

When a new vulnerability is found, it will take significant time 

or it to be fixed ( Bilge and Dumitras, 2012 ). First, the owners of

he software or hardware need to determine at which level is the 

ulnerability: is it a design or implementation flaw? Once the di- 

gnosis is complete, remediation can start. After some time, new 

ersions and patches are available, but they still need to be pro- 

ided to third-parties that, in turn, will plan the most appropriate 

ime for installation. Finally, and over time, the patches are applied 

nd the vulnerability is fixed in existing deployments. However, 

here will be some deployments that are never updated. During 

his whole time, communication channels are exposed to attack- 

rs. 

.2. Security through Diversity 

This work explores diversity in communication protocols by us- 

ng multiple cipher suites. These suites are used for defining: a 

ey exchange algorithm, an authentication mechanism, an encryp- 

ion mechanism, and a message integrity protection. To implement 

iversity, we intended to use existing libraries and tools without 

odification, to be able to always benefit from the latest and most 

ecure versions of them. 

We developed MultiTLS , a middleware that obtains diversity by 

everaging tunneling mechanisms. In our implementation, we used 

ocat 1 , a tunneling software, and OpenSSL 2 , a TLS implementation, 

o create multiple TLS channels and encapsulate each one in an- 

ther. The source code for MultiTLS is publicly available 3 with an 

pen-source license. 

MultiTLS can be run as a command in the Linux shell and is 

onfigured with a parameter k , called the diversity factor ( k > 1 ).

his parameter specifies the number of TLS channels to be created 

nd consequently the number of cipher suites to be used. k = 1 is

quivalent to a single TLS channel. The cipher suites used for mul- 

iple TLS channels are different from each other to mitigate the 

ulnerabilities that may be found in each one. This approach can 

rovide security even in the presence of zero-day vulnerabilities 

hich can not be prevented as they are unknown ( Bilge and Du- 

itras, 2012 ). 

The communication channel created by MultiTLS has multiple 

ayers of protection, so that if k − 1 of the used cipher suites are

ulnerable, communications will remain secure, since there is at 

east one cipher suite that guarantees the security of communica- 

ions, i.e, the confidentiality, integrity, and authenticity properties. 

MultiTLS is an improvement over a previous work, vt- 

LS ( Joaquim et al., 2017 ), a vulnerability-tolerant communica- 

ion protocol also based on diversity and redundancy of cryp- 

ographic mechanisms to provide a secure communication chan- 

el. However, vtTLS had some problems with software mainte- 

ance because it modified an existing TLS implementation. On the 

ther hand, MultiTLS can always incorporate the latest updates 

nd security fixes because it supports the latest versions of TLS 

ransparently. 
1 http://www.dest-unreach.org/socat/ 
2 https://www.openssl.org/ 
3 https://github.com/inesc-id/MultiTLS 
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.3. Overview 

The remainder of this document is structured as fol- 

ows. Section 2 presents background and related work. 

ection 3 presents MultiTLS in detail. Section 4 presents the 

xperimental evaluation. Finally, Section 5 presents the conclu- 

ions. 

. Background and Related Work 

In this section, we describe the SSL/TLS protocol and its ba- 

ic design, presents some of the most important vulnerabilities in 

he TLS protocol and in the cryptographic mechanisms used by it. 

e also discuss related work on approaches to achieve security 

hrough diversity. Finally, we summarize existing network tunnel- 

ng mechanisms. 

.1. The SSL/TLS Protocol 

The SSL (Secure Sockets Layer) ( Freier et al., 2011 ) / TLS (Trans-

ort Layer Security)( Rescorla, 2018 ) is a security protocol that pro- 

ides secure communication channels between two entities, server 

nd client. The protocol is structured in two layers: the TLS Record 

rotocol and the TLS Handshake protocol. The Record protocol is 

sed by the Handshake and the application data protocols to pro- 

ide mechanisms for sending and receiving messages. 

In regard to sending messages, the Record protocol starts by 

ragmenting the message into blocks called TLSPlaintext . Af- 

er the fragmentation step, each TLSPlaintext may be option- 

lly compressed into a new block called TLSCompressed . Each 

LSCompressed block is processed into a TLSCiphertext 
lock by message authentication code (MAC) and encryption mech- 

nisms. After all these steps, the message can be sent to the des- 

ination. For receiving messages, the process is the inverse of the 

rocess described above. Initially, during the first execution of TLS 

andshake protocol, the TLS Record protocol does not compress, 

ncrypt, and does not use the MAC, since the server and client 

ave not yet agreed on the algorithms to be used for these actions. 

The TLS Handshake protocol is used to establish or resume a se- 

ure session between server and client. A session is established in 

everal steps, each corresponding to a different message and with 

 specific objective: a session identifier (chosen by the server), 

he certificates (X509 standard), the compression algorithm used 

o originate the TLS Compressed blocks in the Record Protocol, 

he specifications cipher (MAC and cipher algorithm used in the 

ecord Protocol to generate the TLSCiphertext ), a master secret 

shared between the client and the server) and the “is resumable”

ag that indicates whether the session can be used to initiate new 

onnections. The Change Cipher Spec Protocol consists of a mes- 

age encrypted and compressed according to the current state of 

he connection, to signal a change in the set of negotiated ciphers. 

he Alert Protocol sends an alert message that, depending on the 

everity, can be of the warning or fatal type (warning/fatal). These 

essages are encrypted and compressed based on the current con- 

ection status. Following a successful handshake, the server and 

he client can exchange information through the established secure 

ommunication channel. 

.2. TLS Vulnerabilities 

Although the goal of the TLS protocol is to establish a secure 

ommunication channel, it may still have unknown vulnerabilities 

aking it insecure and susceptible to attacks. According to the In- 

ernet Security Glossary, Version 2 ( Shirey, 2007 ), vulnerabilities 

an be classified into three groups: design vulnerabilities, imple- 

entation vulnerabilities, and operation and management vulnera- 

http://www.dest-unreach.org/socat/
https://www.openssl.org/
https://github.com/inesc-id/MultiTLS
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ilities. In this work, we focus only on the first two groups of vul- 

erabilities. The design vulnerabilities refer to protocol specifica- 

ion failures and releasing a new version or update is the only way 

o fix this kind of vulnerability. The implementation vulnerabilities 

re related to failures that were created during the implementa- 

ion phase of the protocol. To prove the importance of our work 

n increasing communications security, we present some vulnera- 

ilities found in the TLS protocol and in some of the cryptographic 

lgorithms used by it. 

.2.1. Design Vulnerabilities 

An example of an attack that exploits a design vulnerabil- 

ty is CRIME (Compression Ratio Info-leak Made Easy) ( Rizzo and 

uong, 2012 ). This vulnerability was found in TLS compression. 

he main purpose of compression is to reduce the size of messages 

o be transmitted, while preserving their integrity. DEFLATE is the 

ost common compression algorithm used. One of the techniques 

sed by compression algorithms is to replace repeated bytes with a 

ointer to the first instance of that byte. If a victim and server are

sing the DEFLATE compression method and if an attacker knows 

hat for the session the targeted website creates a cookie called 

user” then the attacker can obtain the victim’s cookie through a 

an-in-the-middle attack (MITM), so the attacker needs to inject 

Cookie: user = 0” into the victim’s cookie, the server will only ap- 

end the character “0” to the compressed response since “Cookie: 

ser = ” is already sent in the victim’s cookie. All the attacker must 

o is inject different characters and then monitor the size of the 

esponse. If the response size is smaller than the initial one, it 

eans that the character they injected is contained in the value 

f the cookie and thus has been compressed, which is equivalent 

o a match. If the character is not in the cookie value, the response

ize will be larger. Using this method, an attacker can brute-force 

he cookie value by using the responses sent by the server. 

.2.2. Implementation Vulnerabilities 

In 2014, an implementation vulnerability was discovered in 

penSSL, called Heartbleed. The name of the vulnerability is re- 

ated to a code extension where the vulnerability was found: the 

eartbeat extension ( Seggelmann et al., 2012 ), which is an exten- 

ion to the TLS protocol designed to enable a low-cost, keep-alive 

echanism. The extension consists of sending a message with an 

rbitrary payload and the size of that same payload. After the re- 

eiver obtains this message, it returns the received payload. 

The Heartbleed vulnerability ( Carvalho et al., 2014 ) is a buffer 

ver-read vulnerability that happens when the sender sends a 

essage that specifies a payload size bigger than the real size of 

he payload. The receiver, upon receiving the message, returns a 

lock of memory where the sent payload begins plus the speci- 

ed size of the received message, that is, it returns the received 

ayload and dataset with size equal to the size specified in the 

eceived message minus the real size of the message. This allows 

otential attackers to read memory contents that should have been 

ept private. 

There are also vulnerabilities in the underlying cryptographic 

echanisms used by the TLS protocol. Our solution uses diverse 

ipher suites as a form to increase security. For this, it is neces- 

ary to study the vulnerabilities in the cryptographic mechanisms 

o know which cipher suites are more secure and which can be 

sed. 

.2.3. Vulnerabilities in Asymmetric Cipher Mechanisms 

RSA ( Rivest et al., 1978 ) proposed by Rivest, Shamir and Adle- 

an, in 1978, is an asymmetric cryptographic algorithm used to 

ipher and sign messages. The security of RSA is based on two 

roblems: integer factorization problem and the RSA problem it- 

elf ( Menezes et al., 1996 ). The integer factorization problem con- 
3

ists of the decomposition of a number into a product of smaller 

ntegers that must be prime numbers. RSA with key size equal to 

68 bits (RSA-768) is unsafe because Kleinjung et al. (2010) have 

een able to factor a number with 768 bits, equivalent to a num- 

er with 232 digits. Although the use of RSA-1024 is currently 

iscouraged, no factorization has yet been published. Shor’s algo- 

ithm ( Shor, 1996 ) uses a theoretical quantum computer to factor- 

ze integers in polynomial time, making the integer factorization 

roblem easy to solve. However, this problem will only exist when 

uantum computers are practical and available. 

.2.4. Vulnerabilities in Symmetric Cipher Mechanisms 

The Advanced Encryption Standard (AES) is an encryption al- 

orithm created by Rijmen and Daemen, and standardized by 

he NIST (2001) . The key used in AES can have one of three

ifferent sizes: 128, 192, or 256 bits. The size of the key influ- 

nces the number of rounds that are, respectively, 10, 12 and 14. 

ogdanov et al. (2011) published a biclique attack against AES, 

hough only with slight advantage over brute force. The compu- 

ational complexity of the attack is 2 126 . 1 , 2 189 . 7 and 2 254 . 4 for 

ES128, AES192 and AES256, respectively. Despite this attack and 

thers, AES is still considered a secure encryption mechanism. 

.2.5. Vulnerabilities in Hash Functions 

A hash function, sometimes also called message digest func- 

ion, is an algorithm that transforms variable length data into 

maller datasets with a fixed length called hash values or check- 

ums. A hash function is required to satisfy the following proper- 

ies ( Menezes et al., 1996 ): 

• Easy to compute the hash value for any given message; 
• Preimage resistance: it is infeasible to generate a message that 

has a given hash value; 
• Second preimage resistance: it is infeasible to modify a message 

without changing the hash value; 
• Collision resistance: it is infeasible to find two different mes- 

sages with the same hash. 

Thus, the hash functions can be interpreted as a special com- 

ression of the message that works like a fingerprint of the mes- 

age, making it useful for data integrity checks and message au- 

hentication. Note that it is impossible to have a unique identity 

nce the message is compressed, allowing attackers to break the 

ollision resistance property. 

MD5 ( Rivest, 1992 ) is a hash function that produces a 128 bit 

ash. MD5 was proved not to be collision resistant by Wang and 

u (2005) , through differential attacks. Differential cryptanalysis, 

ntroduced by Biham and Shamir (1993) , analyzes the differences 

n input pairs on the differences of the resultant output pairs. 

.3. Achieving Security through Diversity 

In this work we aim to achieve security through diversity. A 

tatic system is characterized by no changes over time and there- 

ore an attacker has time to discover vulnerabilities in the sys- 

em. In order to overcome the problems caused by static defense 

echanisms, moving target defense was proposed as a way to 

ake it more difficult for an attacker to exploit vulnerabilities of 

 system, through dynamic defense mechanisms. Moving target 

efenses can be classified into two groups: proactive and reac- 

ive. Proactive moving target defenses adapt to a specific schedule, 

ithout feedback from the system. Reactive moving target defenses 

ake changes in the protected system when they receive a notifi- 

ation from a security sensor. 

The term diversity describes multi-version software in which 

edundant versions are purposely made different between them- 

elves ( Littlewood and Strigini, 2004 ). With diverse versions, one 
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opes that any faults they contain will be different and show dif- 

erent failure behavior. 

In MultiTLS we allow diverse ciphers to be combined arbitrar- 

ly, because of the tunnelling approach, enabling moving target de- 

ense in the use of ciphers for secure communication. 

.3.1. Vulnerability-Tolerant TLS 

The use of diversity for added security in a communication 

hannel was previously used by Joaquim et al. (2017) in vtTLS . It 

lso uses the diversity approach to solve the limitation of TLS hav- 

ng only one cipher suite negotiated between server and client. In 

hese cases, if one of the cryptographic mechanisms of the cipher 

uite becomes insecure, the communication channels using this ci- 

her suite may become vulnerable. It uses the diversity and re- 

undancy of cryptographic mechanisms, keys and certificates. The 

ommunication channels created by vtTLS are characterized by es- 

ablishment of k cipher suites, so that if vulnerabilities are found 

n the k − 1 cipher suites cryptographic algorithms, the channels 

ill still remain secure due to the remaining cipher suite. vtTLS 

as successfully implemented as a fork of OpenSSL version 1.0.2g, 

ut moving to a newer version of the library requires implement- 

ng the diversity features again. And again, for all future versions. 

ur solution, MultiTLS , is similar to this approach but it does not 

odify implementations of the libraries and tools, and only their 

ublic interfaces are used. Because of this, this solution is able to 

se the latest and most secure versions of the software. 

.3.2. Tunneling 

The term tunneling describes a process of encapsulating entire 

ata packets as the payload within other packets, which are han- 

led properly by the network on both endpoints ( Larson and Cock- 

roft, 2003 ). This characteristic in this type of protocol makes it 

ossible to send data between two private networks, using a pub- 

ic network infrastructure. 

A communication tunnel is an essential component of a VPN, 

hort for Virtual Private Network, a technology to ensure that 

ensitive data can be transmitted securely, preventing unautho- 

ized persons from having access to this information. When talk- 

ng about VPN there are several types to consider ( Khanvilkar and 

hokhar, 2004 ): Machine-to-Machine, Machine-to-Network, and 

etwork-to-Network. 

For the tunnel connection to be successfully established, it is 

ssential that both parties understand and use the same proto- 

ol. The Internet Protocol (IP) transmits block of data called data- 

rams from sources to destinations, which are hosts identified by 

ddresses, as defined by Postel (1981) . In the IP header of the pack-

ts there is a field, called Protocol, to identify the next level pro- 

ocol ( Reynolds and Postel, 1994 ). In this field we can used the “IP

n IP” Tunneling protocol. In IP Tunneling ( Estrin et al., 1995 ), the 

riginal header is preserved, and simply wrapped in another stan- 

ard IP header. An outer IP header is added before the original IP 

eader. Between them are any other headers for the path, such as 

ecurity headers specific to the tunnel configuration. The outer IP 

eader source and destination identify the endpoints of the tun- 

el. The inner IP header source and destination identify the origi- 

al sender and recipient of the datagram. 

IPsec ( Kent and Seo, 2005 ) is a network protocol suite that au-

henticates and encrypts the packets sent over a network. IPsec 

as two encryption modes: tunnel and transport. Tunnel mode en- 

rypts the header and the payload of each packet while transport 

ode encrypts the payload. IPsec uses the following subprotocols 

o perform various functions: 

• Authentication Headers (AH) provide authentication and data 

integrity for IP datagrams; 
• Encapsulating Security Payloads (ESP) provide confidentiality, 
authentication and message integrity. t

4 
The Secure Shell Protocol (SSH) is a protocol for secure re- 

ote login and other secure network services over an insecure 

etwork ( Ylonen and Lonvick, 2006 ). SSH is typically used to log 

nto a remote machine and execute commands, but it also supports 

unneling. SSH is structured in three layers that provide the mech- 

nisms that make SSH secure for tunneling: 

• Transport: provides encryption, server authentication, and in- 

tegrity protection ( Ylonen and Lonvick, 2006 ); 
• Authentication: runs on top of the Transport layer and provides 

ways to authenticate the client to the server ( Ylonen and Lon- 

vick, 2006a ); 
• Connection: also runs on top of the Transport layer and 

specifies a mechanism to multiplex multiple channels over 

the underlying confidentiality and authentication trans- 

port ( Ylonen and Lonvick, 2006b ). 

. MultiTLS 

MultiTLS provides secure communication channels with mul- 

iple layers through tunneling of TLS channels within each other. 

ultiTLS provides an increase in security since each of these TLS 

hannels uses a different cipher suite than the others. As men- 

ioned before, TLS channels individually use only one cipher suite, 

hich consists of a single point of failure if the cryptographic 

echanisms used become vulnerable. MultiTLS solves this prob- 

em by allowing the server and the client to create a communica- 

ion channel composed by k TLS channels, with k > 1 , and conse-

uently also allows to use k cipher suites and certificates, in con- 

rast to a communication that uses only one TLS channel. In prac- 

ical terms, we expect the value of k to range from 1 to 3. A value

f 1 represents a secure tunnel with baseline encryption, while 

dding more different ciphers enhances the ability to tolerate vul- 

erabilities. Values beyond 3 are not very likely due to the limited 

vailability of diverse cipher suites and the accumulated impact on 

erformance, as discussed in Section 4.2 . 

The reason MultiTLS contributes to increased security is that 

ven when k − 1 cipher suites become insecure, that is, even when 

 − 1 TLS channels become vulnerable, the communication chan- 

el created by MultiTLS , which is the combination of the k TLS 

hannels, remains secure since there is still one TLS channel with 

ecure cipher suite. The mechanisms used by MultiTLS allow cre- 

ting k TLS channels and encapsulate one into another without 

hanging the implementations of the used tools. This approach is 

n advantage over vtTLS , since it does not require changes to the 

mplementation of TLS. 

When a vulnerability is discovered, its remediation is not in- 

tantaneous, as it needs to be understood, the software needs to 

e fixed, and the patches need to be distributed across many de- 

loyments. In the meantime, attackers can target the valuable ser- 

ices that are exposed. MultiTLS provides enhanced flexibility in 

ddressing the issue. Unlike a single TLS channel that necessitates 

mmediate attention, MultiTLS with a value of k > 1 allows oper- 

tions to continue while the vulnerability and its impact are han- 

led. Updates can be scheduled at a later time to minimize disrup- 

ions, offering a more flexible and efficient approach to resolving 

ecurity problems. 

In the following sections, we will discuss use cases, followed by 

he design and implementation of MultiTLS . 

.1. Use Cases 

MultiTLS can be used to add security to a communication 

hannel without protection or to reinforce the security of existing 

ut weak protection. To contextualize the use of MultiTLS in prac- 

ical scenarios, four case studies were defined where the use of the 

ool can offer security advantages: 
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1. Secure communication between two organization networks; 

2. Secure communication between two cloud solutions; 

3. Secure communication between the employee’s device and the 

organization’s network; 

4. Secure communication between legacy applications. 

In the case of secure communication between networks, it will 

e necessary to configure the MultiTLS tool in both networks, 

hich will work as a reverse proxy. It will allow secure connec- 

ions through multiple encrypted TLS channels, which reinforce the 

evel of security between two areas of operation of an organization, 

.g. two buildings in different locations. 

In the case study of secure communication between two cloud 

olutions, MultiTLS reinforces security in the communication be- 

ween two cloud solutions, whether from the same provider or 

rom different providers. Here too, it will be necessary to config- 

re a machine in each cloud solution that will serve as a reverse 

roxy for the remaining assets. 

The case study of secure communication between the em- 

loyee’s device and the organization’s network, is intended to rep- 

esent a scenario when the employee is outside the organization’s 

etwork, for example, working from home or from an hotel. It will 

e the responsibility of the organization to guarantee the avail- 

bility of the service ( MultiTLS as server), accepting connection 

equests. On the employee’s side, she must configure the tool in 

lient mode and establish the connection with the server. 

The last case, secure communication between legacy applica- 

ions, is focused on existing applications, possibly with obsolete 

echnologies but that still play a critical business function. They 

ay even have known security vulnerabilities. It will be necessary 

o configure the MultiTLS tool on the machines where these ap- 

lications are located. The use of the tool allows communication 

o be carried out securely by encapsulating the legacy application 

essage through recent and secure cryptographic protocols. A spe- 

ific example would be the interconnection of an application server 

ith a database server that does not support a recent TLS protocol 

ersion. 

The first two case studies correspond to network-to-network 

PNs, the third case study pertains to a host-to-network VPN, and, 

nally, the fourth use case corresponds to a machine-to-machine 

PN. 

.2. Design 

To encapsulate a TLS channel in another TLS channel, we use 

etwork tunnel interfaces (abbreviated as TUN interfaces). This 

echanism is a feature offered by some operating systems, namely, 

inux. Unlike common network interfaces, TUN interfaces do not 

ave physical hardware components, that is, they are virtual net- 

ork interfaces implemented and managed by the kernel itself. 

UN is a virtual point-to-point network device. Its driver was de- 

igned with low-level kernel support for IP tunneling. It works 

t the protocol layer of the network stack. TUN interfaces allow 

ser-space applications to interact with them as if they were a 

eal device, remaining invisible to the user. These applications pass 

ackets to a TUN device, in this case, the TUN interface delivers 

hese packets to the network stack of the operating system. Con- 

ersely, the packets sent by an operating system to a TUN device 

re delivered to a user-space application that attaches to the de- 

ice. Figure 1 shows a practical example in which an application 

unning on two different network hosts communicate through TUN 

nterfaces. 

We create an encapsulation of several tunnels by creating TUN 

nterfaces through others created previously. For each of these in- 

erfaces, we can use different TLS implementations running in user 
5 
pace that allow creating a TLS channel that is encapsulated by the 

unnel used by the hosts. 

Figure 2 presents the architecture of MultiTLS for host com- 

unicating over the network with k = 2 . This parameter configu- 

ation allows communication over two tunnels, where the tunnel 

etween the TUN1 interfaces encapsulates the tunnel between the 

UN2 interfaces. In addition, we can see processes that we desig- 

ate as “TLS implementation”. These processes serve the purpose 

f setting up and overseeing the TLS channel for each tunnel, op- 

rating as client on one side, or as server on the other side. 

.3. Combining Diverse Cipher Suites 

In MultiTLS , we are interested in having the maximum possible 

iversity of cryptographic mechanisms, because we want to avoid 

ommon vulnerabilities. Evaluating the diversity among crypto- 

raphic mechanisms is not trivial. For this purpose, we based our 

nalysis on work by Carvalho (2014) regarding heuristics to com- 

are diversity among different cryptographic mechanisms. In our 

ork, we focused on searching for the combination of four cipher 

uites that guarantee greater diversity and are supported by TLS 

.2 from the OpenSSL 1.1.0g implementation. 

We began by evaluating the diversity of public key mechanisms. 

n this case, we observed the various combinations of key exchange 

nd authentication algorithms in cipher suites. The insecure cryp- 

ographic mechanisms were discarded as well as the ECDH and DH 

lgorithms since there are the variants of them, ECDHE and DHE, 

hich guarantee perfect forward secrecy. This analysis resulted in 

he following combinations: 

• ECDHE for key exchange and ECDSA for authentication; 
• RSA for key exchange and authentication; 
• DHE for key exchange and DSS for authentication; 
• ECDHE for key exchange and RSA for authentication; 
• DHE for key exchange and RSA for authentication. 

To avoid that the key exchange and authentication algorithms 

re repeated consecutively, we choose the first four combinations 

f the above list, keeping the presented order, i.e., the first tunnel 

ill use ECDHE for key exchange and ECDSA as authentication al- 

orithm, the second RSA for key exchange and authentication, the 

hird DHE for key exchange and DSS for authentication and the 

ourth DHE for key exchange and RSA for authentication. 

Considering the combination of key exchange and authentica- 

ion algorithms, we group the supported cipher suites according to 

his combination. After this step, we chose in each group the ci- 

her suite that maximizes the diversity of the symmetric key algo- 

ithms and the hash function between each of the four groups. To 

easure the diversity of the cryptographic mechanisms, we have 

aken into account some characteristics such as the origin, i.e., 

he author or institution that proposed the algorithm, the year in 

hich it was designed, the size of the key in the case of the sym-

etric key algorithms and the digest size in the case of hash func- 

ions and other metrics described in research by Carvalho (2014) . 

e concluded that the combinations of 4 symmetric key algo- 

ithms that maximize the diversity itself are: 

• ChaCha20 + Camellia 256 + AES256-GCM + AES128CBC; 
• ChaCha20 + Camellia 256 + AES256-CBC + AES128GCM; 
• ChaCha20 + Camellia 256 + Camellia128 + AES256-GCM. 

Regarding hash functions, the variety is greatly reduced since 

here is only SHA-256 and SHA-384. However, some symmetric key 

lgorithms use operation modes, such as CBC-MAC (CCM mode) 

nd Galois/Counter Mode (GCM), that provide authenticated en- 

ryption with associated data (AEAD). It is considered an alter- 

ative mechanism which can be used redundantly with HMAC to 

chieve even higher diversity. In addition, the cipher suites with 
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Fig. 1. Example of using TUN interfaces. 

Fig. 2. MultiTLS design with k = 2 and the flow of sending messages from one application to another on different hosts. 
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he ChaCHA20 algorithm use the Poly1305 hash which is a one- 

ime message authenticator. Poly1305 takes a 32-byte one-time 

ey and a message and produces a 16-byte message authentication 

ode (MAC). 

From these analyses, the cipher suites selected to be used by 

efault in MultiTLS with k ≤ 4 are: 

• TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256; 
• TLS_RSA_WITH_AES_128_CCM_8; 
• TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256; 
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384. 

If the MultiTLS user selects only 2 tunnels, i.e., k = 2 , the first

ipher suite shown in the above list is used in the first tunnel and

he second cipher suite is used in the second tunnel. 
6 
.4. Interception Resistance 

A man-in-the-middle (MITM) attack occurs when an attacker 

ntercepts and potentially manipulates the communication be- 

ween two parties, allowing the attacker to eavesdrop or alter the 

essages, or to impersonate one of the parties. Although TLS is de- 

igned to safeguard against MITM attacks, vulnerabilities can still 

rise in certain implementations or configurations, making such at- 

acks possible. MultiTLS introduces multiple intermediate protec- 

ion levels, and so it increases the difficulty for attackers attempt- 

ng to carry out interception attacks. 

.5. Running MULTITLS 

MultiTLS was implemented as a script in Bash language and 

an be run as a shell command on Linux. Before presenting how 
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ultiTLS creates the secure tunnels, we will first introduce the 

ommands that allow us to create them: 

• multitls -s port nTunnels [cert cafile 
cipher] 

• multitls -c port nTunnels IPServer [cert 
cafile cipher] 

The flags -s and -c mean that MultiTLS will run as a server or 

lient, respectively. The port argument specifies the port used to 

stablish the last tunnel. In the case of the server, MultiTLS will 

e listening on that port. In the case of the client, MultiTLS will 

onnect to that port of the machine that has the IP specified in the 

PServer argument. The nTunnels argument specifies the number of 

unnels that MultiTLS will create. In addition, we must specify: 

he path to the file with its certificate and private key in the cert 

rgument and the path to the file that contains the peer certificate 

n the cafile argument. The cipher argument lets us specify one or 

ore cipher suites. If cipher suites are not specified, the default 

nes will be used. The arguments between brackets must be spec- 

fied as many times as the value of the nTunnels argument because 

ach tunnel will use a set of keys and ciphers. 

.6. Implementing the Tunnels 

The execution of commands provided by MultiTLS allows 

he creation of TUN interfaces and the creation of the tunnel 

hat encapsulates a TLS channel, as explained in Section 3.2 . 

igure 2 shows the scheme resulting from the execution of the two 

ultiTLS commands as shown in Section 3.5 . 

MultiTLS depends on the socat version 1.7.3.2 and OpenSSL ver- 

ion 1.1.0g. Socat is a command line utility 4 that establishes two 

idirectional byte streams and transfers data between them. The 

se of socat can be applied to a wide variety of purposes since the 

treams can be constructed from a large set of different types of 

ources and sinks, also designated by address types, besides the 

ultiple options that may be applied to streams. A socat com- 

and has the following structure: socat [options] address1 ad- 

ress2, where [options] means that there may be zero or more op- 

ions that modify the behavior of the program. The specification of 

he address1 and address2 consists of an address type keyword, for 

xample, TCP4, TCP4-LISTEN, OPENSSL, OPENSSL-LISTEN, TUN; zero 

r more required address parameters separated by ‘:’ from the key- 

ord and each other; and zero or more address options separated 

y ‘,’. 

The MultiTLS script starts by analyzing the arguments provided 

y the user. Afterwards, these arguments are used to execute socat 

ommands. MultiTLS creates k tunnels running k socat command 

n the server and k commands on the client. For the establishment 

f a tunnel using the socat commands, MultiTLS executes the fol- 

owing two commands, the first on the server side and the second 

n the client side: 

• socat openssl-listen:$port,cert = $cert,cafile =
$cafile, \ cipher = $cipher TUN:$ipTun/24,tun-name
= $nameTun,up 

• socat openssl-connect:$ipServer:$port,cert 
= $cert, \ cafile = $cafile,cipher = $cipher \
TUN:$ipTun/24,tun-name = $nameTun 

In the first command, we have the $port argument that rep- 

esents the port where the socat will be listening, we have the 

cert, $cafile and $cipher arguments that have the same meaning 

s the MultiTLS command arguments with the same names. The 

rguments $ipTun and $nameTun are, respectively, the IP of the 
4 http://www.dest-unreach.org/socat 

i

g

o

7

erver in the TUN interface and the name of that, which is created 

hrough this command. 

In the second command, we have the argument $ipServer that 

epresents the IP of the server, the argument $port that repre- 

ents the port of the server where the socat connects to establish 

he communication. We have the $cert, $cafile, and $cipher argu- 

ents that have the same meaning as the cert, cafile, and cipher 

rguments in the MultiTLS commands. The arguments $ipTun and 

nameTUN are, respectively, the IP of the client in the TUN inter- 

ace and its name, which is created through this command. 

MultiTLS by default assumes that the IP and names for the TUN 

nterfaces are 10.$k.1.$i and TUN$k, where $k is the tunnel number, 

 ≤ k ≤ nT unnels and $i has the value 1 if it is the server and 2 if

t is the client. 

After the establishment of the first tunnel, MultiTLS can create 

he second tunnel which is encapsulated by the first tunnel, us- 

ng the previous socat commands in which the value of $ipServer 

nstead of being the real IP of the server is the IP of the TUN in-

erface created on the server to establish the first tunnel, which as 

reviously mentioned is 10.1.1.1, by default. To create more tunnels, 

he IP of the last TUN interface created on the server side must be 

pecified in the $ipServer argument. 

TUN interfaces allow MultiTLS to create multiple virtual net- 

ork interfaces. It is through the TUN interfaces that MultiTLS en- 

apsulates the various tunnels. These interfaces operate at level 3 

f the OSI model, and these devices can be used to establish VPN 

ommunications, as they allow the responsible software to encrypt 

he information before it is sent. MultiTLS uses several TUN inter- 

aces, as each interface will allow establishing a TLS tunnel that 

ill be encapsulated by the TLS tunnel of the next TUN interface. 

n the other hand, MultiTLS uses OpenSSL as a dependency, which 

llows performing all the cryptographic part, from creating and 

igning client and server certificates to the development of mes- 

age ciphers. Whereas, the Socat dependency allows MultiTLS to 

stablish multiple tunnels. This tool allows data transfer between 

wo independent channels, being responsible for creating the TUN 

nterfaces and using OpenSSL. That is, it is through Socat that the 

unnel is established between the TUN interface on the client side 

nd the TUN interface on the server side, using the implementa- 

ion of OpenSSL in order to protect the connection. 

.7. Configurations 

To successfully establish communication through the MultiTLS 

ool, it is necessary to ensure some configurations in the machines. 

n a first phase, the MultiTLS client uses port 4040 to send infor- 

ation that will be used to establish encrypted communication. 

his information includes: the IP address; the number of tunnels 

o consider in the MultiTLS communication to be established; the 

ort on which this communication will be made; and the client 

ertificate used in the first tunnel. On the server side, the informa- 

ion is received on port 4040 and sends its certificate to the first 

unnel. The client receives the server’s certificate on port 4040. 

ue to these initial negotiations, it is necessary to configure any 

rewalls that may interfere with the communication, to accept in- 

ound and outbound data flow to port 4040. Once the initial nego- 

iations are finished, the tool can now establish k tunnels (defined 

y the user and less than or equal to four). The first tunnel is es-

ablished through the port indicated by the user when starting the 

lient-side program. For the remaining tunnels, the port number 

sed will be incremented from the port initially indicated by the 

ser. 

If it is necessary to communicate between different networks, 

t is necessary to configure port forwarding to traverse a network 

ateway, such as a router. After this configuration, MultiTLS will 

perate transparently. 

http://www.dest-unreach.org/socat
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Fig. 3. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages in relation to the number of tunnels created. 
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. Evaluation 

The experimental evaluation aims to answer questions about 

he performance and cost of MultiTLS . We have the following ex- 

eriment sets: performance, file transfers, comparison with other 

pproaches, and a use case. 

.1. Setup 

For all the experiments, two virtual machines were used, one 

s a server and the other as a client, running on separate physical 

osts. 

Each presented measurement was repeated 100 times, with the 

omputed average presented as the result. We assume a normal 

istribution, treating each run as a sample. 

.2. Performance 

In this Section we assess the performance of MultiTLS . We 

ant to answer two specific questions: What is the cost of adding 

ore tunnels?What is the cost of encrypting messages? 

In the following experiments, each virtual machine had 2 VC- 

Us, 8 GB RAM, and Ubuntu Linux 16. 

In the first experiment, we used the iperf3 tool, version 3.0.11. 

perf3 is a tool used to measure network performance. It has server 

nd client functionality and can create data streams to measure 

he throughput between the two ends. It supports the adjustment 

f several parameters related to timing and protocols. The iperf3 

utput presents the bandwidth, transmission time, and other pa- 

ameters. 

To answer the first question, the experiment consisted of using 

he iperf3 tool to measure the transmission time of 1 MB, 100 MB 

nd 1 GB for each k , considering k ≤ 4 . The cipher suites used in

his evaluation are the same ones that are defined by default in 

ultiTLS . The average and the standard deviation of transmission 

ime of 1 MB, 100 MB and 1 GB for each value of k can be seen

n Figure 3 . We start with k = 1 so as to have as baseline a single

ncryption, i.e., we are not comparing against a scenario without 

ecurity. 

Figure 4 shows for each message size the overhead of the trans- 

ission time for k = 2 , k = 3 and k = 4 in relation to k = 1 . There-

ore, we can see that for k = 2 and k = 3 the cost of having added
8 
ore tunnels increases as the size of the message to be transmit- 

ed also increases. For k = 4 the cost of having added more chan-

els decreased as the size of the message to be transmitted in- 

reased. We can also observe that the transmission time for k tun- 

els is less than k times the value of k = 1 for each message size,

xcept for k = 4 , where the overhead exceeds 4 times the value of

 = 1 and for k = 3 in the 1GB transmission where the time is 3.04

imes greater than for k = 1 . 

We can answer the first question that for k = 2 the performance 

f MultiTLS is acceptable, since the time of sending messages with 

 = 2 is less than the double of the time of sending messages with

 = 1 . With 3 tunnels, i.e., k = 3 , for the transfer of 1 GB, the per-

ormance of the MultiTLS is poor because the sending time is 

ore than three times the time of k = 1 , in contrast, to transfer

 MB and 100 MB the performance is good since the sending time 

s less than three times the time of k = 1 . 

The use of tunneling with multiple encapsulation layers can sig- 

ificantly impact network performance, a phenomenon known as 

TCP meltdown” or “TCP-over-TCP collapse”. TCP congestion con- 

rol algorithms struggle to handle the complex feedback loops from 

ultiple layers of tunneling, resulting in higher latency and de- 

raded throughput ( Harkanson et al., 2019 ). 

The second experiment aims to evaluate the cost of en- 

rypting the communication messages. To do this, using the 

ame virtual machines, we performed the same tests we did 

n the first experiment, however changing the cipher suites by 

efault from MultiTLS to TLS_ECDHE_ECDSA_WITH_NULL_SHA, 

L S_RSA_WITH_NULL_SHA256, TL S_RSA_WITH_NULL_SHA and 

LS_ECDHE_RSA_WITH_NULL_SHA. Therefore, the messages ex- 

hanged by the client and the server were not encrypted. This 

xperiment helps us realize the influence of encrypting the data 

n the total transmission time of messages with different sizes. 

igure 5 shows the average and standard deviation of transmission 

ime of 1 MB, 100 MB, and 1 GB for each value of k . 

As with the first experiment, for each message size, the trans- 

ission time increases as the number of tunnels increases. How- 

ver, we verified that the transmission time of 1 MB for all values 

f k is greater than k times the time of k = 1 . In the transfer of

00 MB and 1 GB with k tunnels, the transmission time does not 

xceed k times the value of k = 1 . 

Figure 6 shows the percentual difference between the first and 

econd experiment, for each message size and k . We can see that, 
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Fig. 4. The overhead of adding more tunnels in relation to k = 1. 

Fig. 5. Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages in relation to the number of unencrypted tunnels. 

Fig. 6. Difference between first and second evaluation results. 

9 
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Table 1 

Results for file transfer with k = 0 . 

k = 0 

25MB File 50MB File 75MB File 100MB File 

1st 0.08 s 0.20 s 0.24 s 0.31 s 

2nd 0.08 s 0.18 s 0.24 s 0.33 s 

3rd 0.07 s 0.15 s 0.24 s 0.26 s 

4th 0.08 s 0.14 s 0.23 s 0.44 s 

... ... ... ... 

Mean 0.08 s 0.17 s 0.22 s 0.33 s 
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Table 2 

Results for file transfer with k = 1 . 

k = 1 

25MB File 50MB File 75MB File 100MB File 

1st 2.90 s 3.78 s 6.93 s 9.86 s 

2nd 2.25 s 3.63 s 6.63 s 9.81 s 

3rd 3.25 s 2.86 s 7.50 s 11.90 s 

4th 2.58 s 2.87 s 8.77 s 8.77 s 

... ... ... ... 

Mean 2.87 s 3.30 s 7.39 s 9.54 s 

Table 3 

Test table for k = 2 . 

k = 2 

25MB File 50MB File 75MB File 100MB File 

1st 3.00 s 8.38 s 14.41 s 19.16 s 

2nd 4.14 s 7.28 s 16.09 s 20.38 s 

3rd 2.07 s 7.63 s 13.92 s 21.38 s 

4th 5.81 s 7.04 s 15.78 s 19.98 s 

... ... ... ... 

Mean 3.41 s 7.70 s 14.46 s 20.26 s 

Table 4 

Results for file transfer with k = 3 . 

k = 3 

25MB File 50MB File 75MB File 100MB File 

1st 7.61 s 16.95 s 19.42 s 30.48 s 

2nd 6.81 s 14.89 s 20.39 s 29.51 s 

3rd 5.93 s 15.27 s 20.05 s 28.43 s 

4th 5.48 s 15.54 s 19.51 s 30.76 s 

... ... ... ... 

Mean 7.20 s 16.00 s 20.28 s 30.17 s 

Table 5 

Results for file transfer with k = 4 . 

k = 4 

25MB File 50MB File 75MB File 100MB File 

1st 10.95 s 19.91 s 26.68 s 39.35 s 

2nd 10.44 s 18.54 s 27.11 s 38.83 s 

3rd 9.07 s 19.66 s 26.31 s 40.08 s 

4th 10.13 s 18.91 s 26.54 s 41.02 s 

... ... ... ... s 

Mean 9.39 s 19.37 s 27.13 s 39.66 s 
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or certain message sizes and k , messages sent on the first experi- 

ent took less time than messages sent without encryption. How- 

ver, we can observe that in these cases the average overhead is 

bout −10% , whereas in cases where encrypted communications 

ake longer than unencrypted communications, the average over- 

ead is 35%. Overall, the overhead of encrypting the messages is 

3%. 

For all this, we can answer the second question: the time to 

ncrypt the messages has a considerable low impact given that it 

akes 13% more time. 

.3. File Transfers 

For this set of experiments, we used machines 4 VCPUs, still 

 GB RAM, and Ubuntu Linux 20.04 LTS. 

This scenario is based on the machine-to-machine for se- 

ure communication between legacy applications, described in 

ection 3.1 . More specifically, FTP ( File Transfer Protocol ) was used. 

hrough its client/server architecture, FTP is able to establish a 

onnection between two points, which can be used to transfer files 

nd perform other operations. The tests carried out consisted of 

ransferring different files (25 MB, 50 MB, 75 MB and 100 MB) and 

easuring the transfer time for different numbers of tunnels. Ini- 

ially, as a reference, a test was performed for k = 0, that is, the

easurements were made without using any tunnel, just a normal 

TP communication. Then the same procedure was performed for 

 = 1, k = 2, k = 3 and k = 4, where k represents the number of

unnels used by the tool. In order to minimize the impact of possi- 

le disturbances on the network, all the results obtained were col- 

ected at the same time of day, under similar conditions. Another 

spect that was taken into account was the representativeness of 

he data. In order to guarantee that the collected data sample was 

epresentative, the arithmetic mean and standard deviation of the 

btained data was calculated. After collecting the samples, it was 

ound that the standard deviation for all cases considered was less 

han one second. 

The results obtained are show in tables related to the number 

f tunnels ( k = 0 , k = 1 , k = 2 , k = 3 and k = 4 ). Each table also has

ve columns, the first indicating the order in which the data were 

nserted, and the remaining four indicating the value of the mea- 

urements for the different files considered. Finally, each table also 

ndicates the mean transfer time for each file. 

The data referring to the transfer of files using FTP only ( k = 0 )

s shown in Table 1 . 

Using only FTP ( k = 0 ), it was possible to verify that the sending

f files was practically instantaneous. Then, the same test was per- 

ormed for k = 1 , that is, using the tool with only one configured

unnel. The results obtained can be observed in Table 2 . 

Through the observed data, it was possible to verify that when 

onfiguring a connection with only one tunnel, an increase in the 

verage time is already noticeable. The remaining data, configured 

ith two, three and four encapsulated tunnels, can be seen in the 

ables 3 , 4 , and 5 , respectively. 
10 
Figure 7 summarizes the data collected in the experiments, 

hen using files of different sizes and different numbers of tun- 

els. The larger the file size and the number of tunnels used, the 

reater the transfer time. This result was expected, taking into ac- 

ount that not only was the size of the file itself increased, but also 

he overhead caused by the addition of tunnels to the communica- 

ion. The number of tunnels chosen for the communication has a 

ore significant impact on the transfer time. 

.4. Comparison with VTTLS and DTLS 

The purpose of this section is to compare the performance of 

ultiTLS with other tools and to know which of these approaches 

erforms better. For this purpose, we use the same virtual ma- 

hines as the experiment in Section 4.2 . vtTLS is used to trans- 

er three files each with the size of 1 MB, 100 MB and 1 GB. We

an vtTLS 100 times for each of these files. In addition to this 

xperience, we also run a file transfer using a Datagram Trans- 

ort Layer Security (DTLS) ( Rescorla and Modadugu, 2012 ) chan- 

el implemented through the GnuTLS library. This channel used 
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Fig. 7. File transfer rate results (MB/s). 

Fig. 8. Time for sending messages with 1MB, 100MB and 1GB in size via vtTLS , 2 MultiTLS tunnels and 1 DTLS communication over 1 MultiTLS tunnel. 
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7 
he cipher suite TLS_RSA_AES_128_GCM_SHA256. This application 

an over one tunnel created by MultiTLS . DTLS is a communica- 

ion protocol that provides security, such as TLS, but for datagram- 

ased applications. The purpose of using DTLS is to measure the 

erformance of a channel that uses UDP over TCP, since with Mul- 

iTLS communication we have tunnels of several tunnels, that is, 

CP over TCP. Besides the diversity of cipher suites used, this ex- 

erience also shows that it is possible to have a diversity of TLS 

mplementations if the application using MultiTLS uses a library 

ther than OpenSSL. 

Figure 8 allows us to compare the average of the results ob- 

ained from the two previous experiences with the averages of 

he results obtained in the first experiment with k = 2 once the 

wo previous experiments use approaches in which the messages 

re encrypted twice such as MultiTLS with two tunnels. In addi- 

ion, we can also observe the standard deviation in each column. 

igure 8 also shows that, of the three approaches, vtTLS is the 

astest and the DTLS channel approach is the slowest. The values of 

he MultiTLS results are closer to the results of the vtTLS than to 

he DTLS channel approach. However, the transfer time overhead 

f 1MB, 100MB and 1GB between vtTLS and MultiTLS are, respec- 

ively, 525%, 164% and 173%. The DTLS channel approach does not 

ave an expected performance because the server only sends the 
11 
ext fragment after receiving the size of the last fragment sent by 

t. 

.5. Browser to Web Proxy Performance 

Although the use of MultiTLS presents a transfer time over- 

ead in relation to vtTLS , we wanted to know what is the per- 

ormance of MultiTLS applied in a use case. We use MultiTLS to 

stablish communication between a browser and a proxy, based on 

he scheme shown in Figure 2 . 

To do these experiments, one machine ran the Squid proxy, ver- 

ion 3.5.12, and the other ran the Google Chrome browser, version 

6.0.3359.117. 

In this evaluation we tested four approaches: no proxy, use 

nly the proxy, use the proxy using one and two MultiTLS tun- 

els. These four approaches allow us to evaluate the cost of us- 

ng MultiTLS . The evaluation consisted of using the browser to re- 

uest 30 times certain URLs from Amazon 

5 , Google 6 , Safecloud 

7 , 
http://www.safecloud-project.eu/ 

https://www.amazon.com/
https://www.google.com/
http://www.safecloud-project.eu/
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Fig. 9. Time to load sites with: no proxy, with proxy, with proxy using MultiTLS with 1 tunnel and with 2 tunnels. 
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écnico 8 and Youtube 9 websites for each approach and registered 

he value of the load event that appears on the network tab in the 

eveloper tools of the browser. The load event is fired when a re- 

ource and its dependent resources have finished loading. We col- 

ect the data with the browser development tools with the cache 

isabled. 

Figure 9 presents the average of the results obtained with the 

ifferent approaches for each requested URL. We can observe that 

he use of MultiTLS in the communication between the browser 

nd the proxy was insignificant. We can conclude that MultiTLS is 

 tool with good performance in tasks common to the day-to-day 

f many Internet users. 

. Conclusion 

We presented MultiTLS , a middleware that allows the creation 

f a channel of communication through the encapsulation of sev- 

ral secure tunnels in others. It increases security by using the di- 

ersity of cipher suites of the tunnels so that if k − 1 cipher suites

ecome insecure, there still remains cipher suite that protects the 

ommunication. MultiTLS has the advantage of not modifying any 

LS implementation or any of its dependencies. 

To evaluate MultiTLS , several tests were executed with the in- 

ention of measuring its performance and cost. The performance of 

le transfer was tested with different file sizes and different num- 

ers of tunnels, confirming that these two variables have signifi- 

ant influence. The larger the file size, the greater the impact of 

he number of tunnels chosen on the transfer time. We also com- 

ared MultiTLS with the protocol vtTLS and we conclude that, al- 

hough it performs less favorably in comparison, it has the advan- 

age of not modifying any TLS implementation or any of its de- 

endencies. In addition, MultiTLS can be used in a simple way by 

n application, such as communication between a browser and a 

roxy running on different hosts or by an application that allows 

s to create a TLS or DTLS channels. If these applications use a TLS 

ibrary other than OpenSSL then diversity in TLS implementation 

s achieved, which makes communication even more secure, since 

he damage caused by vulnerabilities in one of these implementa- 

ions does not endanger communication. 
8 https://tecnico.ulisboa.pt/en/ 
9 https://www.youtube.com/watch?v=oToaJE4s4z0 

A

H

n

12 
In our future work , we will focus on the following areas. Firstly, 

ur research will concentrate on improving network tunnel perfor- 

ance, specifically addressing latency and bandwidth usage. 

Next, we plan to port MultiTLS to other operating systems 

ike Windows and Android/iOS to cater to an even broader range 

f use cases. Additionally, we will conduct testing on resource- 

onstrained devices to validate the practical applicability of Mul- 

iTLS in securing Internet of Things applications. This presents a 

hallenge due to the limitations of these devices, such as low- 

ower processors, limited memory, and constrained communica- 

ion protocols. 

Another focus of our work is updating the diversity mechanisms 

or TLS version 1.3, that brings significant enhancements, includ- 

ng: resistance against downgrade attacks, simplified cipher suite 

egotiation, as well as support for the latest cryptographic algo- 

ithms. 

Finally, we will build upon the groundwork laid 

y Carvalho (2014) on diversity measurements in cipher-suite 

election. Our goal is to update the study and introduce diversity 

coring for each cryptographic mechanism. This will deepen our 

nderstanding of diversity in cryptographic systems and pave the 

ay for future solutions that will provide even greater security 

hrough diversity. 
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