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Persistent Memory (PM) and Hardware Transactional Memory (HTM) are two recent architectural
developments whose joint usage promises to drastically accelerate the performance of concurrent,
data-intensive applications. Unfortunately, combining these two mechanisms using existing architec-
tural supports is far from being trivial. This paper presents NV-HTM, a system that allows the execution
of transactions over PM using unmodified commodity HTM implementations. NV-HTM exploits a
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reduced flush operations with respect to state of the art solutions, which, unlike NV-HTM, require
custom modifications to existing HTM systems.
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1. Introduction when used to synchronize access to small in-memory data struc-
tures [18], as well as to significantly simplify the development of
concurrent applications with respect to conventional lock-based
schemes [25].

On the other hand, leading memory manufacturers have an-
nounced the imminent availability of innovative byte-addressable
PM technologies (e.g., phase-change, spin transfer torque and
resistive RAM [35]). Besides providing persistent working sets
to applications via a DRAM-like memory bus, the future PMs
are expected to achieve read access performance in the same
order of magnitude as DRAM, together with significant enhance-
ments on the capacity and energy efficiency fronts. However,
despite notable improvements in write endurance and perfor-
mance relatively to NAND SSD, the future PM technologies are
still expected to suffer from write wearing and have much higher
write latencies when compared to DRAM [38,55].

Over the last years, several technological advancements have
shaken the ground of memory technology. Hardware Transac-
tional Memory (HTM) and Persistent Memory (PM) are, arguably,
two of the most promising ones.

On the one hand, HTM [6,25,28], allows for speculatively
parallelizing the execution of critical sections/transactions, by
delegating to efficient hardware mechanisms the detection of
conflicts arising among concurrently executing threads. HTM has
been shown to bring about striking performance gains, especially
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The combined power of HTM and PM has the potential to en-
able drastic accelerations of modern data-intensive applications.
This unprecedented opportunity promises to deliver performance
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and scalability levels not attainable with block-oriented storage,
and at a fraction of the development cost/complexity compared
to lock-based synchronization schemes.

Unfortunately, though, the design of existing HTMs raises
non-trivial issues when these are used in conjunction with PM.
Whenever a transaction commits, current HTM systems only
guarantee that the writes issued by the transaction are made
visible to other cores via the cache coherence protocol. How-
ever, the updates produced by committed transactions are not
atomically flushed to (persistent) RAM, and may linger in the
CPU cache for an arbitrary amount of time before being written
back to PM. Unfortunately, caches are expected to remain volatile
[10,50,53]. As such, upon failure, only a subset of the committed
writes to PM may have been persisted — failing to guarantee
crash-atomicity [4].

A natural approach to tackle this problem would be to borrow
methodologies from durable transactions in traditional block-
based storage, such as undo/redo logging. Such schemes resort
to an additional persistent log, which tracks all the writes issued
by transactions. To satisfy crash-atomicity, they rely on a crucial
assumption: the ability to ensure that all transactional updates
persist in log before any persistent data is modified.

Unfortunately, though, commodity HTM fail to meet this as-
sumption. HTM implementations, such as Intel's TSX [28], do
not allow an ongoing transaction to flush the cached log to
(persistent) memory before the HTM commits the transaction.

This paper presents NV-HTM, a system that introduces a
novel hardware-software co-design to allow the execution
of transactions over PM using unmodified commodity HTM
implementations.

In a nutshell, NV-HTM instruments the writes issued with
HTM transactions to track them in a redo log. Once committed,
a transaction makes its effects (and its logs) visible to other
concurrent threads, but not necessarily persisted in PM — we call
this a non-durable commit. However, when a thread commits an
HTM transaction T, in durable fashion, it postpones the commit
event until T's log (and the log of any transaction T may depend
upon) has reached PM — but without waiting for the actual in-
place writes to be flushed to PM. Only at this point we say that
the transaction is durably committed.

This approach guarantees that whenever a transaction’s com-
mit is externalized, all of its log entries have been persisted;
however, the application’s state persisted in memory may reflect
only partially the updates of both durably and non-durably com-
mitted transactions. The key insight at the basis of NV-HTM is
to discard, upon recovery, the persisted application state and to
reconstruct it, replaying the logs of all the durably committed
transactions on a consistent checkpoint.

Turning this high level design into an efficient and correct
algorithm required tackling three main challenges.

1. HTM-compatible asynchronous logging. The first challenge is
how to build an efficient logging scheme that is compatible with
current off-the-shelf HTM implementations. This raises two main
obstacles: first, typical logging schemes that require flushing the
log before the hardware transaction is committed are not accept-
able; second, the use of centralized logging schemes in highly
concurrent environments, such as typical HTM systems, would
represent an inherent contention point and limit the system'’s
scalability in update intensive workloads. NV-HTM tackles these
issues by relying on a decentralized design, where each thread
maintains a local log storing only information related to transac-
tions that it executed. Additionally, NV-HTM builds a non-durable
log during execution of a transaction. However, it is only persisted
after the HTM commit event (non-durable commit), a commit
marker is then appended via software (durable commit).

2. Enforcing transactions’ dependencies. The necessary distinc-
tion between the non-durable and the durable commits raises a
key challenge: how to ensure that the serialization order of non-
durable commits (defined by HTM) is consistent with the order of
durable commits (defined in software by NV-HTM when it flushes
a transaction’s log).

In fact, NV-HTM can only flush the logs generated by a trans-
action T (i.e., durably commit T), after T has been non-durably
committed by HTM. This means that other transaction T' may
observe T's updates before they are persisted, where T”s log
entries persisted before Ts. Then, upon recovery, T would be
discarded and T’ replayed. This would break consistency, since
T' depends on (i.e., reads from) T.

3. Checkpointing process. Another crucial issue is related to
minimizing the computational and spatial overheads, as well as
reducing PM wear off, associated with the checkpointing pro-
cess that NV-HTM employs during recovery — to construct a
consistent snapshot reflecting the execution of all and only the
transactions durably committed before a crash — and during the
normal operational mode — to bound the log’s growth and the
duration of the recovery process. We address this challenge with
a checkpointing mechanism called Backward Filtering Checkpoint
(BFC), which filters repeated writes and/or flushes to cache lines
that are updated multiple times by different transactions in the
log. Furthermore, NV-HTM relies on the Copy-on-Write (CoW)
mechanism provided by modern OSs to minimize its spatial
overhead.

NV-HTM efficiency is evaluated experimentally by means of
synthetic and standard benchmarks and including as baselines
both approaches based on pure software implementations [50] as
well as relying on ad-hoc hardware mechanisms [4]. The results
show that NV-HTM can achieve up to 10x better performance
and reduce number of flushes to PM by a factor 11.6x with
respect to state-of-the-art solutions.

This article extends a previous conference paper [9] by:

e Presenting the pseudo-code that formalizes the behavior of
the BFC algorithm (Section 5.2).

e Discussing how to tackle the issue of unsynchronized
physical clocks across different cores in multi-socket CPU
architectures (Section 5.3) and how to cope with overflows
of the physical clock, which may arise in long running ap-
plications if small timestamps are used to reduce memory
consumption (Section 5.3.3).

e Extending the experimental study to include all STAMP
benchmarks (Section 6.3), a porting of TPC-C [49], a pop-
ular benchmark for OLTP databases, adapted to operate
in-memory and using hardware transactions (Section 6.3.1),
as well as evaluating the performance of NV-HTM over
volatile RAM, i.e., without injecting latency to emulate PM.

e Introducing a critical discussion on the limitations of the
proposed solution (Section 7).

The remainder of this paper is structured as follows. Section 2
surveys the related work on PM and Transactional Memory on
PM systems. Section 3 presents limitations and challenges of
commodity HTM when combined with PM. Section 4 summarizes
the main components of NV-HTM. Section 5 presents the different
algorithms and data structures employed by NV-HTM, as well
as the correctness proof of NV-HTM. In Section 6, we evaluate
NV-HTM experimentally, by comparing it with other state-of-the-
art solutions. Finally, Section 7 discusses the limitations of the
proposed solution and Section 8 concludes this paper.
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2. Related work

Several works investigate the problem of exposing emerging
PM technologies to applications. A first approach is to retain the
same abstractions that already exist for block-oriented storage,
optimizing their implementation to benefit the most from distin-
guishing performance characteristics and low-level consistency
guarantees of PM [2,12,20,33,44,53].

An alternative approach exposes PM as persistent heaps that
applications can access directly via memory loads and stores
[11,50]. While appealing, attaining the benefits of persistent
heaps depends on maintaining persistent data in such a way
that (i) efficiency is preserved, given the unique performance
characteristics of PM (namely, minimizing the high costs of CPU
cache flushes and PM writes), and (ii) updates are ensured to
consistently survive across failures.

A general approach is to provide failure-atomic sections on
top of persistent heaps. Besides the classical lock-based sec-
tions [10,29], failure-atomic sections can be implemented using
the Transactional Memory (TM) abstraction. The first proposals
of failure-atomic memory transactions for the emerging PM tech-
nologies were proposed in the context of Mnemosyne [50] and
NV-heaps [11]. Both essentially depart from mainstream software
transactional memory (STM) implementations and extend them
with logging and recovery mechanisms to ensure durability. Since
these initial proposals, failure-atomic memory transactions have
received substantial attention in the literature, e.g., [26,34,40,41].

Unlike NV-HTM, which builds on existing HTM supports, the
above-mentioned solutions rely on software-based implementa-
tions of the TM abstraction. As such, they interpose an extra
software layer that can introduce significant overheads [18].

Avni et al. [4] and Wang et al. [52] were the first to exploit
HTM for building failure-atomic transactions on PM. Like our so-
lution, these proposals promise to hide the sequential overheads
of STM-based approaches. In contrast to our solution, though,
both proposals rely on non-trivial alterations to existing HTM
designs, e.g., assuming the ability to atomically flush log entries
to PM from within a hardware transaction or storing additional
transactional metadata in each cache line. As such, these solutions
cannot be used on current best-effort HTM implementations.
Similar assumptions on the availability of non-standard HTM
supports are required to PHyTM [3], which extends prior work [4]
to support concurrent execution of both hardware-based and
software-based transactions.

Underlying all paradigms, a number of common non-trivial
problems at lower layers have received attention from the re-
search community. These include hardware/hybrid mechanisms
that aim at improving the performance, reliability and durability
of PM, through mechanisms such as write buffering and coalesc-
ing, wear leveling and salvaging [42]. Furthermore, supporting
PM as a first-class citizen has produced initial steps towards
novel proposals to redesign fundamental operating system (OS)
mechanisms [5]. All these techniques are complementary to our
solution.

NV-HTM shares the approach of maintaining a stable snapshot
in addition to a working copy with some recent works. In the
PM domain, examples include AdaMS [19], SoftWrAP [22] and
Kamino-Tx [41]. None of them, though, targets the problem of
enabling the use of HTM over PM.

Concurrently with our research, the following works [23,24,
31,39], which have very recently addressed the problem of sup-
porting PM in commodity HTM implementations. DudeTM [39]
provides a generic checkpointing mechanism, which can be cou-
pled with both software and hardware TM. However, its reliance
on a shared logical clock to serialize HTM transactions leads to
poor scalability in update-intensive workloads, as we will show

in Section 6.2. Giles et al. [23,24] avoid this issue by proposing cc-
HTM [23] and WrAP [24], which uses physical clocks for logged
transactions ordering, analogously to NV-HTM. However, writes
are buffered in an alias table [22], thus, upon each read or write
the address must be translated in software. Instrumenting read
accesses in software introduces significant overheads, since read
operations are typically dominant in TM workloads [7]. Further,
differently from NV-HTM, cc-HTM and WrAP do not employ any
filtering techniques during the log replay phase to extend the
life expectancy of PM. Finally, Joshi et al. propose DHTM [31],
which requires extensive modifications to hardware, including a
log buffer in the L1 cache and tracking evicted cache lines in a
transaction log in PM. Conversely, NV-HTM is designed to operate
on commodity HTM implementations, such as Intel's TSX.

Finally, NV-HTM builds on the literature in DBMS [45],
which developed numerous alternative approaches relying on
undo/redo logging techniques. These approaches rely on the as-
sumption that the system can exert control on the timing with
which log entries and data updates are persisted — an assumption
not met by available HTMs, precluding the direct applicability of
this class of solutions.

3. Background on HTM

Existing HTM systems come with different flavors and limita-
tions. Despite their differences, though, all HTM implementations
keep track of the transactional memory footprint in the proces-
sor’s caches, including conflict detection which is done at the
cache coherency protocol. This architectural design has several
important implications, which we discuss next.

The first one is that current HTM systems provide a best-effort
implementation of the TM abstraction, in the sense that transac-
tions are not guaranteed to commit even if they run in absence of
concurrency. Existing HTM systems can only commit transactions
whose memory footprint does not exceed cache capacity. And,
even in such case, they typically provide no guarantee on the
ability to successfully commit transactions. As such, HTM-based
applications must rely on a fallback mechanism to guarantee
progress.

The default approach is to re-try a hardware transaction some
predetermined number of times, and then acquire a Single Global
Lock (SGL). The SGL aborts any concurrent hardware transaction,
hence ensuring the necessary isolation at the cost of serializing
the execution of transactions.

Another important implication stemming from the cache-
centric design of current HTM systems is that, upon the commit
of a transaction, its updates are not immediately nor atomically
flushed to the original memory locations (in DRAM or PM). Con-
versely, updates of committed transactions are made visible to
other threads via the cache coherency protocol, which ensures
that any copies that remote CPU caches may be storing are
atomically invalidated.

Further, HTM implementations, such as Intel's TSX, simply
abort transactions that attempt to flush any cache line that
they have previously updated, as it would imply externaliz-
ing the writes produced by uncommitted transactions. In order
to maximize portability, NV-HTM relies on a minimalist set of
assumptions regarding the underlying HTM system, which are
currently met by every existing HTM implementation (we are
aware of). Specifically, NV-HTM assumes a best-effort HTM im-
plementation, that commits transactions in volatile caches and
exposes a conventional API for transaction demarcation to begin,
commit and abort transactions.
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Fig. 1. High level architecture of NV-HTM.

4. System architecture

Analogously to other recent software libraries for building PM-
based applications, e.g., [26,34,41,50], NV-HTM exposes PM to
applications as transactional persistent heaps.

Each PM heap is uniquely identified by a file name, maintained
in a local filesystem mount tree. Upon its initialization, NV-HTM
mmaps the PM-backed heap in the virtual address space of an
application process. This mapping uses Linux's direct access for
files (DAX) option [48], which bypasses the OS page cache in
DRAM, allowing applications to directly access the PM (via the
CPU cache) by load/store instructions.

Furthermore, applications encapsulate PM accesses in hard-
ware transactions via a set of macros that allow to intercept
both transaction demarcation calls (begin/commit/abort) and
load/stores to memory and inject NV-HTM’s logic. NV-HTM as-
sumes that transactions operate exclusively on memory locations
belonging to a PM heap, exposing simple and intuitive semantics
to applications. This would not be possible if transactions were al-
lowed to span both persistent and volatile heaps: all the updates
produced by (durably) committed transactions are guaranteed to
be recoverable in presence of crash failures.

The high level architecture of NV-HTM is illustrated in Fig. 1
and comprises the following logical components:

e 2 working process (WP), a process that mmaps the persistent
heap, which we denote as the Working Snapshot (WS). The WP
runs a set of parallel worker threads, which execute hardware
transactions on the WS. The WS is mapped as private (according
to POSIX.1-2001), which determines that any update that the
worker thread performs to a page in the persistent heap is not
actually propagated to that page. Conversely, the OS uses Copy-
on-Write (CoW) to transparently create a volatile copy of the
PM page. Hence, although the WS initially maps pages that are
entirely stored in PM, it will usually comprise a mix of clean
pages in PM and dirty page copies in DRAM. As such, when
the HTM commits a transaction issued by a worker thread, the
updates of the transaction are volatile; at that point, we say that
the transaction is non-durably committed. The commit event of a
transaction is exposed to applications only after its updates are
persisted in the PM-backed log (see next): only here, we say that
a transaction is durably committed.

e a durable log, stored on a distinct PM heap, which is used to
track the updates generated by (durably) committed transactions.
The log is updated by each worker thread at some point after the
HTM commit event. Only at this point we say that the transaction
is durably committed. It is based on a decentralized/per-thread
design (i.e., maximizing locality and minimizing synchronization
issues): each thread maintains its own log that tracks solely the
transactions the thread processes.

e a checkpointing process (CP), which is in charge of apply-
ing the updates stored in the logs with the twofold purpose of
(i) building a consistent Persistent Snapshot (PS), which reflects

all and only the updates of durably committed transactions, and
(ii) pruning the logs, so to ensure that their size never exceeds a
predefined (user-tunable) maximum threshold.

This design has several key advantages. First, it allows for
isolating, in a lightweight and efficient way, the WP and the CP.
Executing hardware transactions on the WS and applying, in a
controlled way, the corresponding updates to the PS are two key
ideas at the basis of NV-HTM's design. Both are crucial for solving
the CPU caching issue.

Further, the usage of an 0S-based COW mechanism allows
to achieve such isolation by minimizing both the instrumen-
tation costs and memory overheads: instrumentation costs can
be significantly reduced since modern CoW implementations are
extremely optimized and leverage on dedicated hardware mech-
anisms [30]; memory overheads can be strongly reduced since
only the recently updated pages require a copy (in WS).

Further, the choice of maintaining the updated pages of the
WS on volatile memory, rather than on PM, provide a twofold
benefit: the faster DRAM’s write speed, and a drastic reduction
of the write load that actually hits PM, which translates into a
corresponding increase of its expected lifespan.!

5. Implementation

This section presents NV-HTM’s design and implementation.
Section 5.1 analyzes transaction processing and log management
by the WP, Section 5.2 focuses on the CP and Section 5.3 discusses
correctness.

5.1. Transaction processing

The pseudo-code formalizing the behavior of thread t (out of
a total of N threads) of the WP is presented in Algorithm 1. For
simplicity, the pseudo-code refers to transactions executing in
hardware. The management of transactions that use the SGL path,
though, is very similar and differences are briefly discussed at the
end of this Section.

Data structures. Two main shared data structures are used:

e log (Line 2): a log maintained in PM, which, as discussed,
has a per-thread structure and is also shared with the CP. Each
thread’s log is managed as a circular buffer via two pointers,
startP and endP, which point to the first and last entries in that
log, respectively. Log entries have a fixed structure composed of a
pair of 8-byte values, which are used to store either the address
and corresponding value written by a transaction, or a commit
marker and the corresponding commit timestamp.

e ts (Line 3): an array of N scalars, which is stored in volatile
memory. ts[t] is set to oo if thread t is not processing a transac-
tion; else, it stores a (physical) timestamp that is used to serialize
the transaction being currently processed by t.

Additionally, each thread maintains two local variables: a
scalar variable used to store the timestamp to be assigned to
a committing transaction, locTS; a boolean flag, isRO, which
identifies whether the transaction is read-only or not.

As already mentioned, NV-HTM relies on a hardware-software
co-design: it builds on HTM’s atomicity and isolation guarantees
and extends them via a lightweight software instrumentation

1 We note that it would be feasible to map the updated WS pages to a
different PM heap instead of volatile memory. This would lead to renouncing to
the above advantages, and require a custom implementation of the mmap system
call in order to instruct the OS to use PM as target of the CoW mechanism;
hence, we did not opt for this option in our current implementation of NV-HTM.
However, since in the future PMs are expected to achieve higher density/become
more cost-effective than current DRAM, such an alternative may, at some point
in time, become more attractive than the current hybrid architecture that relies
jointly on volatile and persistent memories.
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Algorithm 1 WP: transaction processing at thread t

1: Shared variables:

2: log|N]

3: ts5IN] < {+o0, ..., 400}
> Per-thread timestamp of active tx; +oo if none is active

> One log per thread, stored in PM

4: Thread local variables:

5 locTs > timestamp of committing transactions
6: isRO > flag used to identify read-only tx
7
8

: function BEGIN
iSRO «<TRUE

9: ts[t] <—READTS()
10: mem_fence
11: htm_begin()

> Ensure other threads know we are in a tx
> Start hw tx

12: function wriTg(addr, value)

13: iSRO < FALSE

14: if logCheckSpace (log[t])=FULL then
15: ABORT(LOG_FULL)

16: *addr < value

17: log|t].append(< addr, value =)

- Write to working snapshot

18: function ABort(abort_code)
19: htm_abort(abort_code)
20: ts|t] < 4cc

21: function commit

22: if isRo then > Commit logic for read-only txs

23: htm_commit()

24: ts[t] < +oo > Others do not need to wait for RO tx
25: wAITCOMMIT()

26: else & Commit logic for update txs
27: locTs < READTS()

28: htm_commit()

29: ts[t] < locTs

30: logFlush(log[t]) > Flush current log entries
31: wAITCoMMIT()

32: log[t].append(< COMMIT, locTS =)

33: log[t].endP < locEndP

34: logFlush(log|[t]) - Flush commit marker and endP
35: ts[t] < +o0

36: function warrCommir
37: for all t* € [1,N] s.t. t* #t do
38: wait until s[t*] > ts[t]

to ensure crash atomicity. Specifically, NV-HTM requires instru-
menting the methods used to begin and end (i.e., commit/abort)
transactions, plus the method used to write. It is worth noting
that NV-HTM spares from the cost of instrumenting read oper-
ations: this is key to minimizing run-time overhead, since read
operations tend to largely outnumber write operations in typical
TM workloads [15].

Transaction begin (Line 7). Before activating a hardware transac-
tion via the htm_begin() primitive, t performs the following steps:
sets the isRO flag to true, marking the transaction initially as read-
only; it updates ts[t] with the current value of the machine’s
physical clock (via the RDTSCP() instruction [27]) and ensures
that this value is visible to other threads via a memory fence.
As we will see, this mechanism allows to safely establish, before
durably committing a transaction T, whether there is still any
non-durably committed transaction T’ that may precede T in the
serialization order.

Write operations (Line 12). Upon a write, the transaction is
marked as non read-only via the isRO flag and an entry is ap-
pended to the log. This is done only after having ensured, via
the logCheckSpace() primitive, that the log has sufficient capacity
for storing both the current entry and the transaction’s commit
timestamp — otherwise aborting right away the transaction.? This

2 We omit the abort handling logic, which, in this case, will wait till
additional log space is available before re-starting the transaction to avoid the
lemming effect [14] and unnecessary activations of the SGL path.

ensures that, if the transaction reaches the commit phase, there
is enough log capacity to append the commit marker.

Commit (Line 21). The commit logic differs for read-only and
update transactions. Let us analyze first update transactions.

Before using the htm_commit() primitive to perform a non-
durable commit, the current value of the physical clock is read
and stored in the variable locTs. If a transaction T is successfully
committed in hardware, t first advertises, via the ts[t] variable,
the commit timestamp of T. Next, it flushes the current log entries
to PM and starts a waiting phase (warrCommit() function) that
aims at ensuring the following key property: in the moment in
which T is durably committed, i.e., the commit marker for T is
flushed into the persistent log, the system must have already
durably committed every transaction T* that (i) was serialized
before T by the HTM system and (ii) with which T has devel-
oped a read-from or write-write dependency either directly or
indirectly.

NV-HTM ensures this by having ¢t compare the commit times-
tamp of T with the value advertised in the ts array by all other
threads: if ¢t finds that there exists some thread, say t*, which
advertises a time stamp smaller than t’s, it means that t* has
either started a transaction T* before T obtained its commit
timestamp, or that T* obtained a commit timestamp smaller than
T. In both cases, it is possible that T read from T* or that T
overwrote some memory region that T* also wrote to. In both
cases it could be unsafe to durably commit T, as there are no
guarantees that T*, which T might depend on, has already been
durably committed: if T* fails to durably commit (because of a
crash) then, upon recovery, T would be replayed, but T* would
not, thus yielding an inconsistent state.

Once the waiting phase is completed, the commit marker for
T is appended to the log, the log’s end pointer is updated (based
on locEndP) and these changes are flushed to PM. At this point, t's
timestamp in the ts array can be reset to +o0, to advertise that t
is no longer processing a transaction.

The commit logic for read-only transactions is simpler: as
read-only transactions do not alter the WS, their timestamp is
set to +oo right after they are non-durably committed (so to
ensure that no other concurrent transaction waits for them).
However, before externalizing their commit to applications, read-
only transactions need still to undergo the waiting phase (Line 37)
in order to ensure that any transaction they may have read from
has already been durably committed.

Abort. Upon abort, all other threads must be aware that t is no
longer running a transaction (Alg. 1 line 20).

Fallback path. The instrumentation for the fallback path is similar
to the speculative path, with just some minor differences. If ¢
executes in the fallback path, it must ensure that any concurrent
transaction that will start after ¢ releases the SGL will durably
commit only after the log changes produced by t’s transaction
have been fully flushed to log. This is achieved by having the SGL-
holding transaction advertise the current timestamp in ts[t] after
releasing the SGL. Analogously, the fallback path also needs to go
through the wait commit phase, in order to take into account
dependencies that could arise between the SGL path and any
transaction that was non-durably committed when the SGL was
acquired.

5.2. Log checkpointing

Unlike existing solutions [3,4] NV-HTM removes the propaga-
tion of updates to the PS from the critical path of transactions;
only the flushing of the transaction’s log to PM is kept within the
critical path. This design choice brings about both opportunities
and challenges. The key challenge is how to efficiently bound
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Algorithm 2 CP: replaying the log - BFC

1: Variables:

2: log|N] > One log per thread, stored in PM
3: tmp_ptrs|N] > Stores the startP for each log, stored in PM
4: CPLog - Auxiliary log to advance the startPs, stored in PM
5: log_next_tx[N] - Pointer to the next transaction, stored in RAM
6: tx_queue & Queues the sorted transactions, stored in RAM
7: filterMap - Indexes written cache lines and words, stored in RAM
8: function exec_BFC

9: INIT_TRUNCATE( threshold);

10: SORT();

11: REPLAY();

12: FLUSH_MODIFIED();

13: function iNiT_TRUNCATE(threshold)

14: approxEndP <—compute_approxEndP(log[1], threshold)

15:  firstTx <find TX at(log[1], approxEndP)

16: log_next_tx[1] < firstTx 1> First transaction to replay (near endP)

17: tmp_ptrs[1] < firstTx.pos  Stores log position of the first transaction to
replay

18: for [ € [2,N] do

19: log_next_tx[l] <—find_next_TX(log[l], firstTx.ts)

20: tmp_ptrs|l] < log_next_tx[l].pos

21: function Sort

22: (nextTx, I) <—next_TX()

23: put_in_tx_queue(nextTx)

24: log_next_tx[l] <find_next TX(log[l], nextTx.ts)

25: function WRITE_TX(tX)

26: for each write € tx.writeSet do

27 CLPos <find_cache_line(filterMap, write.addr)
28: if CLPos # ¢/ then

29: if write.addr ¢ CLPos then

30: swrite.addr < write.value

31: add_addr_to_cache_line(CLPos, write.addr)
32: else

33: swrite.addr < write.value

34: add_modified_cache_line(filterMap, write.addr)

35: function REPLAY

36: while TXsToApply do

37: tx <—get from_tx_queue()
38: WRITE_TX(tx)

39: function FLUSH_MODIFIED

40: for each cl € filterMap do

11: flush(cl)

42: log_startP(tmp_ptrs) > Log startP to enable redo in case of crash
43; set_and_flush_new_startP(tmp_ptrs)

44: destroy_CPLog()

the growth of the log, a property that is desirable both to min-
imize consumption of PM resources and to limit the duration of
the recovery phase. NV-HTM tackles this challenge via a novel
log checkpointing mechanism that we named Backward Filtering
Checkpointing (BFC), presented in Algorithm 2.

Backward Filtering Checkpointing (BFC) Intuitively, BFC con-
siders a snapshot of the per-thread logs (obtained when BFC
is activated) and persists all the updates of durably committed
transactions logged in such a snapshot to the PS.

The design of BFC is influenced by the observation that many
TM benchmarks and real applications tend to concentrate large
streams of updates (issued by different transactions) over a small
memory region (i.e., hot spots). For each hot spot, the logs contain
many repeated updates, which are particularly costly in PM — not
only performance and energy-wise, but also given PM'’s limited
write endurance.

The key insight of BFC is that, when checkpointing a set of
updates that target the same memory location, only the most
recent one needs to be propagated to the PS (in PM), as that
update supersedes the older ones in the logs. Another notable
feature is that the checkpointing may occur simultaneously with

worker threads, which may continue to run and durably commit
transactions in the logs.

The BFC algorithm is activated by launching the Exec_BFC
function (Line 8). The first step of BFC is to determine an initial
point in the log from which to start the replay phase. As worker
threads concurrently append new entries in the log, starting the
replay exactly from the end of each per-thread’s log may affect
hardware transactions in the Working Process — as transactions
write the shared log while the Checkpoint Manager reads it,
causing possible conflicts. In order to avoid this issue the starting
point of the replay phase (approxEndP) is computed using a user
tunable threshold (by default set to 50% of the maximum log size)
starting from the base of the log (i.e., the lowest startP pointer
across all per thread logs).

Next, BFC iteratively traverses the per-thread logs in anti-
commit timestamp order and analyzes the log entries of each
durably committed transaction (soRrt, Line 21). This step deter-
mines which is the latest durably committed transaction, T,
within the set of logged transactions that still need to be check-
pointed. This is easily determined by comparing the commit
timestamps of the most recent durably committed transactions
in each per-thread log.

As mentioned before, BFC filters out any update that is found
to target the same location as a more recent update (which BFC
already propagated to PM). To this end, BFC maintains a hash map
called filterMap (Line 7) indexed by cache line address, whose
values store a bitmap encoding which “positions” (CLPos) of each
cache line have been already updated (due to a more recent
transaction) during the current checkpointing instance (WRITE_TX,
Line 25). Tracking updates at the granularity of 8 bytes, and
assuming cache line width of 64 bytes (as in typical current
processors), the CLPos bitmap can be compactly encoded using
a single byte.

Then, after sorting, transactions are replayed (REPLAY, Line 35).
For each logged update of Ty, the filterMap is first consulted to
determine if the corresponding address has already been encoun-
tered (Lines 28 and 29) — in this case the update is skipped. Else,
the write is executed, but not flushed, and filterMap is accordingly
updated to keep track of it.

Although not shown (for simplicity) in the pseudo-code, this
two-step approach can be parallelized, using one thread for the
sorT and other for the rREpLAY. The sorT thread produces log
locations, which are enqueued in tx_queue (Line 23). The REPLAY
thread consumes log locations (Line 37) and immediately replays
the transaction write-set.

We note that, upon recovery, the log could contain entries
of non-durably committed transactions, which can be easily rec-
ognized since they do not have a final commit marker. These
transactions can be safely skipped during the checkpointing pro-
cess, as their effects have not been externalized, neither directly
nor indirectly (via other dependant transactions).

Once the backward scanning of the log completes, there is
no guarantee that all the updates performed on the PS have
effectively reached PM, as some may still be in the CPU cache.
Hence, the next phase ensures that all the checkpointed updates
are durable: this is achieved by iterating over the filterMap and
forcing the flush of the cache lines that it tracks (Line 40). The
design choice of postponing the flushing of the updated cache
lines after the whole backward scanning of the log has not only
the advantage of avoiding flushing the same cache line more than
once; it also increases the likelihood that, when the flushing of a
cache line (updated during the log scanning phase) is requested,
the cache line has actually already been written back to PM due
to the cache eviction mechanism.

The final step of the checkpointing process consists in ad-
vancing the start pointers to the per-thread logs in PM, so to
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effectively free up log space for the WP. This last step has to be
executed in an atomic fashion, in order to preserve correctness in
presence of crashes. This is achieved using a classic technique in
the literature on DBMS recovery [45]: a special checkpoint log
(CPLog) is allocated in PM, and an entry is appended to it for
each start pointer to be updated; once all the updates of the start
pointers have been recorded in CPLog, a special CP — COMPLETED
marker is appended to it and flushed to PM (Line 42). At this
point, the per-thread logs’ start pointers are actually updated and
flushed too. Any crash occurring during this phase will trigger
the replay of CPLog, ensuring the atomicity of the start pointers’
update. The CPLog can instead be safely destroyed after the start
pointers of all the per-thread logs have been flushed to PM (Line
44), marking the actual completion of the checkpointing process.

Usages of BFC. NV-HTM relies on BFC in 3 scenarios:

Log pruning. This process is triggered whenever a worker thread
detects that its per-thread log has reached a user-defined thresh-
old of its capacity (e.g., 50%). In this case the worker thread
unblocks the CP, which executes the BFC algorithm as a non-
blocking/background task. The setting of this threshold is asso-
ciated with a key trade-off: using large threshold values allows
for buffering more transactions, and, hence, potentially filtering
more writes and flushes. However, it also reduces the portion of
the logs that is available to store the updates of transactions that
run concurrently with BFC. Consequently, there is an increased
risk that the worker threads fill up its log before log pruning
completes and frees up log space.

Recovery. The BFC algorithm is also activated upon recovery. In
this case, the CP is forked from the WP and the former is used to
replay the transactions in the log to bring the PS up to a consistent
state. Only at this point, the WP mmaps the PS (in private mode)
and activates transaction processing.

Memory consolidation. Finally, checkpointing the logs via BFC can
also be used to achieve, what we call, memory consolidation. Over
time, applications may end up updating overly large portions of
the PS, which might cause cloning large parts of it into DRAM
(via the OS-driven CoW mechanism). The memory consolidation
process can be requested by applications when they detect the
usage of excessive DRAM memory consumption, discarding every
page that the WP may have cloned in DRAM. This is achieved in
three phases:

(1) non-blocking log pruning is executed when the follow-
ing phase starts, its objective is to minimize the number of
transactions present in the log (and, hence, its duration);

(2) transaction processing is blocked temporarily and a second
pruning is executed, applying in the PS any transaction that
durably commits during the first phase;

(3) before resuming transaction processing, the WP munmaps the
WS and then mmaps it again — hence, allowing the WP to release
any page of the PS that had been previously cloned in DRAM (via
CoW).

5.3. Correctness arguments

The key property at the basis of the NV-HTM's algorithm is
that the serialization order obtained by totally ordering the trans-
actions in the log via their commit timestamp is equivalent to the
serialization order imposed by HTM. An important preliminary
observation is that if two transactions are not dependant, i.e., they
do not develop any read-from or write-write dependency, either
directly or indirectly, then, even if they are ordered in different
ways in the log and by the HTM system, they will still produce
the same results. Hence, it suffices to prove that the serialization
order of durably committed dependant transactions determined

by their commit timestamp in the log does not contradict the
HTM serialization order.

Satisfying the above property depends on the accuracy and
synchronization properties of the physical timestamps provided
by the CPU. Modern processors provide specific hardware times-
tamp counters (TSC) that allow programs to read high-resolution
CPU timing information with a low overhead, e.g., via the RDTSC
instruction in Intel processors. However, RDTSC may be re-
ordered in the processor’s instruction pipeline, thus, the obtained
TSC may not provide correct transaction ordering. Hence, in the
context of NV-HTM, we rely on RDTSCP (Read TSC and Processor
ID), which, conversely, prevents this issue.

Most modern processors (e.g., all Intel CPUs supporting In-
variant TSC since Nehalem family [27,36]) ensure that all cores
(including across different sockets), observe monotonic TSC tick-
ing at the same rate, which yields perfect TSC synchronization.
Next, we prove the correctness of NV-HTM's algorithm under
these assumptions and postpone the discussion on how to cope
with clock skew across different core and with wrap-arounds of
the TSC to Sections 5.3.2 and 5.3.3, respectively.

The notations T" 25 T and T' 2% T indicate that T is
serialized before T by the HTM system and according to their
commit timestamp in the log, respectively.

5.3.1. Perfectly synchronized TSCs

Under the assumption of perfectly synchronized clocks we can
reason assuming a single time source aligned with real-time. We
start by proving that, for any two dependant transactions T and

T,if T g T, then T’ MM 1 The relative order of T and T’
in the log is defined by their timestamps T.ts and T'.ts (resp.),
which, we recall, are acquired after the transactions performed
all of their memory accesses, i.e., right before committing. Let us
denote with T.commit and T'.commit the instants in real time
where T and T' commit (resp.). Denote with op and op’ any pair
of conflicting operations issued by T and T’ on a common data
item, respectively, and with t(op) and t(op’) the real time instant
in which these operations are executed. The first observation is
that, in order for both T and T’ to be able to commit in HTM, then
when the last of the two conflicting operations is executed by any
of the two transactions, the other transaction must have already
committed, namely:

max(t(op), t(op")) > min(T.commit, T’ .commit) (1)

Else, if both transactions were still active when the last of the
conflicting operation were to be executed, every HTM implemen-
tation we are aware of [43] would trigger the abort of (at least)
one of the two transactions.

Let us assume, by contradiction, that T’ i T,ie,T'.ts < T.ts,

HTM . .
and T — T’, namely T.commit < T’.commit, where T and T’
are dependant transactions. Since the timestamp of a transaction
is established right before requesting its commit, we have that:

t(op) < T.ts < T.commit t(op’) < T'.ts < T'.commit (2)

However, since both T and T’ commit despite having gen-
erated (at least a pair of) conflicting operations, and since T
commits before T’ in real-time, using inequality (1) we have:
T.commit < t(op’). Combining the last inequality with the
inequality (2), we obtain T.ts < T’.ts and contradict the
hypothesis.

It remains to prove that if T is durably committed and it
depends on (i.e., it reads from or overwrites a memory address

previously written by) a transaction T’ (which implies T’ v, T),
then T’ is also durably committed. This is necessary to guarantee
recoverability, since it ensures that if a transaction T is replayed
upon recovery, so is any other transactions T may depend upon.
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Fig. 2. T, can be reordered after T in the log (despite having been serialized
before T by the HTM), since T; commits within A time units (where A is
maximum skew between TSCs) since T does. Tz, conversely, is spared from the
risk of being reordered in the log before T, given that it commits more than A
time units after T.
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Fig. 3. By stalling the commit of T for A time units (where A is maximum
skew between TSCs), we force a conflict between T and any other transaction
that depends on T and may be reordered before T due to a clock skew issue
(T; in the exemplified scenario).

A transaction T is durably committed only if it passes the
waAITComMIT() function, which forces T to wait for all threads who
advertise a timestamp ts* < T.ts. Hence, if T” has not fully flushed
its log (Alg. 1, line 34), when T reaches its wait phase, T will
necessarily block until the thread executing T’ sets its ts to +oo
(Alg. 1, line 35), i.e., until T" has flushed its log to PM.

This implies that, if a transaction externalizes its commit (by
returning from the invocation of the commit procedure), it cannot
depend on any non-durably committed transaction.

5.3.2. Bounded skew between TSCs

The algorithm described so far assumed perfectly synchro-
nized TSCs. However, perfect synchronization of physical clocks
is not necessarily guaranteed, e.g., on older CPUs or in some
machines equipped with multiple CPUs.?

In the above scenarios, it is no longer be possible to use a
single time source when reasoning on the timestamps obtained
by different threads. All that can be assumed is that TSCs grow
monotonically at each core, and that the TSCs across multiple
cores are synchronized within a given upper bound, which we
assume to be known and equal to A (measurable using existing
techniques in the literature, e.g., [32,54]). In the following we
prove that NV-HTM'’s algorithm remains correct by simply forcing
a delay equal to A after reading the TSC (Alg. 1, line 27) and
before requesting the HTM to commit (line 28). The rationale
underlying the mechanism is illustrated in Fig. 2. A transaction

3 The TSC at each node is only guaranteed to be synchronized in multi-
CPU machines if the hardware ensures that all CPUs receive the reset event
synchronously, which depends on the motherboard [27].

T’ that was serialized by the HTM after some transaction T and
depends on T (i.e., issued a conflicting operation with T, e.g., T’
read what T wrote) can only be reordered in the log before T if
T’ obtained its timestamp within A time units after T did (Fig. 3).
By forcing T to wait out A time units before committing, any
transaction T’ that may risk to be reordered before T in the log,
must necessarily issue an operation that conflicts with T while T
is still active, causing the abort of either T or T.

In the following, we prove that for any two dependant trans-

actions T and T/, if T Loe T, then T’ m, T. We proceed by
contradiction and assume that T/ 2% T, where T depends on

T’, and that T e T'. Let us denote with RT(T’.ts) and RT(T.ts)
the real time moments in which the timestamps of T’ and T’,
respectively, are obtained. We can express the timestamps of T
and T’ as follows: T.ts = RT(T.ts) + &g and T’.ts = RT(T".ts) + &,
where g9 and ¢, denote the skews relatively to the real-time clock
for T and T', respectively. For the sake of simplicity and with no
loss of generality, we assume one of the core-local clocks to be

synchronized with the real-time clock, e.g., T.ts, thus &g = 0.

By inequality (1), and given the assumptions that T’ M

and that T depends on T’, we have that RT(T'.ts) < RT(T.ts). But if

T’ is ordered after T in the log (T e T") then T.ts < T'.ts, which
implies that RT(T'.ts)+A = RT(T.ts),i.e., RT(T .ts)—RT(T.ts) < A.
However, if in real-time T reads its TSC within A time units after
T’ did, then it means that when T read its TSC T" must be still
active — since T’ is forced to wait A time units after RT(T'.ts)
before it is allowed to commit. If this is the case, though, either
T or T’ should be aborted by the HTM, since they conflict —

. . HTM
contradicting the assumption T" — T.

5.3.3. Clock overflow

x86 CPUs usually provide a 64-bit TSC. This means that TSC
overflows (resets to 0) after many years, depending on the CPU
clock rate. For instance, assuming a clock rate of 3.0 GHz and
a TSC increment upon each clock cycle, then the TSC period is
~ 195 years.

For the sake of completeness, though, this Section presents an
extension to cope with the eventuality of a TSC overflow. This
extension can also be used to enable implementations that use
smaller timestamps (smaller than the architecture’s TSC width)
for compressing the memory footprint of NV-HTM's logs.

NV-HTM relies on TSCs to allow the CP to order transactions.
Thus, in the eventuality of overflows, the CP is the component
that must detect such situations, i.e., when it reads a times-
tamp that is not consistent with the adjacent (previous/next)
transactions.

As the CP sorts transactions in the per-thread logs in reverse
timestamp order (whose values are read from TSC), it can easily
detect whether an overflow occurred as, in that case, no per
thread log would contain a timestamp smaller than the one of
last replayed one (Alg. 2, Line 22). In this case, the CP can simply
set the current timestamp to the maximum largest value possible
and resume searching in reverse timestamp order.

6. Experimental evaluation

This section presents an extensive experimental evalua-
tion aimed at comparing NV-HTM* with two state-of-the-art
solutions, based both on software and hardware TM mechanisms.

On the STM's side, we consider as baseline a scheme (PSTM)
based on Mnemosyne [50]'s algorithm, which we re-implemented

4 Source of our NV-HTM prototype can be found here: https://bitbucket.org/
daniel_castro1993/nvhtm.
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on top of TinySTM [21] using in-place updates to minimize read-
instrumentation costs (analogously to what was done by Avni
et al. [4]). In order to support in-place updates, upon each write,
an undo log entry is flushed to PM before modifying the data in-
place; upon commit, changes are flushed to PM and a commit
marker is added to the log; next the transaction’s log is discarded.

On the HTM's side, we consider PHTM [4]. Recall that, as
discussed in Section 2, PHTM assumes two mechanisms that are
not supported by existing HTM implementations, namely the
ability to:

1. Transparently flush the logs during transaction execution,
without causing its abort.
2. Flush a commit marker to the log atomically upon commit.

Further, unlike NV-HTM, PHTM acquires write locks during
transaction execution, which are maintained beyond its commit
and until data changes are persisted to PM. As we will see,
this has an impact both on the effective memory capacity of
hardware transactions, as well as on the contention proneness of
transactions. In order to emulate the non-standard mechanisms
assumed by PHTM, we follow the approach previously used by
the PHTM’s authors [4], i.e., we do not issue cache lines’ flushes,
but replace them with spins in order to account for the latency of
persisting those cache lines to PM. Specifically, we inject a latency
of 500 ns per cache line flush, as suggested by a recent work
surveying NVRAM technology [42]. Note that, in order to ensure
a fair comparison among all solutions, we use the same ap-
proach (i.e., replacing cache flushes to PM with spins) also when
implementing the other approaches considered in this study.

On the STM's side, we consider as baseline a scheme (PSTM)
based on Mnemosyne [50]'s algorithm, which we re-implemented
on top of TinySTM [21] using in-place updates to minimize read-
instrumentation costs (analogously to what was done by Avni
et al. [4]). In order to support in-place updates, upon each write,
an undo log entry is flushed to PM before modifying the data in-
place; upon commit, changes are flushed to PM and a commit
marker is added to the log; next the transaction’s log is discarded.

All tests were conducted on an Intel Xeon CPU E5-2648L v4
@ 1.80 GHz with 14 physical cores and 28 hardware threads in
hyper-threading mode. The machine is equipped with 32 GB of
RAM and runs Ubuntu Server 16.04.2LTS (kernel version 4.4.0-
57). All the results reported below are obtained as the average of
at least 10 runs.

We use both standard benchmarks, i.e., the STAMP suite [8]
and a porting of TPC-C [47] for HTM, as well as a synthetic micro-
benchmark, called Bank. Bank manipulates an array of d bank
accounts, each storing 8-byte long values, via two types of trans-
actions: read-only transactions, which read r accounts selected
uniformly at random and return their sum; update transactions,
which transfer a random amount between w pairs of accounts,
also selected uniformly at random. In order to avoid false conflicts
due to cache aliasing, and simplify the analysis of the results,
the accounts are cache-aligned. By controlling the above param-
eters, as well as the percentage of update transactions u, this
benchmark allows for precisely shaping the workload and stress
different aspects of the compared solutions.

6.1. Impact of checkpointing

The first aspect we evaluate is the impact, on both perfor-
mance and write wearing reduction, of having the CP running in
background to perform log pruning. To this end, we use Bank to
generate write intensive workloads, composed of 90% of update
transactions transferring money between 2 pairs of accounts. We
consider two workloads: a lightly contented one, which uses an
array of 16 K elements and where read-only transactions read

128 accounts (i.e., less than 1% of the total), and a contention-
prone workload, where the array has 64 elements and read-only
transactions read all of them.

In practice, the frequency of activation of the CP depends on
the ratio between the amount of log entries generated by the
application and the maximum log capacity: the lower the ratio,
the least frequently the CP has to perform log pruning, and vice
versa. Based on this insight, we consider three scenarios:

e 10x scenario: where an execution generates 10x more log
entries than the log’s capacity. This is a worst-case scenario for
NV-HTM, which is a representative of the steady performance
achievable by write-intensive, long running applications that
continuously generate a large amount of log entries.

e NLP scenario: where there is no need of executing log prun-
ing during the application’s run. This can be seen as a best-case
scenario, representative of situations in which logs have sufficient
capacity to accommodate the entries produced along the whole
run and in which log pruning can be avoided or postponed to
non-performance critical periods.

e 85% scenario: in which the log entries generated by a run fill
approximately 85% of the log’'s capacity. This implies that the log
pruning is activated in background during the run, but that there
is sufficient log capacity to ensure that worker threads never
block because they exhausted their log.

For the 85% and 10x scenarios, we allocated 40 MB of space
per-thread log; set the activation threshold for the log pruning
process to 50%; and configured the Bank benchmark to produce
a fixed number of transactions per thread, so to ensure that the
target “log fill up” ratio is achieved. For the NLP workload we use
256 MB large per-thread logs and generate 1M transactions per
thread, which fill & 30% of the log capacity, ensuring that log
pruning is never activated.

The results of this study are reported in Fig. 4, which considers
also two NV-HTM's variants that employ alternative checkpoint-
ing schemes, noted NV-HTMg (Forward Flush Filtering) and
NV-HTMgyr (Forward No Filtering). As their name suggests, unlike
BFC, these checkpointing schemes scan the log forward and use
less aggressive filtering policies. The FNF scheme simply performs
no filtering, while FEF filters out duplicate cache line flushes after
the replay.

Performance gains. By analyzing the throughput results (top
plots) we observe that, in both workloads, the performance of
NV-HTM clearly dominates the alternative schemes’ up to 14
threads, i.e., before hyper-threading is activated, with peak gains
of up to 2x vs. PSTM and up to 10x vs. PHTM. The speed-ups of
NV-HTM vs. STM are due to the hardware-based nature of NV-
HTM, which allows for sparing costly software instrumentations.
Instead, the striking throughput gains of NV-HTM over PHTM
can be explained by analyzing the abort probability plot, which
shows that PHTM suffers from significantly larger contention
rates (especially in the high contention scenario). This is expli-
cable by considering that, in PHTM, write locks are maintained
during a time window that encompasses both the flush of the
log (before committing) and of the data (after committing) to PM.
This time window, during which any concurrent access to locked
data triggers a transaction abort, is, relatively speaking, very large
compared to the execution time of transactions in NV-HTM.
Further, up to 14 threads, NV-HTM delivers very similar per-
formance in all the three considered scenarios of log pruning
frequency (NLP, 85% and 10x) — which provides experimen-
tal evidence on the efficiency and limited overhead of the BFC
algorithm. It is worth noting that the NV-HTM’s variants that
use the simpler FNF and FFF checkpointing schemes incur a
dramatically larger overhead: this confirms how crucial it is, from
a performance-oriented perspective, BFC's ability to filter both
duplicate writes and (even more importantly) cache line flushes
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Fig. 4. Performance with different log pruning frequencies. Probability of abort presented for 1, 4, 8, 16 and 26 threads.

to PM and to remove them from the critical path of execution of
log scanning.

Above 14 threads, when the CPU starts to operate in hyper-
threading mode, HTM is well-known to suffer from performance
penalties due to contention on shared architectural resources [18]
and, as such, also NV-HTM'’s performance naturally degrades,
although remaining still significantly better than PHTM's and
competitive with PSTM. It can also be observed that, in the
high log pruning scenario (10x), the performance of NV-HTM
degrades on average by ~15%/40% in the high/low contention
scenario compared to the NLP scenario from 20 to 27 threads,
and an even larger performance toll is paid at 28 threads. This
can be explained by considering that, with 20 to 27 threads, the
CP shares its underlying physical core with one worker thread;
while, when using 28 threads, the CP shares the same physical
core with two worker threads. The latter scenario can simply be
avoided by statically reserving one logical core; a more inter-
esting alternative is to resort to previously proposed self-tuning
parallelism adaptation techniques for TM [1,17,46].

Impact of PM emulation. As mentioned above, in the previous
study we emulated the flush of cache lines to PM, replacing
them with spin times aimed at emulating the expected latency
of modern NVRAM technology. This was done in order to allow a
fair comparison with PHTM, which requires flushing the transac-
tion’s log atomically with its commit — a feature unsupported by
existing HTM implementations.

In this section, we exclude from the comparison PHTM and
evaluate NV-HTM in a scenario where no latency is injected
and cache lines are flushed out of processor’s caches, via the
CLFLUSH x86 instruction, to conventional volatile RAM (and not
NV-RAM, which is not commercially available, yet). As such, this
study cannot be considered representative of the performance
of NV-HTM when used with modern NV-RAM supports — which
represent the target PM technology for which NV-HTM was de-
signed. However, it can be seen as representative of a deployment
scenario in which DRAM is backed by some external persistent
storage (e.g., SSD drives) and capacitors, which are used to power
the copy of DRAM to PM in case of system crashes [13].

The plots in Fig. 5 report the results obtained by running
the same workloads considered in Fig. 5, but without injecting

latency and using CLFLUSH. The high-contention workload (left
plot) is, in this case, much less scalable than in the previous study.
This can be explained by considering that the latency injected
to emulate the latency of flushing logs to PM had the effect
of increasing the inter-transactional time,” serving as a back-
off mechanism that alleviated contention — which, in this new
scenario, is significantly higher (especially in NV-HTM, where,
unlike PSTM, persists all the log entries of a transaction only
after it commits). One can still observe, though, that, also in this
scenario, NV-HTM achieves significant performance gains (1.5x
to 2x throughput gains) when compared to PSTM.

Let us now analyze the right plot of Fig. 5, which consid-
ers the low contention scenario. We observe that, with this
more scalable workload, the three variants of NV-HTM that
use different log pruning frequency (NLP, 85% and 10x) ex-
hibit different performance. The NLP variant, which assumes the
availability of sufficient log-space to avoid triggering the log-
pruning process, has the largest gains and scales almost linearly
up to 14 threads. Beyond that point, when the CPU operates
in hyper-threading mode, performance drops sharply, arguably
because transactions’ execution time increases (due to contention
on hardware resources) and abort rates, consequently, spike.
Across all the considered thread counts, though, NV-HTM pip
consistently outperforms PSTM.

When increasing the frequency of activation of the log pruning
process (variants 85% and 10x), though, the performance of NV-
HTM starts to degrade (when compared with the NLP variant)
beyond 8 threads, and remains higher than PSTM'’s one only up
to 14 threads, i.e., before starting to operate in hyper-threading
mode. We argue that the reason due to which NV-HTM g5y and
NV-HTM ;y, perform relatively worse in the settings considered
in Fig. 5 than in those considered in Fig. 4 is the following.
The emulated PM latency (500 ns) is larger than the latency of
CLFLUSH to RAM. Consequently, the system achieves a higher ab-
solute peak throughput, generating a larger load pressure (write

5 Recall that NV-HTM persists all the log entries of a transaction after it
commits. PSTM, unlike NV-HTM, flushes the log entries of a transaction before
this commits, but, analogously to NV-HTM, it does persist information after the
transaction commits, i.e., it flushes any cache line it updated.
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traffic) to the memory subsystem, which is furtherly amplified
by the cache coherency traffic due to the use of CLFLUSH (which
not only flushes, but also invalidates the cache line). In these op-
erating conditions, the concurrent activation of the checkpointing
process, which injects write traffic to replay the logs to PM, incurs
a relatively higher performance toll.

To validate this argument, we conduct a further experiment,
in which we changed the workload to generate only 10% of
update transactions. This corresponds to reducing by a factor 9x
the write traffic generated by the benchmark in comparison to
the previous study and, in order to preserve the frequency of
log activations in the 85% and 10x NV-HTM variants, we have
accordingly increased the number of transactions generated by

! = Other

23 Conflict
Capacity

0.8

0.6

0.4

0.2

Low Contention

PM.Probability of abort presented

the benchmark by the same factor. The corresponding results are
reported in Fig. 6. The results in the plots show that all the three
variants of NV-HTM exhibit similar performance and consistent
gains with respect to PSTM.

Overall, this study shows that, despite not originally designed
for PM supports based on capacitory-backed RAM, NV-HTM rep-
resents a competitive solution also for this type of PM technology.
In this case, though, our results suggest that, with workloads that
generate intense write traffic, the concurrent execution of the log-
pruning process can impose a larger performance toll, especially
when the processor operates in hyper-threading mode.

PM write wearing reduction. Table 1 quantifies the gains that
NV-HTM attains in terms of PM write wearing reduction by
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Average writes/flushes to PM per transaction.
NV-HTM PHTM PSTM
NP (85%) (10x) (10%)g (10X )mr
Writes 45 45 455 8.1 8.1 9.1 35.2
Flushes 1.8 1.8 1.83 1.83 6.4 6.3 21.2

reporting the average number of memory words written (with 8-
bytes granularity) and cache lines flushed to PM per transaction,
at 28 threads. NV-HTM performs =~ 2x less writes and &~ 3.4x
less flushes than PHTM. This gain is directly imputable to NV-
HTM’s design choice of letting transactions’ updates accumulate
in the log and of periodically/upon need filtering duplicates via
the BFC algorithm; conversely, since PHTM immediately applies
a transaction’s logged updates to PM right after its commit, it
has no opportunity to filtering repeated writes/flushes. Similar
considerations apply to the case of PSTM, although the benefits
of NV-HTM are even further amplified in the high contention
scenario. In fact, in HTM-based solutions (like PHTM and NV-
HTM) transactions that do not commit in HTM, their written
cache lines never reach (persistent) memory. Being a purely soft-
ware based solution, though, PSTM writes/flushes log entries to
PM during transaction execution, independently of whether they
will eventually commit; as such, aborted transactions, end up
contributing in a non-negligible way to the write traffic to PM.

6.2. Write capacity and scalability

Our next study focuses on contrasting the available write
capacity of transactions when using NV-HTM vs. PHTM and a
pure HTM-based system not generating any additional write to
ensure crash atomicity. To this end, we synthesized a workload
in bank where the transaction size is increased iteratively up to
the maximum capacity of current Intel's HTM implementation
(i.e., 512 cache lines [43]).

Fig. 7 shows that, despite NV-HTM’s maximum write capacity
is lower than that of pure HTM, it is significantly larger than
PHTM'’s. Indeed both NV-HTM and PHTM have to generate a

log entry per transactional write. However, in both systems, log
entries are 16-bytes long and, since logs are stored sequentially
in memory, up to 4 log entries can fit a single cache line —
which amortizes significantly the write capacity consumed to
produce the log. However, PHTM further acquires a write lock
per transactional write, and each of these locks is, with high
probability, mapped to a different cache line. So, while on average
NV-HTM consumes ~=0.25 additional cache lines per write, PHTM
consumes on average ~1.25 caches lines, i.e., &5 x more.

Finally, we conduct a study aimed at assessing the scalability
of NV-HTM’s physical-clock based scheme [37]. The usage of a
logical-clock in an HTM system is a source of “false” conflicts,
which is translated in extra aborts. Given that DudeTM [39]'s ap-
proach uses a logical-clock, this experiment shows its overheads
in an HTM system. To this end we use the bank benchmark to syn-
thesize a conflict-free workload composed exclusively by short
update transactions (emulating a transfer between a pair of bank
accounts) and consider a NV-HTM'’s variant, noted NV-HTMZC, in
which transactions establish their serialization order in the log
by increasing a single logical clock right before committing. The
plots in Fig. 8 clearly highlight the inherent scalability limitations
of approaches relying on a single logical clock, which generates
abort rates above 60% when using 16 threads or more. Conversely,
thanks to the use of physical clocks, NV-HTM avoids inducing
any additional sources of conflicts among transactions, achieving
almost linear scalability.

6.3. STAMP and TPC-C benchmarks

We now evaluate NV-HTM using more complex benchmarks
that generate realistic workloads, namely the STAMP benchmark
suite [7] and TPC-C [49].

STAMP. The results of the STAMP benchmark suite are reported
in Fig. 9 and Table 2. The STAMP suite (from which we omit
the Bayes benchmark, which is known to suffer from very high
variance and yield unreliable results [16,51]) contains both work-
loads amenable to HTM, as well as workloads more favorable to
STM, where most transactions exceed HTM's capacity or suffer
from spurious conflicts due to HTM's coarser conflict detection
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Table 2
Average writes/flushes per transaction to PM in STAMP.
Genome Intruder Kmeans (low) Vacation (low) Labyrinth
Writes  Flushes  Writes  Flushes Writes  Flushes Writes  Flushes Writes  Flushes
NV-HTMy;p 2.326 1.870 2915 2.396 27.00 8.249 7.799 3.439 15.30 5.461
NV-HTMyp  2.751 2.261 3.408 2787 27.09 8.266 9.81 4.734 15.88 5.612
PHTM 7.176 1.321 10.93 2172 4599 5.000 33.29 6.621 80.39 16.50
PSTM 3.826 3.807 22.45 13.88 200.3 142.2 1.446 1.420 46.83 37.87
SSCA2 Vacation (high) Kmeans (high) Yada Average of all
Writes  Flushes ~ Writes  Flushes Writes Flushes Writes  Flushes Writes  Flushes
NV-HTMpyp 4.000 3.000 12.62 4601 27.00 8.249 18.36 6.016 13.04 4.809
NV-HTMp«  4.100 3.000 13.06 4798 27.03 8.253 25.55 10.10 14.30 5.534
PHTM 19.00 3.999 55.01 10.84 45.99 5.000 77.44 1491 41.69 7.374
PSTM 6.015 6.007 1744 98.08 198.1 125.0 68.69 45,61 80.23 52.65
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Fig. 9. STAMP benchmarks.

granularity. Labyrinth, Yada and Genome belong clearly to the these non-HTM-friendly workloads, NV-HTM achieves significant
second group of workloads, and, as such, PSTM has clearly an edge speed-ups over PHTM, up to &~ 2 x in Yada. The only exception to
over both NV-HTM and PHTM. This is true also for Vacation (Low) this rule is represented by the Genome benchmark. By analyzing
at high thread counts. Yet, it is relevant to note that, even with Genome more in detail we noticed that this benchmark issues
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a number of repeated writes to the same memory positions.
As already mentioned (Section 6.2), PHTM uses a lock table to
track ownership of cache lines and ensure that log flushes are
ordered consistently with the commit order of transactions in
hardware. This mechanism (which, as discussed, introduces non-
negligible overhead) ensures that if a transaction (as it is the
case for Genome) writes multiple times to the same memory
position/cache line, a single log entry is actually produced and
flushed to PM for all of these writes. NV-HTM, on the contrary,
only filters duplicate writes/flushes to the same cache lines (via
the background CP) if they are issued by different transactions.
As such, in this workload, NV-HTM issues, on average, a larger
number of flushes per committed transaction — which, we recall,
incur a fixed penalty of 500 ns in our emulation of PM. We argue,
though, that these results should be regarded as a lower bound on
NV-HTM’s performance since, in realistic PM settings, if the same
cache line is flushed multiple times during the post commit log
flushing phase, the full flushing penalty is expected to be incurred
only once — unlike in our PM emulation.

Vacation and KMeans are more favorable to HTM, although
with different characteristics: Vacation spends >90% of the time
running transactions, whereas Kmeans spends =>90% execut-
ing non-transactional code; further, in Kmeans, transactions are
much less prone to incur capacity exceptions that in Vacation. In
the light of these considerations, Fig. 9 suggests that the more
favorable the workload characteristics are to HTM, the ampler
are the speed-ups achievable by NV-HTM over both PHTM and
PSTM, with gains in the peak throughput of 4x with respect to
both solutions in Kmeans (High) (14 threads), ~40% vs. PSTM and
~2.5x vs. PHTM in Vacation (High).

We note that NV-HTM achieves almost indistinguishable per-
formance in the scenario of high frequency of activation of the
CP (10x) and in case the CP is never activated (NLP), confirming
the efficiency of the BFC algorithm. Some exceptions are Vacation
(Low), Genome and Intruder, where the slowdown is, in average,
20%, 16% and 7%, respectively.

Table 2 reports data on the number of write and flushes to
PM. On average, NV-HTM 4, produces 2.92x less writes than

PHTM and 5.61x less than PSTM, while only producing 8.8% more
writes than NV-HTM yp (Table 2 column Average of All), which
confirms that the filtering technique at the core of BFC remains
very effective also when applied to complex, realistic workloads.

A closer look to Table 2 reveals that PHTM issues a smaller
number of flushes in Genome, Kmeans and Intruder. We argue
that this is due to PHTM's ability of filtering duplicate flushes
to the same cache line by the same transaction. Despite this,
Genome (as already discussed) is the only benchmark where
PHTM slightly outperforms NV-HTM, whereas in Kmeans and
Intruder NV-HTM achieves up to 6x speedups. Such discrep-
ancy is explained by analyzing the probability of abort in these
benchmarks for PHTM and NV-HTM, which highlights how the
software-based locking mechanism employed by PHTM makes
this solution significantly more prone to contention. For example,
in Intruder (4 threads), PHTM aborts 9x more than NV-HTM
resulting in 2x slowdown.

6.3.1. TPC-C

We now evaluate NV-HTM using an in-memory porting [47] of
TPC-C [49], a well known benchmark for OLTP systems. We report
the corresponding results in Fig. 10 and Table 3.

The TPC-C benchmark specifies 5 transaction profiles, encom-
passing 2 read-only transactions (Order Status and Stock Level)
and 3 update ones (Delivery, New Order, and Payment). This
benchmark defines a parameter, i.e., the number of warehouses
(w), which allows for controlling the contention level among
transactions — larger w values yielding lower conflict probability.
As the focus of this work is on HTM, we configure the benchmark
not to generate a transaction profile (named Stock Ilevel), which
generates a very long read-only transaction that deterministically
exceeds HTM capacity, forcing the acquisition of the pessimistic
fallback path and hindering scalability of HTM-based solutions.
We considered two workloads, referred to as TPC-C4 and TPC-Cg.
TPC-C4 is a read-intensive workload (65% read-only transactions)
that generates a mild contention level (w = 10), whereas TPC-Cg
is a write-intensive workload (26% read-only transactions) that
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Table 3
Average writes/flushes to PM per transaction in TPCC.
TPC’erite TPC’Cread
Writes Flushes Writes Flushes
NV-HTMpy;p 47 22 16 12
NV-HTMgx 47 25 1.6 12
PHTM 16 3.1 40 0.63
PSTM 6.6 6.4 27 27

generates a slightly higher contention level w.r.t. TPC-C, (w =
30).

The evaluated solutions are the same as in STAMP, with the
addition of pure HTM and STM operating on plain RAM (i.e., no
PM).

As Fig. 10 shows, not only does NV-HTM outperform both
PHTM and PSTM. NV-HTM'’s throughput is also only 10% worse
than a RAM-based HTM solution in TPC-Cg and 5% in TPC-C, (av-
erage of all data points). Further, the comparison of NV-HTMg..'s
and NV-HTMpyyp's performance shows that the overhead imposed
by the background log pruning process is, in this workload,
negligible.

Regarding the amount of writes and flushes to PM, the
conclusions are similar to the ones already drawn while analyz-
ing STAMP. Table 3 shows that NV-HTM incurs approximately
3x[50% less writes to PM than PHTM/PSTM, respectively. In TPC-
Cg, NV-HTM also requires the least flushes to PM (2.5 vs. 3.1/6.4
for PHTM/PSTM, respectively), due to its ability to filter duplicate
updates to the same cache lines across transactions.

Overall, these results showcase the efficiency of NV-HTM even
when faced with demanding real world workloads.

7. Limitations and discussion

This section aims at critically analyzing the proposed solu-
tion and at shedding lights on the implications, and possible
drawbacks, of its design. In particular, our discussion focuses
on analyzing two main design choices of NV-HTM, namely: (i)
its reliance on a background log-pruning process and (ii) the
technique it employs to establish a total order on the commit
events of update transactions.

Impact of the concurrent log-pruning process. Differently from
PSTM [50] and PHTM [4], NV-HTM does not prune the log entries
generated by a committed update transaction after this commits.
Conversely, it relies on a background Checkpointing Process (CP)
to replay, in an asynchronous fashion, the logs to PM and prune
them.

As also discussed in Section 6.1, in workloads that generate an
intense write traffic and whose performance is memory bound,
the concurrent execution of the background CP can impose a
non-negligible overhead if: (i) there is not enough log capacity
to accommodate incoming bursts of update transactions, trigger-
ing frequent activation of the CP; (ii) the latency of writing to
PM associated with the scarcity of duplicate accesses does not
compensate the efforts of filtering them; or, (iii) the CP shares its
physical core (and/or other resources) with one or more working
thread(s), thus, slowing down the CP. Point (i) depends on how
much PM the application reserves for the logs; point (ii) could
be tackled by adaptively disabling duplicate filtering; and point
(iii) would require the application to not oversubscribe the cores
reserved for the CP.

Totally ordering transactions in the log. NV-HTM allows threads
to flush the log entries that describe the updates performed by
a transaction in a fully concurrent fashion. However, in order
to impose a total order on the commit events of the (update)

transactions recorded in the log, NV-HTM serializes the flushing
of the transactions' final commit marker, i.e., at most one thread
at a time can flush its commit marker to PM.

Conversely, PSTM [50] and PHTM [4] impose only a partial
order on the transactions registered in the persistent log. This
is made possible via the use of an additional locking mecha-
nism, which prevents conflicting transactions from flushing their
logs concurrently. This way, correctness of the replay phase can
be preserved, while allowing concurrent access to the log by
non-conflicting transactions.

We argue to be in presence of a trade-off. If, on the one hand,
the use of locking enables a fully concurrent access to the log
by non-conflicting transactions (unlike with NV-HTM's commit
logic), on the other hand, it also introduces significant overhead,
especially in the context of HTM-based solutions. As discussed in
Section 6.2, in fact, the software instrumentation required to im-
plement a locking scheme reduces significantly the effective write
capacity of transactions executing in hardware. Further, both in
PHTM and PSTM, since locks are acquired during transaction’s
execution and maintained till all of the transaction's log entries
have been flushed to PM, the time during which transactions
can be subject to suffer from lock contention (and a consequent
restart) is significantly larger than for the case of NV-HTM. In
fact, NV-HTM fully removes the latency of log flushes from the
critical path of execution of transactions by postponing them to
after their commit.

8. Conclusion and future work

This paper presents NV-HTM, system capable of combining
(unmodified) commodity HTM with PM. By coupling a novel
asynchronous logging scheme with a background log pruning pro-
cess, NV-HTM avoids the need for flushing cache lines within
transactions. This is not only key to ensure the interoperability
between HTM and PM, but brings also relevant benefits in terms
of both performance and reduction of PM write wearing: on
one hand, it allows applications to execute on a faster, volatile
working image; on the other hand, by offloading the overhead
of synchronizing application’s state to PM to a background pro-
cess, it enables the opportunity to filter duplicate writes across
transactions, significantly reducing the write/flush traffic to PM.

Our experimental evaluation shows that NV-HTM can achieve
strong gains, in terms of throughput (up to 10x) and PM write
wearing reduction (up to 11.6x less flushes to PM), even when
compared to existing solutions that demand custom hardware.

The design of NV-HTM opens a number of interesting re-
search avenues, which we intend to pursue in our future work.
In particular, we argue that the ability of NV-HTM to define a
total order over the commit events of HTM transactions — which
NV-HTM exploits to ensure the correctness of the checkpoint-
ing process - can be valuable in at least two contexts that are
outside of the scope of PM, namely debugging and replication.
The former is notoriously hard in HTM, and NV-HTM'’s ability to
pinpoint and deterministically reproduce the serialization order
of HTM transactions represents a valuable tool for programmers
to identify possible issues in their applications. The latter often
relies on primary-based approaches where a privileged/master
process is responsible for establishing a total order on update
operations, which has then to be deterministically applied by
a set of backup/slave processes. NV-HTM's ability to produce a
totally order transactions' log comes in clearly very handy in
this context. Further, in scenarios where one wants to employ
distributed replication based on HTM and PM, the ability of
NV-HTM to filter duplicate writes across transactions could be
exploited both to reduce the communication overhead and the
cost of replay at the backup processes.



78

D. Castro, P. Romano and J. Barreto / Journal of Parallel and Distributed Computing 130 (2019) 63-79

Acknowledgments

We would like to thank all the insightful reviews from the
IPDPS Program Committee and from the JPDC reviewers. We also
would like to thank our funding agency Fundagdo para a Ciéncia
e Tecnologia which funded the projects UID/CEC/50021/2019 and
PTDC/EEISCR/1743/2014.

References

(1]

[2]

3]

[4

[5

[6]

[7]
(8]

9

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

M. Ansari, M. Lujan, C. Kotselidis, K. Jarvis, C. Kirkham, I. Watson,
in: P. Stenstrom (Ed.), Transactions on High-performance Embedded
Architectures and Compilers III, Springer, 2011, pp. 236-255.

J. Arulraj, A. Pavlo, S.R. Dulloor, Let's talk about storage: Recovery
methods for non-volatile memory database systems, in: SIGMOD, 2015,
pp. 707-722.

H. Avni, T. Brown, PHyTM: Persistent hybrid transactional memory, in:
VLDB, Vol. 10, 2016, pp. 409-420.

H. Avni, E. Levy, M. Avi, Hardware transactions in nonvolatile memory, in:
DISC 2015. Lecture Notes in Computer Science, Vol. 9363, Springer, Berlin,
Heidelberg, 2015, pp. 617-630.

K. Bailey, L. Ceze, S.D. Gribble, H.M. Levy, Operating system implications
of fast, cheap, non-volatile memory, in: HotOS, 2011.

P. Bergner, A.S. Houfater, M. Kandeasamy, D. Wendt, S. Warrier, J. Wang,
B.K. Smith, W. Schmidt, B. Schmidt, S. Munroe, T. Magno, A. Mericas, M.
Oliveira, B. Hall, Performance Optimization and Tuning Techniques for IBM
Power Systems Processors Including IBM POWERS, IBM Redbooks, 2015.
C. Cao Minh, ]. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford
transactional applications for multi-processing, in: IISWC, 2008.

C. Cao Minh, ]. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford
transactional applications for multi-processing, in: ISWC, 2008.

D. Castro, P. Romano, ]. Barreto, Hardware transactional memory meets
memory persistency, IPDPS (2018) 368-377.

D.R. Chakrabarti, H.-J. Boehm, K. Bhandari, Atlas: Leveraging locks for
non-volatile memory consistency, in: OOSPLA, 49 (10) (2014) 433-452.
J. Coburn, AM. Caulfield, A. Akel, LM. Grupp, RK. Gupta, R. Jhala,
S. Swanson, NV-Heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories, in: ASPLOS, Vol. 47, 2011.

J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, D. Coetzee,
Better 1/O through byte-addressable, persistent memory, in: SOSP, 2009,
pp. 133-147.

J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, D. Coetzee,
Better i/o through byte-addressable, persistent memory, in: Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
in: SOSP '09, ACM, New York, NY, USA, 2009, pp. 133-146, http://dx.doi.
org/10.1145/1629575.1629589, URL http://doi.acm.org/10.1145/1629575.
1629589.

D. Dice, Y. Lev, M. Moir, D. Nusshaum, Early experience with a commercial
hardware transactional memory implementation, in: ASPLOS, Vol. 44, 2009.
D. Dice, N. Shavit, Understanding tradeoffs in software transactional
memory, in: CGO, 2007.

D. Didona, N. Diegues, A.-M. Kermarrec, R. Guerraoui, R. Neves, P. Romano,
Proteustm: Abstraction meets performance in transactional memory, in:
ASPLOS, ACM, 2016, pp. 757-771.

D. Didona, P. Felber, D. Harmanci, P. Romano, ]J. Schenker, Identifying
the optimal level of parallelism in transactional memory applications,
Computing 97 (9) (2015) 939-959.

N. Diegues, P. Romano, L. Rodrigues, Virtues and limitations of commodity
hardware transactional memory, in: PACT, 2014, pp. 3-14.

X. Dong, Y. Xie, AdaMS: Adaptive MLC/SLC phase-change memory design
for file storage, in: ASP-DAC, 2011, pp. 31-36.

S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran,
J. Jackson, System software for persistent memory, in: EuroSys, pp. 1-15.
P. Felber, C. Fetzer, P. Marlier, T. Riegel, Time-based software transactional
memory, IEEE TPDS 21 (12) (2010) 1793-1807.

ER. Giles, K. Doshi, P. Varman, SoftWrAP: A lightweight framework for
transactional support of storage class memory, in: MSST, 2015, pp. 1-14.
E. Giles, K Doshi, P. Varman, Continuous checkpointing of HTM
Transactions in NVM, ISMM (2017) 70-81.

E. Giles, K. Doshi, P. Varman, Brief announcement: Hardware transactional
persistent memory, in: SPAA, ACM Press, 2018, pp. 227-230.

M. Herlihy, J.E.B. Moss, Transactional memory: Architectural support for
lock-free data structures, in: ISCA, 1993, pp. 289-300.

J. Huang, K. Schwan, M.K. Qureshi, NVRAM-aware logging in transaction
systems, in: VLDB, Vol. 8, 2014, pp. 389-400.

I. Corporation, Intel® 64 and IA-32 Architectures Software Developer’s
Manual, 2010.

Intel Corporation, Desktop 4th Generation Intel Core Processor Family
(Revision 028), Tech. rep., Intel Corporation (2015).

[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]
[49]
[50]

[51]

[52]
[53]

[54]

[55]

]. Izraelevitz, T. Kelly, A. Kolli, Failure-atomic persistent memory updates
via JUSTDO logging, in: ASPLOS, 2016, pp. 427-442.

B. Jacob, T. Mudge, A look at several memory management units, TLB-refill
mechanisms, and page table organizations, in: ASPLOS, 1998, pp. 295-306.
A. Joshi, V. Nagarajan, M. Cintra, S. Viglas, DHTM: Durable hardware
transactional memory, in: ISCA, Vol. 7, IEEE, 2018, pp. 452-465.

S. Kashyap, C. Min, K. Kim, T. Kim, A scalable ordering primitive for
multicore machines, in: EuroSys, 2018.

W.-H. Kim, ]. Kim, W. Baek, B. Nam, Y. Won, NVWAL: Exploiting NVRAM
in write-ahead logging, in: ASPLOS, Vol. 1, 2016, pp. 385-398.

A. Kolli, S. Pelley, A. Saidi, P.M. Chen, T.F. Wenisch, High-performance
transactions for persistent memories, in: ASPLOS, 2016, pp. 399-411.

M. Kryder, C. Kim, After hard drives-what comes next? IEEE Trans. Magn.
45 (10) (2009) 3406-3413.

EV. Kumar, clock() or gettimeofday() or ippGetCpuClocks()? (last ac-
cess: 2017-5-15) (2010). URL https://software.intel.com/en-us/articles/
best- timing-function-for-measuring-ipp-api- timing/.

Y. Liu, J. Gottschlich, G. Pokam, M. Spear, TSXProf: Profiling hardware
transactions, in: PACT, 2015, pp. 75-86.

Q. Liu, P. Varman, Ouroboros wear leveling for NVRAM using hierarchical
block migration, ACM Trans. Storage 13 (4) (2017) 1-30.

M. Liu, M. Zhang, K. Chen, X. Qian, DudeTM: Building durable transactions
with decoupling for persistent memory, in: ASPLOS, 2017, pp. 329-343.
Y. Lu, J. Shu, L. Sun, Blurred persistence in transactional persistent memory,
in: MSST, 2015, pp. 1-13.

A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan, K.
Strauss, S. Swanson, Atomic in-place updates for non-volatile main
memories with Kamino-Tx, in: EuroSys, 2017, pp. 499-512.

S. Mittal, ].S. Vetter, A survey of software techniques for using non-
volatile memories for storage and main memory systems, IEEE TPDS (2015)
1537-1550.

T. Nakaike, R. Odaira, M. Gaudet, M.M. Michael, H. Tomari, Quantita-
tive comparison of hardware transactional memory for Blue Gene/Q,
zEnterprise EC12, Intel Core, and POWERS, in: ISCA, 2015, pp. 144-157.
S. Park, T. Kelly, K. Shen, Failure-atomic msync(): A simple and efficient
mechanism for preserving the integrity of durable data, in: EuroSys, 2013,
pp. 225-238.

R. Ramakrishnan, J. Gehrke, Database Management Systems, third ed.,
McGraw-Hill, Inc., New York, NY, USA, 2003.

D. Rughetti, P. Romano, F. Quaglia, B. Ciciani, Automatic tuning of the
parallelism degree in hardware transactional memory, in: Euro-Par, 2014.
M. Stonebraker, S. Madden, DJ. Abadi, S. Harizopoulos, N. Hachem, P.
Helland, The end of an architectural era: (it’s time for a complete rewrite),
in: VLDB, VLDB Endowment, 2007, pp. 1150-1160.

The Linux Foundation Direct Access for files (last access: 2017-06-21). URL
https://www.kernel.org/doc/Documentation/filesystems/dax.txt.
Transaction Processing Performance Council, TPC Benchmark C, Standard
Specification, Revision 5.11 (Feb. 2010).

H. Volos, A]J. Tack, M.M. Swift, Mnemosyne: Lightweight persistent
memory, in: ASPLOS, 2011, pp. 91-104.

Q. Wang, S. Kulkarni, ]J. Cavazos, M. Spear, A transactional memory with
automatic performance tuning, ACM Trans. Archit. Code Optim. 8 (4)
(2012) 1-23.

Z. Wang, H. Yi, R. Liu, M. Dong, H. Chen, Persistent transactional memory,
IEEE Comput. Archit. Lett. 14 (1) (2015) 58-61.

J. Xu, S. Swanson, NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories, in: FAST, 2016, pp. 323-338.

X. Yuan, C. Wu, Z. Wang, ]. Li, P.C. Yew, ]. Huang, X. Feng, Y. Lan, Y. Chen,
Y. Guan, ReCBuLC: reproducing concurrency bugs using local clocks, in:
ICSE, 2015.

Z. Zhang, D. Feng, Z. Tan, ]. Chen, W. Zhou, L.T. Yang, File aware wear lev-
eling for PCM-based mobile consumer electronics, in: HPCC/SmartCity/DSS,
IEEE, 2017, pp. 555-562.

Daniel Castro received the Master degree in Engineer-
ing Systems and Computer Engineering from Instituto
Superior Técnico (University of Lishon). He is currently
a PhD student at Instituto Superior Técnico (University
of Lisbon) and INESC-ID. His research interests are in
transactional memory, emergent non-volatile memory,
heterogeneous computing and performance systems
modeling.



D. Castro, P. Romano and J. Barreto / Journal of Parallel and Distributed Computing 130 (2019) 63-79 79

Paolo Romano received his PhD from Rome University
“Sapienza” (2007) and his Master degree summa cum
laude from Rome University “Tor Vergata” (2002). He
is currently an Associate Professor at Técnico (ULishoa)
and a Senior Researcher at INESC-ID. His research
interests include parallel and distributed computing,
dependability, autonomic systems, performability mod-
eling and evaluation, data management in large scale
systems, cloud and high performance computing.

Jodo Barreto holds a PhD from the Univ. of Lisbon. He
is with INESC-ID and Univ. Of Lishon where he is an
assistant professor in the areas of Architectures, Op-
erating Systems and Distributed Systems. His research
interests include parallel programming, consistency and
replication, data deduplication, mobile sensing.



