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Abstract—Persistent Memory (PM) and Hardware Transac-

tional Memory (HTM) are two recent architectural developments

whose joint usage promises to drastically accelerate the perfor-

mance of concurrent, data-intensive applications. Unfortunately,

combining these two mechanisms using existing architectural

supports is far from being trivial. This paper presents NV-HTM,

a system that allows the execution of transactions over PM using

unmodified commodity HTM implementations. NV-HTM relies

on a hardware-software co-design technique, which is based on

three key ideas: i) relying on software to persist transactional

modifications after they have been committed via HTM; ii)

postponing the externalization of commit events to applications

until it is ensured, via software, that any data version produced

and observed by committed transactions is first logged in PM;

ii) pruning the commit logs via checkpointing schemes that not

only bound the log space and recovery time, but also implement

wear levelling techniques to enhance PM’s endurance. By means

of an extensive experimental evaluation, we show that NV-HTM

can achieve up to 10⇥ speed-ups and up to 11.6⇥ reduced flush

operations with respect to state of the art solutions, which, unlike

NV-HTM, require custom modifications to existing HTM systems.

Index Terms—transaction, memory, persistent, hardware, sys-

tem

I. INTRODUCTION

Over the last years, two game shifting advancements have
shaken the ground of memory technology: Hardware Transac-
tional Memory (HTM) and Persistent Memory (PM).

On the one hand, HTM [23], [33], [34], allows for spec-
ulatively parallelizing the execution of critical sections/trans-
actions, by delegating to efficient hardware mechanisms the
detection of conflicts arising among concurrently executing
threads. HTM has been shown to bring about striking per-
formance gains, especially when used to synchronize access
to small in-memory data structures [22], as well as to sig-
nificantly simplify the development of concurrent applications
with respect to conventional lock-based schemes [33].

On the other hand, leading memory manufacturers have
announced the imminent availability of innovative byte-
addressable PM technologies (e.g., phase-change, spin transfer
torque and resistive RAM [36]). Besides providing persistent
working sets to applications via a DRAM-like memory bus,
the future PMs are expected to achieve read access perfor-
mance in the same order of magnitude as DRAM, together
with significant enhancements on the capacity and energy
efficiency fronts. However, despite notable improvements in
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write endurance and performance relatively to NAND SSD,
the future PM DIMMs will still suffer from write wearing and
have much higher write latencies when compared to DRAM.

The combined power of HTM and PM has the potential
to enable drastic accelerations of modern data-intensive appli-
cations. This unprecedented opportunity promises to deliver
performance and scalability levels not attainable with block-
oriented storage, and at a fraction of the development cost/-
complexity compared to lock-based synchronization schemes.

Unfortunately, though, the design of existing HTMs raises
non-trivial issues when these are used in conjunction with
PM. Whenever a transaction commits, current HTM systems
only guarantee that the writes issued by the transaction are
made visible to other cores via the cache coherence protocol.
However, the updates produced by committed transactions are
not atomically flushed to (persistent) RAM, and may linger in
the CPU cache for an arbitrary amount of time before being
written back to PM. Unfortunately, caches are expected to
remain volatile [8], [13], [42]. As such, upon failure, only a
subset of the committed writes to PM may have been persisted
— failing to guarantee crash-atomicity [12].

A natural approach to tackle this problem would be to
borrow methodologies from durable transactions in traditional
block-based storage, such as undo/redo logging. Such schemes
resort to an additional persistent log, which tracks all the writes
issued by transactions. To satisfy crash-atomicity, they rely on
a crucial assumption: the ability to ensure that all transactional
updates persist in log before any persistent data is modified.

Unfortunately, though, commodity HTM fail to meet this
assumption. HTM implementations, such as Intel’s TSX [34],
do not allow an ongoing transaction to flush the cached log to
(persistent) memory before the HTM commits the transaction.

This paper presents NV-HTM, a system that leverage on
a novel hardware-software co-design to allow the execution
of transactions over PM using unmodified commodity HTM
implementations. In a nutshell, NV-HTM instruments the
writes issued with HTM transactions to track them in a
redo log. Once committed, a transaction makes its effects
(and its logs) visible to other concurrent threads, but not
necessarily persisted in PM — we call this a non-durable
commit. However, when a thread commits an HTM transaction
T , in durable fashion, it postpones the commit event until T ’s
log (and the log of any transaction T may depend upon) has
reached PM — but without waiting for the actual in-place
writes to be flushed to PM. Only at this point we say that the
transaction is durably committed.

This approach guarantees that whenever a transaction’s



commit is externalized, all of its log entries have been per-
sisted; however, the application’s state persisted in memory
may reflect only partially the updates of both durably and
non-durably committed transactions. The key insight at the
basis of NV-HTM is to discard, upon recovery, the persisted
application state and to reconstruct it, replaying the logs of all
the durably committed transactions on a consistent checkpoint.

Turning this high level design into an efficient and correct
algorithm required tackling three main challenges.
1. HTM-compatible asynchronous logging. The first chal-
lenge is how to build an efficient logging scheme that is
compatible with current off-the-shelf HTM implementations.
This raises two main obstacles: first, typical logging schemes
that require flushing the log before the hardware transaction is
committed are not acceptable; second, the use of centralized
logging schemes in highly concurrent environments, such as
typical HTM systems, would represent an inherent contention
point and limit the system’s scalability in update intensive
workloads. NV-HTM tackles these issues by relying on a
decentralized design, where each thread maintains a local
log storing only information related to transactions that it
executed. Additionally, NV-HTM builds a non-durable log
during execution of a transaction. However it is only persisted
after the HTM commit event (non-durable commit), a commit
marker is then appended via software (durable commit).
2. Enforcing transactions’ dependencies. The necessary
distinction between the non-durable and the durable commits
raises a key challenge: how to ensure that the serialization
order of non-durable commits (defined by HTM) is consistent
with the order of durable commits (defined in software by
NV-HTM when it flushes a transaction’s log).

In fact, NV-HTM can only flush the logs generated by a
transaction T (i.e., durably commit T ), after T has been non-
durably committed by HTM. This means that other transaction
T

0 may observe T ’s updates before they are persisted, where
T

0’s log entries persisted before T s. Then, upon recovery,
T would be discarded and T

0 replayed. This would break
consistency, since T

0 depends on (i.e., reads from) T .
3. Checkpointing process. Another crucial issue is related to
minimizing the computational and spatial overheads, as well as
reducing PM wear off, associated with the checkpointing pro-
cess that NV-HTM employs during recovery — to construct a
consistent snapshot reflecting the execution of all and only the
transactions durably committed before a crash — and during
the normal operational mode — to bound the log’s growth and
the duration of the recovery process. We address this challenge
with a checkpointing mechanism called Backward Filtering
Checkpoint (BFC), which filters repeated writes and/or flushes
to cache lines that are updated multiple times by different
transactions in the log. Furthermore, NV-HTM relies on the
Copy-on-Write (CoW) mechanism provided by modern OSs
to minimize its spatial overhead.

NV-HTM efficiency is evaluated experimentally by means
of synthetic and standard benchmarks and including as base-
lines both approaches based on pure software implementa-

tions [13] as well as relying on ad-hoc hardware mecha-
nisms [12]. The results show that NV-HTM can achieve up to
10⇥ better performance and reduce number of flushes to PM
by a factor 11.6⇥ with respect to state-of-the-art solutions.

II. RELATED WORK

Several works investigate the problem of exposing emerging
PM technologies to applications. A first approach is to retain
the same abstractions that already exist for block-oriented
storage, optimizing their implementation to benefit the most
from distinguishing performance characteristics and low-level
consistency guarantees of PM [14], [16], [25], [26], [28], [42].

An alternative approach exposes PM as persistent heaps
that applications can access directly via memory loads and
stores [13], [15]. While appealing, attaining the benefits of
persistent heaps depends on maintaining persistent data in
such a way that i) efficiency is preserved, given the unique
performance characteristics of PM (namely, minimizing the
high costs of CPU cache flushes and PM writes), and ii)
updates are ensured to consistently survive across failures.

A general approach is to provide failure-atomic sections
on top of persistent heaps. Besides the classical lock-based
sections [8], [18], failure-atomic sections can be imple-
mented using the Transactional Memory (TM) abstraction.
The first proposals of failure-atomic memory transactions for
the emerging PM technologies were proposed in the context
of Mnemosyne [13] and NV-heaps [15]. Both essentially
depart from mainstream software transactional memory (STM)
implementations and extend them with logging and recovery
mechanisms to ensure durability. Since these initial proposals,
failure-atomic memory transactions have received substantial
attention in the literature, e.g., [5], [6], [17], [30].

Unlike NV-HTM, which builds on existing HTM supports,
the above-mentioned solutions rely on software-based imple-
mentations of the TM abstraction. As such, they interpose
an extra software layer that can introduce significant over-
heads [22].

Avni et al. [12] and Wang et al. [31] were the first to exploit
HTM for building failure-atomic transactions on PM. Like
our solution, these proposals promise to hide the sequential
overheads of STM-based approaches. In contrast to our solu-
tion, though, both proposals rely on non-trivial alterations to
existing HTM designs, e.g., assuming the ability to atomically
flush log entries to PM from within a hardware transaction or
storing additional transactional metadata in each cache line.
As such, these solutions cannot be used on current best-effort
HTM implementations. Similar assumptions on the availability
of non-standard HTM supports are required to PHyTM [1],
which extends prior work [12] to support concurrent execution
of both hardware-based and software-based transactions.

Underlying all paradigms, a number of common non-trivial
problems at lower layers have received attention from the
research community. These include hardware/hybrid mecha-
nisms that aim at improving the performance, reliability and
durability of PM, through mechanisms such as write buffering
and coalescing, wear leveling and salvaging [39]. Furthermore,



supporting PM as a first-class citizen has produced initial steps
towards novel proposals to redesign fundamental operating
system (OS) mechanisms [19]. All these techniques are com-
plementary to our solution.

NV-HTM shares the approach of maintaining a stable
snapshot in addition to a working copy with several recent
works. In the PM domain, examples include AdaMS [4] and
Kamino-Tx [6]. — none of them, though, targets the problem
of enabling the use of HTM over PM. Concurrently with our
research, two works have very recently addressed the problem
of supporting PM in commodity HTM implementations, [21],
[41]. DudeTM [21] provides a generic checkpointing mecha-
nism, which can be coupled with both software and hardware
TM implementation. However, its reliance on a shared logical
clock to serialize HTM transactions leads to poor scalability in
update intensive workloads, as we will show in Section VI-B.
Giles et al. [41] avoid this issue, by using physical clocks to
order transactions in the log, analogously to what NV-HTM
does. However, unlike NV-HTM, it requires to instrument read
access, which introduces significant overheads (and arguably
defeats the purpose of HTM). Further, differently from NV-
HTM, the work by Gilles et al. [41] does not employ any log
filtering techniques to extend the life expectancy of PM.

Finally, NV-HTM builds on the literature in DBMS [40],
which developed a large number of alternative approaches
relying on undo/redo logging techniques. These approaches
rely on the assumption that the system can exert control on the
timing with which log entries and data updates are persisted
— an assumption not met by available HTMs, precluding the
direct applicability of this class of solutions.

III. BACKGROUND ON HTM
Existing HTM systems come with different flavours and

limitations. Despite their differences, though, all HTM imple-
mentations keep track of the transactional memory footprint
in the processor’s caches, including conflict detection which is
done at the cache coherency protocol. This architectural design
has several important implications, which we discuss next.

The first one is that current HTM systems provide a best-
effort implementation of the TM abstraction, in the sense
that transactions are not guaranteed to commit even if they
run in absence of concurrency. Existing HTM systems can
only commit transactions whose memory footprint does not
exceed cache capacity. And, even in such case, they typically
provide no guarantee on the ability to successfully commit
transactions. As such, HTM-based applications must rely on
a fallback mechanism to guarantee progress.

The default approach is to re-try a hardware transaction
some predetermined number of times, and then acquire a
Single Global Lock (SGL). The SGL aborts any concurrent
hardware transaction, hence ensuring the necessary isolation
at the cost of serializing the execution of transactions.

Another important implication stemming from the cache-
centric design of current HTM systems is that, upon the
commit of a transaction, its updates are not immediately nor
atomically flushed to the original memory locations (in DRAM

or PM). Conversely, updates of committed transactions are
made visible to other threads via the cache coherency protocol,
which ensures that any copies that remote CPU caches may
be storing are atomically invalidated.

Further, HTM implementations, such as Intel’s TSX, simply
abort transactions that attempt to flush any cache line that
they have previously updated, as it would imply externalizing
the writes produced by uncommitted transactions. In order to
maximize portability, NV-HTM relies on a minimalistic set of
assumptions regarding the underlying HTM system, which are
currently met by every existing HTM implementation (we are
aware of). Specifically, NV-HTM assumes a best-effort HTM
implementation, that commits transactions in volatile caches
and exposes a conventional API for transaction demarcation
to begin, commit and abort transactions.

IV. SYSTEM ARCHITECTURE

Analogously to other recent software libraries for building
PM-based applications, e.g., [5], [6], [13], [17], NV-HTM
exposes PM to applications as transactional persistent heaps.

Each PM heap is uniquely identified by a file name, main-
tained in a local filesystem mount tree. Upon its inizialization,
NV-HTM mmaps the PM-backed heap in the virtual address
space of an application process. This mapping uses Linux’s
direct access for files (DAX) option [32], which bypasses the
OS page cache in DRAM, allowing applications to directly
access the PM (via the CPU cache) by load/store instructions.

Furthermore, applications encapsulate PM accesses in hard-
ware transactions via a set of macros that allow to intercept
both transaction demarcation calls (begin/commit/abort) and
load/stores to memory and inject NV-HTM’s logic. NV-HTM
assumes that transactions operate exclusively on memory lo-
cations belonging to a PM heap, exposing simple and intuitive
semantics to applications. This would not be possible if trans-
actions were allowed to span both persistent and volatile heaps:
all the updates produced by (durably) committed transactions
are guaranteed to be recoverable in presence of crash failures.

The high level architecture of NV-HTM is illustrated in
Figure 1 and comprises the following logical components:
• a working process (WP), a process that mmaps the persistent
heap, which we denote as the Working Snapshot (WS). The WP
runs a set of parallel worker threads, which execute hardware
transactions on the WS. The WS is mapped as private (accord-
ing to POSIX.1-2001), which determines that any update that
the worker thread performs to a page in the persistent heap
is not actually propagated to that page. Conversely, the OS
uses Copy-on-Write (CoW) to transparently create a volatile
copy of the PM page. Hence, although the WS initially maps
pages that are entirely stored in PM, it will usually comprise a

Fig. 1: High level ar-
chitecture of NV-HTM.



mix of clean pages in PM and dirty page copies in DRAM. As
such, when the HTM commits a transaction issued by a worker
thread, the updates of the transaction are volatile; at that point,
we say that the transaction is non-durably committed. The
commit event of a transaction is exposed to applications only
after its updates are persisted in the PM-backed log (see next):
only here, we say that a transaction is durably committed.
• a durable log, stored on a distinct PM heap, which is
used to track the updates generated by (durably) committed
transactions. The log is updated by each worker thread at some
point after the HTM commit event. Only at this point we say
that the transaction is durably committed. It is based on a
decentralized/per-thread design (i.e., maximizing locality and
minimizing synchronization issues): each thread maintains its
own log that tracks solely the transactions the thread processes.
• a checkpointing process (CP), which is in charge of apply-
ing the updates stored in the logs with the twofold purpose of i)
building a consistent Persistent Snapshot (PS), which reflects
all and only the updates of durably committed transactions,
and ii) pruning the logs, so to ensure that their size never
exceeds a predefined (user-tunable) maximum threshold.

This design has several key advantages. First, it allows
for isolating, in a lightweight and efficient way, the WP and
and the CP. Executing hardware transactions on the WS and
applying, in a controlled way, the corresponding updates to
the PS are two key ideas at the basis of NV-HTM’s design.
Both are crucial the CPU caching issue.

Further, the usage of an OS-based COW mechanism allows
to achieve such isolation by minimizing both the instrumen-
tation costs and memory overheads: instrumentation costs can
be significantly reduced since modern CoW implementations
are extremely optimized and leverage on dedicated hardware
mechanisms [35]; memory overheads can be strongly reduced
since only the recently updated pages require a copy (in WS).

Further, the choice of maintaining the updated pages of the
WS on volatile memory, rather than on PM, provide a twofold
benefit: the faster DRAM’s write speed, and a drastic reduction
of the write load that actually hits PM, which translates into
a corresponding increase of its expected lifespan. 1

V. IMPLEMENTATION

This section presents NV-HTM’s design and implementa-
tion. Section V-A analyzes transaction processing and log
management by the WP, Section V-B focuses on the CP and
Section V-C discusses correctness.

A. Transaction processing
The pseudo-code formalizing the behavior of thread t (out

of a total of N threads) of the WP is presented in Algorithm 1.

1We note that it would be feasible to map the updated WS pages to a
different PM heap instead of volatile memory. This would lead to renouncing
to the above advantages, and require a custom implementation of the mmap
system call in order to instruct the OS to use PM as target of the CoW mech-
anism; hence, we did not opt for this option in our current implementation
of NV-HTM. However, since in the future PM are expected to achieve higher
density/become more cost-effective than current DRAM, such an alternative
may, at some point in time, become more attractive than the current hybrid
architecture that relies jointly on volatile and persistent memories.

For simplicity, the pseudo-code refers to transactions executing
in hardware. The management of transactions that use the
SGL path, though, is very similar and differences are briefly
discussed at the end of this Section.

Data structures. Two main shared data structures are used:
• log: a log maintained in PM, which, as discussed, has a per-
thread structure and is also shared with the CP. Each thread’s
log is managed as a circular buffer via two pointers, startP
and endP , which point to the first and last entry in that log,
respectively. Log entries have a fixed structure composed of a
pair of 8-byte values, which are used to store either the address
and corresponding value written by a transaction, or a commit
marker and the corresponding commit timestamp.
• ts: an array of N scalars, which is stored in volatile memory.
ts[t] is set to 1 if thread t is not processing a transaction;
else, it stores a (physical) timestamp that is used to serialize
the transaction being currently processed by t.

Additionally, each thread maintains two local variables: a
scalar variable used to store the timestamp to be assigned to a
committing transaction, locTS; a boolean flag, isRO, which
identifies whether the transaction is read-only or not.

As already mentioned, NV-HTM relies on a hardware-
software co-design: it builds on HTM’s atomicity and isola-
tion guarantees and extends them via a lightweight software
instrumentation to ensure crash atomicity. Specifically, NV-
HTM requires instrumenting the methods used to begin and
end (i.e., commit/abort) transactions, plus the method used to
write. It is worth noting that NV-HTM spares from the cost of
instrumenting read operations: this is key to minimizing run-
time overhead, since read operations tend to largely outnumber
write operations in typical TM workloads [3].

Transaction begin. Before activating a hardware transaction
via the htm begin() primitive, t performs the following steps:
sets the isRO flag to true, marking the transaction initially
as read-only; it updates ts[t] with the current value of the
machine’s physical clock (via the RDTSCP() instruction [2])
and ensures that this value is visible to other threads via a
memory fence. As we will see, this mechanism allows to safely
establish, before durably committing a transaction T , whether
there is still any non-durably committed transaction T

0 that
may precede T in the serialization order.

Write operations. Upon a write, the transaction is marked
as non read-only via the isRO flag and an entry is appended
to the log. This is done only after having ensured, via the
logCheckSpace() primitive (not reported in the pseudo-code
for space constraints), that the log has sufficient capacity for
storing both the current entry and the transaction’s commit
timestamp — otherwise aborting right away the transaction2.
This ensures that, if the transaction reaches the commit phase,
there is enough log capacity to append the commit marker.

2We omit the abort handling logic, which, in this case, will wait till
additional log space is available before re-starting the transaction to avoid
the lemming effect [9] and unnecessary activations of the SGL path.



Algorithm 1 WP: transaction processing at thread t

1: Shared variables:

2: log[N ] . One log per thread, stored in PM
3: ts[N ] {+1, . . . ,+1}

. Per-thread timestamp of active tx; +1 if none is active

4: Thread local variables:

5: locTs . timestamp of committing transactions
6: isRO . flag used to identify read-only tx

7: function BEGIN
8: isRO  TRUE

9: ts[t] READTS()
10: mem fence . Ensure other threads know we are in a tx
11: htm begin() . Start hw tx

12: function WRITE(addr, value)
13: isRO  FALSE

14: if logCheckSpace (log[t])=FULL then

15: ABORT(LOG_FULL)
16: ⇤addr  value . Write to working snapshot
17: log[t].append(< addr, value >)

18: function ABORT(abort code)
19: htm abort(abort code)
20: ts[t] +1

21: function COMMIT
22: if isRo then . Commit logic for read-only txs
23: htm commit()
24: ts[t] +1 . Others do not need to wait for RO tx
25: WAITCOMMIT()
26: else . Commit logic for update txs
27: locTs READTS()
28: htm commit()
29: ts[t] locTs

30: logFlush(log[t]) . Flush current log entries
31: WAITCOMMIT()
32: log[t].append(< COMMIT, locTS >)
33: log[t].endP  locEndP

34: logFlush(log[t]) . Flush commit marker and endP

35: ts[t] +1

36: function WAITCOMMIT
37: for all t

⇤ 2 [1, N ] s.t. t⇤ 6= t do

38: wait until ts[t⇤] > ts[t]

Commit. The commit logic differs for read-only and update
transactions. Let us analyze first update transactions.

Before using the htm commit() primitive to perform a non-
durable commit, the current value of the physical clock is
read and stored in the variable locTs. If a transaction T is
successfully committed in hardware, t first advertises, via the
ts[t] variable, the commit timestamp of T . Next, it flushes
the current log entries to PM and starts a waiting phase
(WAITCOMMIT() function) that aims at ensuring the following
key property: in the moment in which T is durably committed,
i.e., the commit marker for T is flushed into the persistent
log, the system must have already durably committed every
transaction T

⇤ that i) was serialized before T by the HTM
system and ii) with which T has developed a read-from or
write-write dependency either directly or indirectly.

NV-HTM ensures this by having t compare the commit
timestamp of T with the value advertised in the ts array by all
other threads: if t finds that there exists some thread, say t

⇤,
which advertises a time stamp smaller than t’s, it means that
t
⇤ has either started a transaction T

⇤ before T obtained its

commit timestamp, or that T ⇤ obtained a commit timestamp
smaller than T . In both cases, it is possible that T read from
T

⇤ or that T overwrote some memory region that T
⇤ also

wrote to. In both cases it could be unsafe to durably commit
T , as there are no guarantees that T ⇤, which T might depend
on, has already been durably committed: if T ⇤ fails to durably
commit (because of a crash) then, upon recovery, T would be
replayed, but T ⇤ would not, thus yielding an inconsistent state.

Once the waiting phase is completed, the commit marker
for T is appended to the log, the log’s end pointer is updated
(based on locEndP ) and these changes are flushed to PM. At
this point, t’s timestamp in the ts array can be reset to +1,
to advertise that t is no longer processing a transaction.

The commit logic for read-only transactions is simpler: as
read-only transactions do not alter the WS, their timestamp is
set to +1 right after they are non-durably committed (so to
ensure that no other concurrent transaction waits for them).
However, before externalizing their commit to applications,
read-only transactions need still to undergo the waiting phase
in order to ensure that any transaction they may have read
from has already been durably committed.

Abort. Upon abort, all other threads must be aware that t is
no longer running a transaction (Alg. 1 line 20).

Fallback path. The instrumentation for the fallback path is
similar to the speculative path, with just some minor differ-
ences. If t executes in the fallback path, it must ensure that any
concurrent transaction that will start after t releases the SGL
will durably commit only after the log changes produced by
t’s transaction have been fully flushed to log. This is achieved
by having the SGL-holding transaction advertise the current
timestamp in ts[t] after releasing the SGL. Analogously, the
fallback path also needs to go through the wait commit phase,
in order to take into account dependencies that could arise
between the SGL path and any transaction that was non-
durably committed when the SGL was acquired.

B. Log checkpointing
Unlike existing solutions [1], [12] NV-HTM removes the

propagation of updates to the PS from the critical path of
transactions; only the flushing of the transaction’s log to PM
is kept within the critical path. This design choice brings about
both opportunities and challenges. The key challenge is how
to efficiently bound the growth of the log, a property that is
desirable both to minimize consumption of PM resources and
to limit the duration of the recovery phase. NV-HTM tackles
this challenge via a novel log checkpointing mechanism that
we named Backward Filtering Checkpointing (BFC).

Backward Filtering Checkpointing (BFC) Intuitively, BFC
considers a snapshot of the per-thread logs (obtained when
BFC is activated) and persists all the updates of durably
committed transactions logged in such a snapshot to the PS.

The design of BFC is influenced by the observation that
many TM benchmarks and real applications tend to concen-
trate large streams of updates (issued by different transactions)
over a small memory region (i.e., hot spots). For each hot spot,



the logs contain a large number of repeated updates, which are
particularly costly in PM — not only performance and energy-
wise, but also given PM’s limited write endurance.

The key insight of BFC is that, when checkpointing a set of
updates that target the same memory location, only the most
recent one needs to be propagated to the PS (in PM), as that
update supersedes the older ones in the logs. Another notable
feature is that the checkpointing may occur simultaneously
with worker threads, which may continue to run and durably
commit transactions in the logs.

The first step of BFC is to take an atomic snapshot of the
end pointers of each per-thread log — which can be efficiently
achieved via a read-only hardware transaction.

Next, BFC iteratively traverses the per-thread logs in anti-
commit timestamp order and analyzes the log entries of each
durably committed transaction. As mentioned before, BFC fil-
ters out any update that is found to target the same location as
a more recent update (which BFC already propagated to PM).
To this end, BFC maintains a hash map called filterMap

indexed by cache line address, whose value stores a bitmap
encoding which “positions” (CLPos) of that cache line have
been already updated (due to a more recent transaction) during
the current checkpointing instance. Tracking updates at the
granularity of 8 bytes, the CLPos can be compactly encoded
using a single byte (i.e., cache line width of 64-bytes).

More precisely, each iteration proceeds as follows. Firstly,
BFC determines which is the latest durably committed trans-
action, Tlat, within the set of logged transactions that still need
to be checkpointed. This is easily determined by comparing
the commit timestamps of the most recent durably committed
transaction in each per-thread log. Then, for each logged
update of Tlat, the filterMap is first consulted to determine
if the corresponding address has already been encountered
while scanning the log — in this case the update is skipped.
Else, the write is executed, but not flushed, and filterMap is
accordingly updated to keep track of it.

We note that, upon recovery, the log could contain entries of
non-durably committed transactions, which can be easily rec-
ognized since they do not have a final commit marker. These
transactions can be safely skipped during the checkpointing
process, as their effects have not been externalized, neither
directly nor indirectly (via other dependant transactions).

Once the backward scanning of the log completes, there is
no guarantee that all the updates performed on the PS have
effectively reached PM, as some may still be in the CPU cache.
Hence, the next phase ensures that all the checkpointed updates
are durable: this is achieved by iterating over the filterMap

and forcing the flush of the cache lines that it tracks. The
design choice of postponing the flushing of the updated cache
lines after the whole backward scanning of the log has not
only the advantage of avoiding flushing the same cache line
more than once; it also increases the likelihood that, when
the flushing of a cache line (updated during the log scanning
phase) is requested, the cache line has actually already been
written back to PM due to the cache eviction mechanism.

The final step of the checkpointing process consists in

advancing the start pointers to the per-thread logs in PM, so
to effectively free up log space for the WP. This last step
has to be executed in an atomic fashion, in order to preserve
correctness in presence of crashes. This is achieved using
a classic technique in the DBMS literature [40]: a special
checkpoint log (CPLog) is allocated in PM, and an entry is
appended to it for each start pointer to be updated; once all the
updates of the start pointers have been recorded in CPLog, a
special CP �COMPLETED marker is appended to it and
flushed to PM. At this point, the per-thread logs’ start pointers
are actually updated and flushed too. Any crash occurring
during this phase will trigger the replay of CPLog, ensuring
the atomicity of the start pointers’ update. The CPLog can
instead be safely destroyed after the start pointers of all the
per-thread logs have been flushed to PM, marking the actual
completion of the checkpointing process.

Usages of BFC. NV-HTM relies on BFC in 3 scenarios:

Log pruning. This process is triggered whenever a worker
thread detects that its per-thread log has reached a user-defined
threshold of its capacity (e.g., 50%). In this case the worker
thread unblocks the CP, which executes the BFC algorithm as
a non-blocking/background task. The setting of this threshold
is associated with a key trade-off: using large threshold values
allow for buffering more transactions, and, hence, potentially
filtering more writes and flushes. However, it also reduces
the portion of the logs that is available to store the updates
of transactions that run concurrently wih BFC. Consequently,
there is an increased risk that the worker threads fill up its log
before log pruning completes and frees up log space.

Recovery. The BFC algorithm is also activated upon recovery.
In this case, the CP is forked from the WP and the former is
used to replay the transactions in the log to bring the PS up
to a consistent state. Only at this point, the WP mmaps the PS
(in private mode) and activates transaction processing.

Memory consolidation. Finally, checkpointing the logs via the
BFC can also be used to achieve, what we call, memory
consolidation. Over time, applications may end up updating
overly large portions of the PS, which might cause cloning
large parts of it into DRAM (via the OS-driven CoW mecha-
nism). The memory consolidation process can be requested by
applications when they detect the usage of excessive DRAM
memory consumption, discarding every page that the WP may
have cloned in DRAM. This is achieved in three phases:

1) non-blocking log pruning is executed when the following
phase starts, its objective is to minimize the number of
transactions present in the log (and, hence, its duration);

2) transaction processing is blocked temporarily and a second
pruning is executed, applying in the PS any transaction that
durably commits during the first phase;

3) before resuming transaction processing, the WP munmaps
the WS and then mmaps it again — hence, allowing the WP
to release any page of the PS that had been previously cloned
in DRAM (via CoW).



C. Correctness arguments
The key property at the basis of the NV-HTM’s algorithm

is that the serialization order obtained by totally ordering
the transactions in the log via their commit timestamp is
equivalent to the serialization order imposed by HTM. An
important preliminary observation is that if two transactions
are not dependant, i.e., they do not any develop any read-from
or write-write dependency, either directly or indirectly, even
if their HTM and serialization orders are distinct, they will
produce the same results. Hence, it suffices to prove that the
serialization order of durably committed dependant transac-
tions determined by their commit timestamp in the log does
not contradict the HTM serialization order. A similar approach
is taken by TSXProf [29] to replay HTM transactions.

Satisfying the above property depends on the accuracy
and synchronization properties of the physical timestamps
provided by the CPU. Modern processors provide specific
hardware timestamp counters (TSC) that allow programs to get
high-resolution CPU timing information with a low overhead
(e.g., RDTSC* in Intel processors).

Most modern processors (e.g., all Intel CPUs supporting
Invariant TSC since Nehalem family [2], [37]) ensure that all
cores (including across different sockets), observe the TSC
ticking at the same rate, which yields perfect TSC synchro-
nization. Also, TSC grows monotonically and, for simplicity,
we do not tackle the case where the physical clock overflows
and wraps around. Let us now consider such assumptions.

The notations T
0 HTM����! T and T

0 LOG���! T indicate that T’
is serialized before T by the HTM system and according to
their commit timestamp in the log, respectively.

We start by proving that, if two transactions T and T
0 are

dependent, if T
0 LOG���! T , then T

0 HTM����! T . T and T
0

are associated with their timestamps T.ts and T
0
.ts (resp.),

taken within the transaction after all accesses. Additionally,
T.commit and T

0
.commit are the instant in real time where

T and T
0 commit (resp.).

Let us assume that T 0 LOG���! T and that both transactions
have a read-from or write-write dependency. This means that
there are two accesses (from T and T

0) to a common location
(i.e., op and op

0, resp.). op occurs at real time ts1 and op
0 at

real time ts2. Given that op conflicts with op
0, if both trans-

actions overlap in real time, then the HTM implementation
decides to kill either T or T 0.

By contradiction, assume that T.ts < T
0
.ts. Given that

T
0 HTM����! T then T

0
.commit < T.commit, which implies

T.ts < T
0
.ts < T

0
.commit < T.commit, because T.ts <

T.commit and T
0
.ts < T

0
.commit (TSC assumption). Given

that op
0
< T

0
.ts and op < T.ts, then we get op < T.ts <

op
0
< T

0
.ts < T

0
.commit < T.commit, which is absurd

because despite dependent/conflicting, they overlap.
It remains to prove that if T is durably committed and

it depends on (i.e., it reads from or overwrites a memory
address previously written by) a transaction T

0 (which implies
T

0 HTM����! T ), then T
0 is also durably committed. This is

necessary to guarantee recoverability, since it ensures that if
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Fig. 2: Performance with different log pruning frequencies.

a transaction T is replayed upon recovery, so are all other
transactions T

0 it depends upon.
A transaction T is durably committed only if it passes

the WAITCOMMIT() function, which forces T to wait for all
threads who advertise a timestamp ts

⇤
< T.ts. We have shown

that, with perfectly synchronized TSCs, if there exists a non-
durably committed transaction, T

0, such that T
0 HTM����! T ,

then T.ts > T
0
.ts. Obviously, T 0

.ts must be larger than the
start timestamp of T

0. Hence, if T
0 has not fully flushed its

log (Alg. 1, line 34), when T reaches its wait phase, T will
necessarily block until the thread executing T

0 sets its ts to
+1 (Alg. 1, line 35), i.e., until T 0 has flushed its log to PM.

This implies that, if a transaction externalizes its commit
(by returning from the invocation of the commit procedure), it
cannot depend from any non-durably committed transaction.

Perfectly synchronized TSCs, however, are not necessarily
guaranteed on older CPUs or in a multi-socket machine. In
such scenarios, the most that can be assumed is that TSCs grow
monotonically and synchronized within a given upper bound,
�. In this scenario, it is no longer be possible to use a single
time source when reasoning on the timestamps obtained by
different threads. Instead, correctness is achieved by injecting
a delay equal to � after reading the TSC (Alg. 1, line 27) and
before requesting the HTM to commit (line 28). For space
restrictions, we omit the proof for this case.

VI. EXPERIMENTAL EVALUATION

This section presents an extensive experimental evaluation
aimed at comparing NV-HTM3 with state-of-the-art solutions
based both on software and hardware TM mechanisms.

On the STM’s side, we consider as baseline a scheme
(PSTM) based on Mnemosyne [13]’s algorithm, which we re-
implemented on top of TinySTM [24] using in-place updates
to minimize read-instrumentation costs (analogously to what
was done by Avni et al. [12]). In order to support in-place
updates, upon each write, an undo log entry is flushed to PM
before modifying the data in-place; upon commit, changes are

3Source of our NV-HTM prototype can be found here: https://bitbucket.
org/daniel castro1993/nvhtm



TABLE I: Writes/flushes to PM.

NV-HTM PHTM PSTM
NLP (85%) (10⇥) (10⇥)FFF (10⇥)FNF

Writes 4.5 4.5 4.55 8.1 8.1 9.1 35.2
Flushes 1.8 1.8 1.83 1.83 6.4 6.3 21.2

flushed to PM and a commit marker is added to the log; next
the transaction’s log is discarded.

On the HTM’s side, we consider PHTM [12], which, as
discussed in Section II, assumes non-standard hardware mech-
anisms to ensure that the log is transparently and atomically
flushed to PM upon commit. Further, unlike NV-HTM, PHTM
acquires write locks during transaction execution, which are
maintained beyond its commit and until data changes are
persisted to PM. As we will see, this has an impact both on the
effective memory capacity of hardware transactions, as well as
on the contention proneness of transactions.

All tests were conducted on an Intel Xeon CPU E5-2648L
v4 @ 1.80GHz with 14 physical cores and 28 hardware threads
in hyper-threading mode. The machine is equipped with 32GB
of RAM and runs Ubuntu Server 16.04.2LTS (kernel version
4.4.0-57). As PM is still not widely available, we emulate
it by injecting a 500ns latency upon each flush operation,
analogously to previous works in the area [12], [39].

We use both standard benchmarks, i.e., the STAMP
suite [38], as well as a synthetic micro-benchmark, called
Bank. Bank manipulates an array of d bank accounts, each
storing 8-byte long values, via two types of transactions: read-
only transactions, which read r accounts selected uniformly
at random and return their sum; update transactions, which
transfer a random amount between w pairs of accounts, also
selected uniformly at random. In order to avoid false conflicts
due to cache aliasing, and simplify the analysis of the results,
the accounts are cache-aligned. By controlling the above
parameters, as well as the percentage of update transactions
u, this benchmark allows for precisely shaping the workload
and stress different aspects of the compared solutions.

A. Impact of checkpointing

The first aspect we evaluate is the impact, on both per-
formance and wearing reduction, of having the CP running
in background to perform log pruning. To this end, we use
Bank to generate write intensive workloads, composed of 90%
of update transactions transferring money between 2 pairs
of accounts. We consider two workloads: a lightly contented
one, which uses an array of 16K elements and where read-
only transactions read 128 accounts (i.e., less than 1% of the
total), and a contention-prone workload, where the array has
64 elements and read-only transactions read all of them.

In practice, the frequency of activation of the CP depends on
the ratio between the amount of log entries generated by the
application and the maximum log capacity: the lower the ratio,
the least frequently the CP has to perform log pruning, and
vice versa. Based on this insight, we consider three scenarios:
• 10⇥ scenario: where an execution generates 10⇥ more log
entries than the log’s capacity. This is a worst-case scenario for
NV-HTM, which is a representative of the steady performance

achievable by write-intensive, long running applications that
continuously generate a large amount of log entries.
• NLP scenario: where there is no need of executing log
pruning during the application’s run. This can be seen as a
best-case scenario, representative of situations in which logs
have sufficient capacity to accommodate the entries produced
along the whole run and in which log pruning can be avoided
or postponed to non-performance critical periods.
• 85% scenario: in which the log entries generated by a run fill
approximately 85% of the log’s capacity. This implies that the
log pruning is activated in background during the run, but that
there is sufficient log capacity to ensure that worker threads
never block because they exhausted their log.

For the 85% and 10⇥ scenarios, we allocated 40MB of
space per-thread log; set the activation threshold for the log
pruning process to 50%; and configured the Bank benchmark
to produce a fixed number of transactions per thread, so to
ensure that the target “log fill up” ratio is achieved. For the
NLP workload we use 256 MB large per-thread logs and
generate 1M transactions per thread, which fill ⇡ 30% of the
log capacity, ensuring that log pruning is never activated.

The results of this study are reported in Figure 2, which
considers also two NV-HTM’s variants that employ alternative
checkpointing schemes, noted NV-HTMFFF (Forward Flush
Filtering) and NV-HTMFNF (Forward No Filtering). As their
name suggests, unlike BFC, these checkpointing schemes scan
the log forward and use less aggressive filtering policies. The
FNF scheme simply performs no filtering, while FFF filters
out duplicate cache line flushes after the replay.

Performance gains. By analyzing the throughput results (top
plots) we observe that, in both workloads, the performance
of NV-HTM clearly dominates the alternative schemes’ up to
14 threads, i.e., before hyper-threading is activated, with peak
gains of up to 2⇥ vs PSTM and up to 10⇥ vs PHTM. The
speed-ups of NV-HTM vs STM are due to the hardware-based
nature of NV-HTM, which allows for sparing costly software
instrumentations. Instead, the striking throughput gains of
NV-HTM over PHTM can be explained by analyzing the
abort probability plot, which shows that PHTM suffers from
significantly larger contention rates (especially in the high
contention scenario). This is explicable by considering that,
in PHTM, write locks are maintained during a time window

103

104

105

106

107

 2  4  8  16  32  64  128
 256

 512

Th
ro

ug
hp

ut
 (T

Xs
/s

)

Number of Cache Lines

 HTM
NV-HTM

PHTM
 0

 0.2

 0.4

 0.6

 0.8

 1

Pr
ob

ab
ilit

y 
of

 A
bo

rt

Number of Cache Lines
(2, 32, 64, 80, 96, 128, 256, 512)

Conflict
Capacity
Other

PHTMNV-HTMHTM

Fig. 3: Evaluating the maximum write capacity of NV-HTM.

 0
 1
 2
 3
 4
 5
 6
 7

 5  10  15  20  25  30

Th
ro

ug
hp

ut
 (x

10
6  T

Xs
/s

)

Number of Threads

NV-HTMPC

NV-HTMLC

 0

 0.2

 0.4

 0.6

 0.8

 1

Pr
ob

ab
ilit

y 
of

 A
bo

rt

Number of Threads
(1, 2, 4, 6, 8, 12, 16, 20, 24, 28)

Conflict
Capacity

Other

NV-HTMLCNV-HTMPC

Fig. 4: Contrasting the scalability of NV-HTM with a variant
using logical clock to serialize transactions (NV-HTMLC).



that encompasses both the flush of the log (before committing)
and of the data (after committing) to PM. This time window,
during which any concurrent access to locked data triggers a
transaction abort, is, relatively speaking, very large compared
to the execution time of transactions in NV-HTM.

Further, up to 14 threads, NV-HTM delivers very similar
performance in all the three considered scenarios of log
pruning frequency (NLP, 85% and 10⇥) — which provides
experimental evidence on the efficiency and limited overhead
of the BFC algorithm. It is worth noting that the NV-HTM’s
variants that use the simpler FNF and FFF checkpointing
schemes incur a dramatically larger overhead: this confirms
how crucial it is, from a performance-oriented perspective,
BFC’s ability to filter both duplicate writes and (even more
importantly) cache line flushes to PM and to remove them
from the critical path of execution of log scanning.

Above 14 threads, when the CPU starts to operate in hyper-
threading mode, HTM is well-known to suffer from perfor-
mance penalties due to contention on shared architectural
resources [22] and, as such, also NV-HTM’s performance
naturally degrades, although remaining still significantly better
than PHTM’s and competitive with PSTM. It can also be
observed that, in the high log pruning scenario (10⇥), the
performance of NV-HTM degrades on average by ⇡15%/40%
in the high/low contention scenario compared to the NLP

scenario from 20 to 27 threads, and an even larger performance
toll is paid at 28 threads. This can be explained by considering
that, with 20 to 27 threads, the CP shares its underlying
physical core with one worker thread; while, when using
28 threads, the CP shares the same physical core with two
worker threads. The latter scenario can simply be avoided
by statically reserving one logical core; a more interesting
alternative is to resort to previously proposed self-tuning
parallelism adaptation techniques for TM [10], [11], [20].

PM wearing reduction. Table I quantifies the gains that NV-
HTM attains in terms of PM wearing reduction by reporting
the average number of memory words written (with 8-bytes
granularity) and cache lines flushed to PM per transaction, at
28 threads. NV-HTM performs ⇡2⇥ less writes and ⇡3.4⇥
less flushes than PHTM. This gain is directly imputable
to NV-HTM’s design choice of letting transactions’ updates
accumulate in the log and of periodically/upon need filtering
duplicates via the BFC algorithm; conversely, since PHTM
immediately applies a transaction’s logged updates to PM right
after its commit, it has no opportunity to filtering repeated
writes/flushes. Similar considerations apply to the case of
PSTM, although the benefits of NV-HTM are even further
amplified in the high contention scenario. In fact, in HTM-
based solutions (like PHTM and NV-HTM) transactions that
do not commit in HTM, their written cache lines never reach
(persistent) memory. Being a purely software based solution,
though, PSTM writes/flushes log entries to PM during transac-
tion execution, independently of whether they will eventually
commit; as such, aborted transactions, end up contributing in
a non-negligible way to the write traffic to PM.
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B. Write capacity and scalability

Our next study focuses on contrasting the available write
capacity of transactions when using NV-HTM vs PHTM and a
pure HTM-based system not generating any additional write to
ensure crash atomicity. To this end, we synthesized a workload
in bank where the transaction size is increased iteratively up to
the maximum capacity of current Intel’s HTM implementation
(i.e., 512 cache lines [27]).

Figure 3 shows that, despite NV-HTM’s maximum write
capacity is lower than that of pure HTM, it is significantly
larger than PHTM’s. Indeed both NV-HTM and PHTM have
to generate a log entry per transactional write. However, in
both systems, log entries are 16-bytes long and, since logs
are stored sequentially in memory, up to 4 log entries can
fit a single cache line — which amortizes significantly the
write capacity consumed to produce the log. However, PHTM
further acquires a write lock per transactional write, and each
of these locks is, with high probability, mapped to a different
cache line. So, while on average NV-HTM consumes ⇡0.25
additional cache lines per write, PHTM consumes on average
⇡1.25 caches lines, i.e., ⇡5⇥ more.

Finally, we conduct a study aimed at assessing the scala-
bility of NV-HTM’s physical-clock based scheme [29]. The
usage of a logical-clock in an HTM system is a source of
“false” conflicts, which is translated in extra aborts. Given that
DudeTM [21]’s approach uses a logical-clock, this experiment
shows its overheads in an HTM system. To this end we use
the bank benchmark to synthesize a conflict-free workload
composed exclusively by short update transactions (emulating
a transfer between a pair of bank accounts) and consider a
NV-HTM’s variant, noted NV-HTMLC , in which transactions
establish their serialization order in the log by increasing a
single logical clock right before committing. The plots in
Figure 4 clearly highlight the inherent scalability limitations of
approaches relying on a single logical clock, which generates
abort rates above 60% when using 16 threads or more.
Conversely, thanks to the use of physical clocks, NV-HTM
avoids inducing any additional sources of conflicts among
transactions, achieving almost linear scalability.

C. STAMP benchmarks

We now evaluate NV-HTM using more complex bench-
marks that realistic workloads, namely the STAMP benchmark



TABLE II: Writes/flushes to PM in STAMP.

Vacation (high) Kmeans (high) Yada
writes flushes writes flushes writes flushes

NV-HTMNLP 12.62 4.601 27.00 8.249 18.36 6.016
NV-HTM10⇥ 13.06 4.798 27.03 8.253 25.55 10.10

PHTM 55.01 10.84 45.99 5.000 77.44 14.91
PSTM 174.4 98.08 198.1 125.0 68.69 45.61

suite [7]. For space constraints we can only report the results
for a subset of the benchmarks, namely Kmeans, Vacation
and Yada, which are however representative of the main per-
formance trends exhibited also by the remaining benchmarks.

This benchmark contains both workloads amenable to HTM,
as well as workloads more favourable to STM, where most
transactions exceed HTM’s capacity or suffer from spurious
conflicts due to HTM’s coarser conflict detection granularity.
Yada belongs clearly to the second of workloads, and, as such,
PSTM has clearly an edge over both NV-HTM and PHTM
(still, NV-HTM achieves ⇡2⇥ speed-ups over PHTM).

Vacation and KMeans are more favourable to HTM, al-
though with different characteristics: Vacation spends >90%
of the time running transactions, whereas Kmeans spends
>90% executing non-transactional code; further, in Kmeans,
transactions are much less prone to incur capacity exceptions
that in Vacation. In the light of these considerations, Figure 5
suggests that the more favourable the workload characteristics
are to HTM, the ampler are the speed-ups achievable by NV-
HTM over both PHTM and PSTM, with gains in the peak
throughput of 4⇥ with respect to both solutions in Kmeans (14
threads), ⇡40% vs PSTM and ⇡2.5⇥ vs PHTM in Vacation.

We note that NV-HTM achieves almost indistinguishable
performance in the scenario of high frequency of activation of
the CP (10⇥) and in case the CP is never activated (NLP),
confirming the efficiency of the BFC algorithm.

Finally Table II reports data on the number of write and
flushes to PM. In average, NV-HTM10⇥ produces 2.72⇥ less
writes than PHTM and 6.72⇥ less than PSTM, while only pro-
ducing 13% more writes than NV-HTMNLP , which confirms
that the filtering technique at the core of BFC remains very
effective also when applied to complex, realistic workloads.

VII. CONCLUSION

This presents NV-HTM, system capable of combining
(unmodified) commodity HTM with PM. Our experimental
evaluation shows that NV-HTM can achieve strong gains, in
terms of throughput and PM wearing reduction, even when
compared to existing solutions that demand custom hardware.
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