
SPHT: Scalable Persistent Hardware Transactions

Daniel Castro∗, Alexandro Baldassin†, João Barreto∗, Paolo Romano∗
∗INESC-ID & Instituto Superior Técnico †UNESP - Universidade Estadual Paulista

Abstract
With the emergence of byte-addressable Persistent Memory
(PM), a number of works have recently addressed the problem
of how to implement persistent transactional memory using
off-the-shelf hardware transactional memory systems.

Using Intel Optane DC PM, we show, for the first time in
the literature, experimental results highlighting several scala-
bility bottlenecks of state of the art approaches, which so far
have only been evaluated via PM emulation.

We tackle these limitations by proposing SPHT (Scalable
Persistent Hardware Transactions), an innovative Persistent
Transactional Memory that exploits a set of novel mechanisms
aimed at enhancing scalability both during transaction pro-
cessing and recovery. We show that SPHT enhances through-
put by up to 2.6× on STAMP and achieves speedups of up to
2.8× in the log replay phase vs. state of the art solutions.

1 Introduction

The emerging byte-addressable Persistent Memory (PM) is
poised to be the next revolution in computing architecture.
In contrast to DRAM, PM has lower energy consumption,
higher density and retains its contents even when powered
off. Nearly one decade after the first research papers started
investigating PM, typically resorting to inaccurate software-
based emulations/simulations, the first DIMMs of PM are
finally commercially available [23]. This constitutes a notable
opportunity to validate, with real PM hardware, the efficiency
of the PM-related methods that have been proposed so far.

Along this research avenue, this paper focuses on one prob-
lem that has received significant attention in the recent lit-
erature: how to implement Persistent Transactional Memory
(PTM) in commodity systems equipped with PM and Hard-
ware Transactional Memory (HTM).

HTM implements in hardware [19, 21, 32] the abstraction
of Transactional Memory (TM), an alternative to lock-based
synchronization that can significantly simplify the develop-
ment of concurrent applications [34]. Due to its hardware

nature, HTM avoids the overhead imposed by software-based
TM implementations. However, the reliance of commodity
HTM implementations on CPU caches raises a crucial prob-
lem when applications access data stored in PM from within
a HTM transaction. Since CPU caches are volatile in today’s
systems, HTM implementations do not guarantee that the ef-
fects of a hardware transaction are atomically transposed to
PM when the transaction commits — although such effects
are immediately visible to subsequent transactions.

To tackle this issue, recent proposals [4, 14, 15, 28] rely
on a set of software-based extensions that, conceptually, are
based on Write Ahead Logging (WAL) schemes [31]: first
they log modifications and only then they modify the actual
data. However, implementing a WAL scheme on commod-
ity HTM raises several challenges. The fact that commercial
HTMs deterministically abort transactions that try to persist
the cached logs in PM is an impediment to reuse classical
DBMS solutions [31]. Instead, logs need to be flushed out-
side of the transaction boundaries. This essentially decouples
transaction isolation – as provided by the HTM’s concurrency
control – from transaction durability – as ensured by WAL.

This decoupling introduces a second challenge: PTM im-
plementations need to ensure that the order by which the
effects of a transactions become visible is consistent with the
order by which it is persisted.

Existing solutions for commodity HTM cope with this
challenge by introducing a sequential phase in the critical exe-
cution path of the commit logic. To circumvent this limitation,
several solutions allow transactions that commit in HTM to
externalize their results before their durability is ensured.

Unfortunately, this approach relaxes correctness, since it
no longer guarantees immediate durability [26]. This is a fun-
damental limitation for applications that, after committing a
transaction, can trigger externally visible actions. An exter-
nal entity might observe actions that causally depend on a
transaction whose writes to PM may not be recovered after a
crash (under such relaxed PTMs). To cope with this, applica-
tions are extended with intricate compensation logic, which,
we argue, is at odds with the original simplicity of transac-
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Figure 1: (a) The main scalability limitation of NV-HTM [4]:
the commit marker is updated in a decentralized but sequential
way. (b) How SPHT avoids this limitation (see §3.1).

tional memory. We aim to avoid the pitfalls of relaxed PTM,
by providing a PTM for commodity HTM/PM that ensures
immediate durability while achieving high scalability.

As a first contribution, we experimentally evaluate the
cost of ensuring immediate durability with today’s state of
the art PTMs in a real system equipped with HTM (Intel
TSX) and PM (Intel Optane DC PM). We implement 6 PTM
systems (disabling their relaxed durability optimizations) and
experimentally evaluated them in STAMP [6] and TPC-C [37].
To the best of our knowledge, this represents the first study to
evaluate PTMs on a real PM/HTM-equipped system.

As a second contribution, we address the question of
whether immediate durability can scale on commodity HTM.
We devise novel scalable techniques to address the limitations
of existing PTMs, which we incorporated in SPHT (Scalable
Persistent Hardware Transactions). In a nutshell, SPHT in-
troduces a new commit logic that considerably mitigates the
scalability bottlenecks of previous alternatives, providing up
to 2.6×/2.2× speedups at 64 threads in, resp., STAMP/TPC-
C. Moreover, SPHT introduces a novel approach to log re-
play that employs cross-transaction log linking and a NUMA-
aware parallel background replayer. In large persistent heaps,
the proposed approach achieves gains of 2.8×.

The remainder of the paper is organized as follows. §2
provides background on PTM, highlighting the scalability
issues of previous solutions. §3 presents SPHT, which we
evaluate in §4 against other 5 state of the art PTMs. Finally,
§5 concludes the paper.

2 Background on PTM

Various works have investigated how to implement PTM sys-
tems. Existing solutions differ by the durability semantics
they offer, the nature (hardware and/or software) of the mech-
anisms they adopt and in some key design dimensions.

Durability semantics. Some PTMs consider “classic” strong
guarantees, i.e., if a transaction T returns successfully from its
commit call, then T shall be recovered upon a crash and any
transaction whose effects T observed shall also be recovered.

We use the term “immediate durability” [26] to refer to the
above guarantees, although other papers call it “immediate
persistence” [14] or “durable linearizability” [22].

Relaxed durability semantics, which other systems [14, 15,
22, 28] have considered, only ensure that the recovered state
is equivalent to one produced by the sequential execution of a
subset of the committed transactions. As such, these systems
can fail to recover transactions that successfully returned from
the commit call, e.g., because a crash occurs briefly after that.
Intuitively, implementations that rely on relaxed durability
semantics have higher throughput for two main reasons: (i)
they require a less strict synchronization among concurrent
transactions in their commit phase; and, (ii) they allow for
removing the costs incurred to ensure durability out of the
critical path of execution of the transaction commit logic.

However, when applications do require stricter semantics,
programmers are faced with additional complexity: having
to develop compensation logic or to manually specify for
which sub-transactions immediate durability should be guar-
anteed [15]. The focus of this work is on immediate durability
(despite some tested systems supporting relaxed durability).
Next we discuss how systems ensure such semantics.

Software vs hardware implementations. The first PTM pro-
posals relied on software mechanisms [8, 38]. These ini-
tial works paved the way for the following generations of
software-based PTM implementations [9, 10, 20, 25–27, 29,
30, 41]. Essentially, these proposals extend different software
transactional memory (STM) algorithms with logging and
recovery mechanisms to ensure durability.

With the introduction of HTM support in mainstream
CPUs [17, 33], a second wave of proposals has focused on
how to enable the execution of hardware transactions (i.e.,
transactions executed using HTM) on PM. Due to its hard-
ware nature, HTM avoids the notorious instrumentation costs
of STM, which can impose significant overhead especially
in applications with short-lived transactions [13]. In exist-
ing HTM systems, though, committed transactions are not
guaranteed to be atomically persisted, as some of their writes
may be lingering in the cache and not have been applied to
PM. Further, commodity HTMs do not allow persisting the
cached logs to PM within the hardware transaction context.
This prevents the use of classical WAL schemes (conceptually
at the basis of existing software-based PTMs), which assume
that logs are always persisted before application data is.

Some works tackled these issues by proposing ad hoc hard-
ware extensions [1,3,16,24,40]. As such, these solutions can-
not be used with existing off-the-shelf systems. More recent
works have overcome this shortcoming by proposing software-
based approaches that operate on top of unmodified com-
modity HTM. The most notable examples are DudeTM [28],



cc-HTM [15], NV-HTM [4] and Crafty [14]. All these so-
lutions implement some form of WAL on top of HTM. For
improved throughput, the log is typically implemented as a
set of per-thread logs in PM1.

Enforcing the WAL rule. Existing PTMs for commodity
HTM rely on two main alternative strategies to enforce the
WAL rule, i.e., ensure that the log of a transaction is persisted
before any of its changes is applied to persistent data.

A first approach, adopted by DudeTM and NV-HTM, is to
have hardware transactions access a volatile “shadow” copy
of the persistent snapshot.

A second option is non-destructive undo logging, as pro-
posed in Crafty [14]. In this approach, transactions execute
directly in PM, with their writes tracked in a persistent undo
log and a volatile redo log. To ensure the WAL rule, every
write issued in an HTM transaction is undone before com-
mit, which guarantees that the transaction does not alter the
PTM’s state. Next the undo log is persisted and only then the
transaction’s writes can be applied to PM.

In both strategies, after committing in HTM, the generated
log(s) are flushed to PM in two steps. First, a commit marker
is appended to the log. This marker defines the transaction
as durable and includes a timestamp that is used to order
durable transactions. Next, each logged write is replayed, in
timestamp order, on the target memory location in PM.

The choice between shadow copy or non-destructive undo
logging strongly impacts the available solution space. As we
show next, the state of the art systems that implement the
above approaches suffer from severe scalability limitations.

Ordering transactions in the logs. One key issue is how to
establish the replay order of update transactions in the logs.
Existing proposals opt for logical or physical timestamps.

In the first alternative a global logical clock is incremented
before each transaction commit and is later appended to the
redo log. This type of clocks are likely to become a contention
point at high thread counts (§4), hindering scalability by gen-
erating frequent spurious aborts. DudeTM employs logical
timestamps and, thus, suffers from the above limitation. An
additional scalability issue of DudeTM is that its volatile per-
thread redo-log has to be processed, copied and flushed by
auxiliary thread(s) to a centralized redo-log in PM, incurring
relevant synchronization costs.

In contrast, physical timestamps can be acquired at low la-
tency and with no synchronization via, e.g., the x86 RDTSCP
instruction. cc-HTM, NV-HTM and Crafty exploit this mech-
anism. To ensure that the state recovered after a crash is con-
sistent, though, these systems require ensuring an additional
property: before a transaction T with timestamp T S can ap-
pend its commit marker to the log, any other committed trans-
action T ′ with timestamp T S′ < T S must be already marked
as committed in the log. In fact, if this property were violated,

1With the exception of DudeTM, which maintains per-thread logs in
volatile memory, whose entries are later flushed to log(s) in PM.

upon recovery, T ′ may not be replayed, whereas T will - this
would yield an inconsistent state in case T had observed some
write of T ′ (since T logically depends on T ′).

Fig 1a illustrates the scheme employed by NV-HTM. An
inherently sequential phase in the commit logic ultimately
bounds the maximum system throughput to the rate at which
commit markers can be persisted in the log. Considering that
flushes incur a higher latency in PM than in DRAM [23], this
scheme can severely hinder scalability.

Besides the above issue, Crafty adopts a non-destructive
undo logging scheme, which incurs additional problems. Af-
ter flushing the undo log of an HTM transaction T (recall that
this is done outside the scope of T , after its commit), Crafty
starts a new HTM transaction that atomically: (1) checks if a
global clock has changed since T ’s first execution; and (2) in
the negative case, replays T ’s redo log in PM and updates the
global clock. If the global clock is found to have increased
(i.e., any concurrent transaction did commit), the whole trans-
action logic of T is re-executed: if T produces the same writes
as in its first execution, T is marked as durable; else, T ’s undo
log is discarded and the whole process is restarted.

This approach has two main limitations: (1) the update
of the global clock is likely to generate contention at high
thread counts, causing frequent transaction re-executions; (2)
executing twice a transaction not only introduces overhead,
but also increases the likelihood of conflicts by extending the
period of time during which transactions execute concurrently.

Log replay. Another key design choice is how to replay the
writes in the redo log on PM, while respecting the timestamp
order. With the exception of Crafty, log replay occurs only
after the transaction(s) being replayed is already durable (as
ensured by the persistent redo log). Therefore, the application
threads do not need to wait for this phase in order to continue,
which can be performed in background. However, there are
two relevant exceptions where the progress of the application
is affected by the log replay. The first one is upon recovery,
where a stable snapshot is rebuilt from the persistent logs.
The second one is during transaction processing: once the
available log space is exhausted, the application threads have
to wait for the log replay to reclaim log space. The efficiency
of the log replay process is, thus, of paramount importance.

All the analysed solutions (but Crafty) adopt a non-scalable
log replay mechanism: they sequentially replay the logs via
a single background thread. Moreover, the efficiency of the
replay phase in existing systems decreases as the number of
threads processing transactions grows. The larger the thread
count, in fact, the larger the number of per-thread logs that
need to be examined in the replay phase to determine which
transaction (from some per-thread log) should be replayed
next, according to the timestamp order.

Summary. Table 1 summarizes the main scalability limita-
tions of state of the art solutions. As we show in the remain-
der of the paper, SPHT avoids all of them. Regarding the



DudeTM cc-HTM NV-HTM Crafty SPHT
Global clock

updated by txs Y N N Y N

Extended tx
vulnerability window N N N Y N

Sequential mechanism
to ensure durability N Y Y Y N

Sequential
Log Replay Y Y Y N N

Table 1: Summary of the factors limiting the scalability of pro-
posed PTM implementations for commodity HTM (assuming
their operation with immediate durability semantic).

scalability challenges associated with orderly redo logging,
SPHT addresses them by introducing a novel, highly scalable
commit protocol (§3.1) that amortizes the cost of ensuring
immediate durability across multiple concurrent transactions.
SPHT’s design avoids spurious aborts due to the access to
shared metadata from within hardware transactions [28] or to
the need to execute a transaction twice [14]. Concerning log
replay, SPHT overcomes the scalability limitations of existing
solutions by introducing a mechanism for NUMA-aware par-
allel log replaying (§3.3) as well as a “log linking” technique
(§3.2) that spares replayers from the cost of scanning every
thread’s log to determine the transaction replay order.

3 SPHT

SPHT assumes a system in which PM is exposed to applica-
tions by means of persistent heaps. A persistent heap is cre-
ated by using the operating system (OS) support to memory-
map the persistent data, stored in a PM-aware file system, into
the application address space [36]. SPHT exposes a classic
transaction demarcation API and transparently exploits the
underlying HTM support along with a novel software-based
scheme to ensure immediate durability.

Fig 2 illustrate SPHT’s architecture, which includes two
main processes: the Transaction Executor (TE), which runs
the TM-based parallel application, and the Log Replayer
(LR). Transactions are executed by multiple worker threads
spawned by the TE process. The TE process also mmaps a
persistent heap into its address space using the OS Copy-on-
Write (CoW) option. This option creates a shadow copy of
the persistent heap shared by all worker threads, which serves
as a working snapshot (WS) that transactions access directly.
Updates to the WS are not immediately propagated to the
persistent heap. Thus, the updates generated by committed
HTM transactions are still volatile.

Like most systems analysed in §2, each worker thread has
a private durable redo log that it uses to track the updates
performed by each transaction. Once a transaction commits,
its updates may still reside in the cache. Thus, the redo log
needs to be explicitly forced to persistent memory after the
HTM commit. At that point, a timestamped commit marker
declares the transaction as durable. We discuss how SPHT
implements this mechanism in a highly scalable way in §3.1.

Figure 2: High level view of SPHT architecture.

Since transactions work on a shadow volatile working snap-
shot, the persistent heap is kept up to date by eventually re-
playing the redo logs. To handle this, the LR process mmaps
the persistent heap into its address space, but in a shared (in-
stead of private) state. As such, the LR can directly write to
the persistent heap. As mentioned in §2, the LR process takes
advantage of two novel ideas to ensure high scalability of log
replay. First, it relies on a novel log linking mechanism that
spares the replayer threads from the cost of having to deter-
mine which transaction should be replayed next. We present
this mechanism in §3.2. Second, the log replay is parallelized
in a NUMA-aware fashion, as detailed in §3.3.

3.1 Transaction processing and durability
The key idea that SPHT exploits to overcome the scalabil-
ity limitations of state of the art solutions is to mitigate the
cost of ensuring immediate durability by amortizing it across
multiple transaction commits. SPHT’s design is based on the
observation that, at high thread count, a large number of trans-
actions is likely to be concurrently trying to commit. SPHT
exploits this observation by ensuring the immediate durabil-
ity of all of them via a single update of a persistent global
marker, noted pmarker, which stores the timestamp of the
most recent durable transaction. This approach is similar in
spirit to the group commit mechanism used in DBMSs [12],
which in SPHT we customize to make use of HTM and PM.

Fig 1b illustrates the idea at the basis of the proposed mech-
anism, by considering the same execution used to illustrate
the scalability limitations of NV-HTM (in Fig 1a). Similarly
to NV-HTM, SPHT relies on physicals clocks to establish
the order by which transactions are replayed. After an HTM
commit, SPHT allows the threads to flush their logs out of
order (i.e., without any inter-thread synchronization). As dis-
cussed in §2, there is a key issue with prior proposals based
on physical timestamps (e.g., NV-HTM). The issue is that the
log of a transaction T , after being flushed to PM, cannot be
marked as durable just yet. In fact, there may exist some other
transaction T ′ with a smaller timestamp and still not marked
as durable, whose effects T may have observed.

SPHT copes with this issue as follows: each thread exter-
nalizes a timestamp vts in volatile memory that contains the



Algorithm 1 SPHT- Base algorithm
Shared Volatile Variables

1: vts[N], vmarked[N], visU pd[N]

Persistent Variables
2: pwriteLog[N], pmarker

Thread Local Volatile Variables
3: vts′, vskipCAS
4: function BEGINTX
5: visU pd[myTid]← FALSE
6: vskipCAS← FALSE
7: UNSETPERSBIT(vts[myTid]) . Logs are not persistent
8: vts[myTid]← RDTSCP . lower bound of final ts
9: HTM_BEGIN . begin hw tx

10: function WRITE(addr, val)
11: logWrite(addr, val) . log to PM, no flush
12: ∗addr← val . execute write
13: function COMMITTX
14: vts′← RDTSCP . store physical clock to local var.
15: HTM_COMMIT . commit hw transaction
16: vts[myTid]← ts′ . Externalize the final timestamp
17: if isReadOnly then . Read-only txs...
18: SETPERSBIT(vts[myTid]) . ...unblock the others
19: return . ...and return immediately
20: visU pd[myTid]← TRUE . Mark as update tx
21: logCommit(pwriteLog[myTid], ts′) . Flush tx log.
22: SETPERSBIT(vts[myTid]) . Signal logs are durable
23: WAITPRECEDINGTXS
24: UPDATEMARKER

25: function WAITPRECEDINGTXS
26: for t ∈ [0..N−1] do
27: . Wait until prec. txs have flushed their logs
28: while vts[t]< vts[myTid] ∧ ¬ISPERSBIT(vts[t]) wait
29: . If any update tx with large ts exists...
30: if vts[t]> vts[myTid]∧ visU pd[t] then
31: vskipCAS← TRUE . this tx can skip the CAS
32: function UPDATEMARKER
33: . Is it needed to and am I responsible for updating pmarker?
34: if pmarker < vts[myTid]∧¬vskipCAS then
35: val← pmarker
36: while val < vts[myTid] do
37: val← CAS(pmarker, val, vts[myTid])
38: if (CAS was successful) then
39: flush(pmarker)
40: vmarked[myTid]← vts[myTid] . Signals pmarker is flushed.
41: return
42: while TRUE do . Wait till flush of pmarker
43: for t ∈ [0..N−1] do . ...is complete
44: if vmarked[t]≥ vts[myTid] then return

following information: (i) the timestamp of the last transac-
tion; and, (ii) whether the log of the last transaction is per-
sistent (isPers bit). After flushing its logs, T advertises to all
other threads its completion by setting the isPers bit in its vts.
T then enters a wait phase during which T scans the times-
tamps of the other worker threads with a two-fold purpose:
(i) ensuring that any transaction with a smaller timestamp has
finalized persisting its own logs; (ii) determining which is
the transaction with the largest timestamp, among the ones
currently in the commit phase.

The former condition guarantees that T can be safely
marked as durable, by updating (and flushing) the global
marker (pmarker). The latter condition enhances efficiency
by exploiting, opportunistically, the presence of other con-
current transactions to reduce the number of updates (and
flushes) of pmarker. Specifically, if T detects a transaction
T ′ with a larger timestamp, T avoids updating pmarker, as
T ′ will do so. When T ′ updates pmarker, the durability of T

is also implicitly ensured, since T ′ will store in pmarker its
own timestamp, which is larger than the one of T and, as such,
ensures also the durability of T .

This mechanism is not exempt from critical races. In fact,
two transactions may assume to have the largest timestamp
and attempt to update concurrently pmarker. We tackle this
issue by manipulating pmarker via a Compare-and-Swap
(CAS) instruction. Fig 1b illustrates an example execution.
Transactions T0 and T1 detect the presence of T2 and/or T3
and delegate to them the update of the global marker. T2 and
T3 compete via a CAS to update pmarker. Assuming that T3
succeeds, T3 flushes pmarker, thus ensuring the durability of
the 4 transactions. As shown in Fig 1, not only SPHT reduces
the number of synchronous updates of the commit marker
with respect to solutions like NV-HTM (reducing the pressure
on the bandwidth-constrained PM [23]), but it also allows
multiple transactions to be marked as durable in parallel.

Note that, if no concurrent transaction is detected after
flushing the logs, the proposed solution has a cost similar to
NV-HTM, as both require synchronously updating a commit
marker. In the case of SPHT, though, a single global marker is
updated, whereas in NV-HTM, each thread appends a commit
marker to its own log. Because of this, SPHT uses a more
expensive operation (i.e., a CAS) to update the global marker.
As we will show in §4, though, this cost is largely outweighed
by the scalability benefits that the SPHT’s scheme enables.
It is also worth pointing out that this design tends to mini-
mize the chance that multiple transactions contend to CAS the
global marker. In fact, pmarker is only updated by a transac-
tion that detects to have the largest timestamp. Thus, most of
the CAS operations are uncontended and, therefore, introduce
relatively low overhead in modern processors [35].

Pseudo-code. The above scheme is formalized in Alg 1. For
simplicity, memory and persist barriers are omitted in the
pseudo-code and are discussed below. First, all loads/stores
to shared variables abide by C/C++ acquire/release seman-
tics. Second, we use synchronous flushes (CLWB followed by
SFENCE) in logCommit (l.21) and flush ( l.39).

DATA STRUCTURES. We mark volatile data structures with
a superscript v (v) and persistent variables with a superscript
p (p) for clarity. SPHT maintains two persistent data struc-
tures: (i) per-thread redo-logs (pwriteLog[N]); and, (ii) a
global marker (pmarker), which stores the timestamp (physi-
cal clock) of the most recently durably commmitted transac-
tion, i.e., guaranteed to be replayed in case of a crash.

Each thread t (of the N available in the system) also uses
the following global volatile data structures: (i) the timestamp
of the last (or current) transaction T executed by t (vts[N]); (ii)
the isPers flag, implemented by reserving a bit in vts[t], which
serves to notify whether t has (synchronously) flushed the logs
of T to PM; (iii) the last timestamp t wrote to and flushed in
pmarker (vmarked[N]); and, (iv) a flag that advertises whether
T is an update transaction (visU pd[N]).



The logs are per-thread circular buffers containing an or-
dered sequence of transactions. Each logged transaction is a
sequence of (i) 〈addr,val〉 pairs (i.e., the transaction’s write
set) followed by (ii) a timestamp that serves also as an end de-
limiter. The timestamp is distinguishable from an address by
setting its first bit to 1. For simplicity, we omit the metadata
used to track the log’s start and end.

BEGIN TRANSACTION. Before a thread t starts a hardware
transaction T (via HTM_BEGIN, line 9), t stores the current
value of the physical clock (obtained via RDTSC) in its vts
variable and sets its isPers bit to 0. It also sets its visU pd
variable to false, which informs other threads that T is not
guaranteed to be an update transaction, yet.

It should be noted that, at this stage, the timestamp adver-
tised in vts represents a lower bound estimate on the final
timestamp (i.e., the one establishing the durability order) that
T will obtain right before committing (via HTM_COMMIT,
l.15). This mechanism ensures the visibility of T throughout
its execution to other concurrent threads.

WRITE INSTRUMENTATION. SPHT logs the writes (Alg 1,
l.10) in PM via the logWrite primitive. Logging a write con-
sists in appending a pair 〈addr,val〉 at the tail of the log.

COMMIT PHASE. Before committing the hardware transac-
tion via HTM_COMMIT (Alg 1, l.15), the final timestamp is
obtained by reading the physical clock and storing it in a lo-
cal variable (vts′). This timestamp is only advertised in the
shared variable vts after HTM commits. The latter, in fact,
is accessed non-transactionally by concurrent threads (in the
WAITPRECEDINGTXS function) and updating it from within
the hardware transaction would induce (spurious) aborts.

Read-only transactions, which produce no log, can return
immediately. Before, though, they set isPers to 1, which, as
we will see, unblocks concurrent threads that may be waiting.

Update transactions, instead, append their timestamp to
the log and flush it (via the logCommit primitive). Next, they
advertise that they are update transactions and that they are
durable by setting their visU pd and isPers flags, respectively.

Next, in WAITPRECEDINGTXS, T examines the timestamps
of every concurrent transaction and waits until the ones with
a smaller timestamp have finished flushing their logs (l.28).
At this point it is safe to update the global marker with the
timestamp of T . However, to enhance efficiency, in l.30, T
determines whether there is an update transaction with a larger
timestamp, say T ′. In this case, when T ′ updates the global
marker with its own timestamp, it also ensures the durability
of T . Hence, T omits the updating of the global marker, sets
the vskipCAS flag and just waits until a timestamp larger than
its own has been persisted in the global marker.

Finally, the transaction executes UPDATEMARKER. Here,
it verifies if the global marker does not yet ensure its own
durability (pmarker <v ts[myTid]) and if it cannot count on
other transactions with larger timestamp to update pmarker
(vskipCAS is false): in such a case, the transaction attempts to

CAS pmarker (l.37) to the value of its vts, until a timestamp
larger than or equal to its own is present.

If T successfully executes its CAS, T ensures that the write
it performed is persisted by flushing pmarker (l.39). T adver-
tises that pmarker is flushed by writing its vts in its vmarked
variable. After that, T returns.

If T fails the CAS, T needs to wait until it observes a value
in the vmarked array that is larger than its timestamp: this
guarantees that some thread must have CASed and flushed a
value in pmarker that also ensures T ’s durability.

SINGLE GLOBAL LOCK (SGL). HTM is a best effort syn-
chronization mechanism that, to ensure progress, normally
relies on pessimistic fall-back path (e.g., activated if the trans-
action fails repeatedly to commit in hardware) based on a
Single Global Lock (SGL). When this mode is activated, any
concurrent hardware transaction is immediately aborted. How-
ever, in SPHT, if a thread activates the SGL path, there may
still be transactions that have already completed executing in
HTM, but are still in their commit phase (e.g., flushing their
logs). To guarantee correct synchronization with these trans-
actions, the SGL path ensures the durability of its updates by
using the same logic of HTM transactions.

Correctness arguments. We prove the correctness of SPHT
by showing that it satisfies two properties (which were already
used to define NV-HTM’s correctness criteria [4]): (C1) the
timestamps obtained during transaction execution reflect the
HTM commit order2; (C2) if a transaction T returns from a
commit call to the application, the effects of T and of every
committed transaction that precedes T in the HTM serializa-
tion order, are guaranteed to be durable.

SPHT and NV-HTM share the same timestamping scheme,
which was already proved to ensure property C1 [4]. Thus, in
the following, we focus on proving that SPHT ensures C2.

If a transaction T , executing at thread t, returns successfully
from its commit call to the application then: (i) the log of
t necessarily includes T , including its final commit marker
(Alg 1 l.21); (ii) pmarker persists a value larger or equal than
the timestamp of T (vts[tT ]), since either T set pmarker to
vts[tT ] (l.38-40) or some other concurrent transaction T ′ s.t.
vts[t ′T ′ ]>

vts[tT ] updated and flushed pmarker (l.42-44).
These conditions ensure that upon recovery T will be re-

played. It is only left to prove that, if T returns from its commit
call, any committed transaction T ′, s.t. vts[t ′T ′ ]<

vts[tT ], will
also be replayed. This is guaranteed since, before returning
from its commit call, T ensures that any thread that may be
executing a transaction T ′ with a smaller timestamp has set
isPers (l.22). Hence, the log of the thread that executed T ′

necessarily includes T ′, with its final commit marker, which,
together with the condition pmarker ≥ vts[tT ] > vts[t ′T ′ ], en-
sures that T ′ will also be replayed.

2More formally, if a transaction T with a timestamp ts conflicts with T ′

with ts′, and ts < ts′, then T is serialized by HTM before T ′.



3.2 Linking transactions in the log

The algorithm presented in the previous section (similarly to
other solutions [4, 14, 15, 28]) requires replayers to scan the
whole set of per-thread logs to determine the transaction that
should be replayed next. This can have a significant impact
on the log replay performance (up to 3.5× slowdown, §4),
especially in systems where a large number of threads can
process transactions (since each thread maintains its own log).

SPHT tackles this issue by extending the transactions’ log
with an additional entry that is used to store a pointer to the
beginning of the next transaction in the replay order. Transac-
tions update this pointer during their commit stage.

Let us denote with Ti the i-th transaction in replay order
and assume that transactions are replayed from the oldest to
the most recent one. In a nutshell, once transaction Ti has
committed in hardware and established its final (physical
clock based) timestamp, it needs to determine the identity of
transaction Ti-1, and update the link slot in the log of Ti-1 with
a pointer to (the start of) Ti’s log.

Unfortunately, extending the algorithm presented in §3.1
to allow Ti to determine the identity of Ti-1 is not trivial. The
key problem is that, when transaction Ti reaches its commit
phase, the thread that committed Ti-1, denoted tTi-1 , may have
already started a new transaction and overwritten its times-
tamp vts[tTi-1 ]. This makes it impossible for Ti to determine
the identity of Ti-1 by inspecting the vts array.

To address this issue, SPHT tracks also the metadata of
the previous transaction processed by each thread. This is
sufficient since we ensure that if Ti has not determined the
identity of Ti-1 yet, then tTi-1 will be able to start at most one
new transaction. To ensure this property, Ti scans the metadata
of the other threads and establishes its predecessor before
setting its isPers. Recall that this scheme allows Ti to prevent
transactions with larger timestamps from completing their
commit phase. Thus, it prevents tTi-1 from committing any
transaction that tTi-1 started after committing Ti-1.

During this scanning phase, Ti discriminates between (con-
current) transactions with smaller timestamps that have their
isPers set to 1 or 0. Transactions with isPers set to 1 already
established their final vts, so their timestamp can immediately
be analyzed to determine if any of them may be Ti’s prede-
cessor. Further, Ti does not need to wait for these transactions
before moving on with UPDATEMARKER.

Transactions with smaller timestamps that have their isPers
set to 0, though, prevent Ti from executing UPDATEMARKER.
Ti tracks these transactions in precT Xs, a set that will be con-
sulted during Ti’s wait phase. Before starting to wait, Ti sets
isPers to 1 to unblock transactions with larger timestamps.

Next, the algorithm proceeds similarly to the base version.
Namely, Ti waits for all transactions in precT Xs (i.e., that
may precede Ti) and then executes the update marker logic.
The key difference is that, in the wait phase, once Ti can
determine the final timestamp for a transaction Tj, it also

verifies whether Tj might be its preceding transaction. This is
achieved by checking whether Tj has the largest timestamp
among the transactions that precede Ti (i.e., Tj = Ti-1). Finally,
before returning from the commit call, Ti updates the link slot
of Ti-1 to point to the start of Ti’s log.

Pseudo-code. The pseudo-code formalizing the proposed
mechanism is reported in Alg 2. The lines of code that are
unchanged with respect to Alg 1 are coloured in brown. For
space constraints we have to omit the correctness proof for
Alg 2, which can be found in our technical report [5].

Algorithm 2 SPHT- Forward linking.
Additional Shared Volatile Variables:

1: vlogPos[N], v prevLogPos[N], v prevT s[N]

Additional Thread Local Volatile Variables
2: v pT s, v pLogPos, v pT hread, v precT Xs
3: function BEGINTX
4: visU pd[myTid]← FALSE ; vskipCAS← FALSE ;
5: atomic do . vectorial instr stores multiple fields
6: vlogPos[myTid]← myLinkSlot . flags link pos for the next tx
7: UNSETPERSBIT(vts[myTid])
8: vts[myTid]← RDTSCP

9: HTM_BEGIN

10: function COMMITTX
11: ts′← RDTSCP ; HTM_COMMIT
12: ∗ vlogPos[myTid]← ts′ . flags stable ts in own log
13: vts[myTid]← ts′
14: if isReadOnly then
15: SETPERSBIT(vts[myTid])
16: return
17: visU pd[myTid]← TRUE ;
18: logCommit(pwriteLog[myTid], ts′)
19: SCANOTHERS . estimate prev & unstable txs
20: SETPERSBIT(vts[myTid]) . next tx can write in link
21: WAITUNSTABLETXS . discover prev tx
22: UPDATEMARKER
23: ∗ v pLogPos← myLinkSlot . link prev tx to my log
24: atomic do . keep track of this tx
25: v prevLogPos[myTid]← vlogPos[myTid]
26: v prevT s[myTid]← vts[myTid]

27: function SCANOTHERS . estimate preceding TXs
28: v pT hread← myTid . init search with own prev. tx
29: v pT s← v prevT s[myTid] ; v pLogPos← v prevLogPos[myTid] ;
30: for t ∈ [0..N−1] do
31: atomic do . for each t take a snapshot using a...
32: tmpLogPos← vlogPos[t] . ... vectorial load
33: tmpPrevLogPos← v prevLogPos[t]
34: tmpT s← vts[t]
35: tmpPrevT s← v prevT s[t]
36: if tmpT s < vts[myTid] then . search preceding txs
37: if ISPERSBIT(tmpT s) then . search stable txs
38: if tmpT s > v pT s then
39: v pT s← tmpT s ; v pT hread← t ;
40: v pLogPos← tmpLogPos
41: continue
42: else . prec. tx in t that is still running
43: append(v precT Xs, 〈t, tmpLogPos〉)
44: if tmpPrevT s < vts[myTid] ∧ tmpPrevT s > v pT s then
45: v pT hread← t . search preceding txs
46: v pT s← tmpPrevT s
47: v pLogPos← tmpPrevLogPos

48: function WAITPRECEDINGTXS
49: for 〈t, vlogPos[t]〉 ∈ precT Xs do
50: while vts[t]< vts[myTid] ∧ ¬ISPERSBIT(vts[t]) wait
51: if ISTS(∗vlogPos[t])∧∗vlogPos[t]< vts[myTid]∧∗vlogPos[t]> v pT s then
52: 〈v pT s, v pT hread〉 ← 〈∗ vlogPos[t], t〉
53: v pLogPos← vlogPos[t]
54: if vts[t]> vts[myTid]∧ visU pd[t] then
55: vskipCAS← TRUE



ATOMIC ACCESS TO METADATA. In the scanning phase
(SCANOTHERS , l.27), Ti needs to obtain a consistent snapshot
of the metadata of every other thread. This was not an issue
in Alg 1, since the per-thread metadata that Ti had to observe
was just the timestamp and isPers, which are stored within
then same single memory word. Alg 2, though, requires Ti
to atomically observe a larger set of metadata, i.e., the times-
tamp (included isPers) and the position in the log of the last
two transactions processed by each thread, which amounts
to 32 bytes. To cope with this issue, we store these metadata
contiguously in (volatile) memory and read/write them using
vectorial instructions (i.e., x86 AVX), which in recent CPUs
guarantee atomic multi-word manipulations [39].

TRACKING THE PRECEDING TRANSACTION. As discussed
above, in SCANOTHERS, by setting its isPers to 0 (l.7), Ti
prevents thread tTi−1 from completing the commit of its next
transaction. As soon as Ti sets its isPers to 1, though, tTi−1

can commit a possibly unbounded number of transactions
and, by the time Ti accesses tTi−1’s metadata, in WAITPRE-
CEDINGTXS, the information regarding Ti−1’s timestamp and
log pointer may have been already overwritten. We address
this issue as follows: (i) once a thread establishes the final
timestamp for a transaction Ti, it stores T ’s timestamp also
in the link slot of Ti’s log, so that this information remains
accessible to the thread that executes Ti+1 even after isPers
of Ti+1 is set (which, as mentioned, allows tTi to commit an
arbitrary number of transactions); (ii) in SCANOTHERS, when
Ti detects a transaction Tj with a smaller timestamp and isPers
set to 0, Ti stores in precT Xs both the identifier of the thread
tTj and the position of Tj in tTj ’s log; (iii) in WAITPRECED-
INGTXS, Ti can then access the timestamp of Tj in tTj ’s log
via the pointer stored in precT Xs.

Note that, when a transaction Ti executes WAITPRECED-
INGTXS, it can include in precT Xs transactions that have
a smaller timestamp but are not Ti’s immediate predecessor.
Denote such a transaction as Tj. By the time Ti inspects the
link slot in their log via the vlogPos pointer (l.51), the link slot
may have been already updated by Tj’s immediate successor
(i.e., Tj+1). In this case, Ti must safely detect that Tj cannot be
its own predecessor. This is achieved by exploiting the fact
that whenever a transaction timestamp is stored in the link
slot (l.12), its first bit (which, recall, we use to encode isPers)
is always set to 0. So, in order to tell whether the link slot
is storing a timestamp or a pointer (ISTS() primitive, l.51),
we always set to 1 the first bit of any pointer that we store in
the log (and reset it 0 during the reply). This is safe since in
typical architectures the first bits of an address in user-space
is always guaranteed to be zero, but alternative approaches
should be used if SPHT were to be used within the kernel.

Backward linking. The proposed technique can be adapted
straightforwardly to link transactions in “backward” order,
i.e., from the most recent to the oldest one. This enables
techniques for filtering duplicate writes [4] by replaying the

logs backwards and applying only the the most recent write
to each memory position. Backward linking can be achieved
by adapting the above logic so to have Ti store into its own
log a reference to the start of Ti-1’s log.

3.3 NUMA-Aware Parallel Log Replay
The LR makes use of a snapshot in PM and the per-thread logs
to produce a fresher persistent snapshot. The last transaction
to be considered for replay, say Ti, is the one, among the
transactions in the log, to have the largest timestamp that
is also smaller than or equal to the persistent global marker
(pmarker). Any transaction more recent than the pmarker is
guaranteed to not have returned from the commit call. Thus,
it can be safely discarded. Using a single threaded replayer,
it suffices to apply the modifications by following the links
stored in the logs (see §3.2). Before pruning the log, to ensure
the durability of the replayed writes, SPHT calls the x86
WBINVD instruction, which efficiently drains the caches.

The key problem to enable parallel replay in the LR is
how to ensure that the order by which writes are replayed
by multiple concurrent replayers respects the sequential or-
der established in the logs. SPHT circumvents the usage of
additional synchronization among different replayer threads
by ensuring that their writes target disjoint memory regions.
This sharding makes the replay completely parallel and spares
threads from enforcing a specific write order.

Fig 3 illustrates the concept, by showing two replayer
threads that navigate through the (decentralized) log following
the linking information. For illustration purposes, we consider
a simplistic sharding policy, which assigns responsibility of
even/odd addresses to replayer threads 0 and 1, respectively.

In reality, SPHT uses a more sophisticated policy, which
aims at pursuing four goals: (i) minimize overhead for the re-
player; (ii) balance load among different threads; (iii) promote
cache locality; and, (iv) take advantage of NUMA systems.

Specifically, SPHT shards the transactional heap in con-
tiguous chunks of configurable size, which are strided across
a fixed number of parallel replayers. This allows for mapping
a given memory address to the corresponding replayer thread
via an efficient hash function that simply inspects the most
significant part of the address.

Arguably, using small chunks can benefit load balancing:
by interleaving in a fine-grained way the regions that each
replayer thread is responsible for, it is less likely that a single
frequently accessed memory region is assigned exclusively
to a single thread (which may generate load imbalances and
hamper the global efficiency of the parallel replay process).
We observed that chunks with a granularity close to the cache
line size generate excessive cache traffic, leading to poor
replay performance. This led us to opt for a granularity of
4KB (typical size of pages mapped in DRAM).

As mentioned, one of the design goals of the SPHT’s re-
play logic is to take advantage of the asymmetry of modern
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Figure 3: Parallel log replay. The notation Wi denotes a write
to address i. Rep0 and Rep1 are responsible for odd/even
addresses respectively.

NUMA systems, where accesses to local memory regions
experience lower latency and higher throughput than accesses
to memory regions hosted by a remote node. We exploit this
feature by scattering (i.e., pinning) in round robin the set of
replayers across the available NUMA nodes and making each
replayer responsible of applying only the writes that target an
address in their local NUMA node. To this end, we developed
a simple NUMA-aware memory allocator that organizes the
transactional heap into N different arenas, one for each of
the N available NUMA nodes. During transaction processing,
the allocation of memory regions across NUMA nodes uses
a simple round robin policy to balance memory usage (but
clearly alternative policies could be used [11, 18, 42]). This
custom memory allocator ensures that the arenas associated
with each NUMA node are placed at known address ranges.
This allows the replayer threads to detect in a precise and effi-
cient way whether any memory address in the log is mapped
to their local NUMA node.

Note that, although this approach requires all replayers to
scan the whole log, it is effective for two reasons: (i) since re-
players execute at roughly the same speed and issue repeated
read requests for the same log regions close in time, these
reads are likely to be served from the CPU caches (as we
will experimentally confirm in Section 4.2); (ii) PM’s per-
formance is asymmetric (read bandwidth is ~3× larger than
write bandwidth [23]) hence the main bottleneck of the replay
process is the apply phase, rather than log scanning.

Finally, this sharding scheme can be used in conjunction
with duplicate filtering schemes [4], e.g., which scan the logs
from the most recent to the oldest entry to avoid replaying
duplicate writes to the same memory position. In this case,
the key issue to address is how to ensure that the tracking
of duplicate writes remains correct despite the existence of
multiple concurrent replayers. In order to avoid costly syn-
chronization among replayers, SPHT avoids using shared data
structures to filter duplicates (e.g., thread-safe set implementa-
tions). Conversely, each replayer thread r maintains a volatile
bitmap that only tracks writes to memory regions that r is
responsible for (each bit of the bitmap tracking writes to a 8
bytes in PM, i.e., the granularity of each write in the log).

4 Experimental Evaluation

Our experiments seek answers to the following main ques-
tions: (i) how severe are the scalability limitations of state of
the art solutions mentioned in §2 when evaluated on a real PM
system (§4.1 and §4.2)? (ii) what are the performance benefits
of SPHT’s commit logic (§4.1)? (iii) what are the gains of the
linking technique during log replay (§4.2) and what are the
costs it introduces during transaction processing (§4.1)? (iv)
how scalable is the parallel replay technique (§4.2)?

Experimental settings. We conducted all experiments in
a dual-socket Intel Xeon Gold 5218 CPU (16 Cores / 32
Threads) equipped with 128GB of DRAM and 512GB of In-
tel Optane DC PM (4× 128GB). The PM is configured in
“App mode” [23] using 2 namespaces and interleaved access.
The presented results are the average of 10 runs.

We consider 8 different PTMs, whose implementation we
make publicly available3: SPHT-NL (no linking), SPHT-
FL (forward linking), SPHT-BL (backward linking), NV-
HTM [4], DudeTM [28], Crafty [14], cc-HTM [15] and
PSTM [38]. PSTM is a software TM that extends TinySTM
with durable transactions using Mnemosyne’s [38] algorithm.
For fairness, we implemented all systems in §2 in a com-
mon framework and all of them provide immediate durability.
Checkpointing is disabled during transaction processing for
all solutions that accumulate logs4. The HTM solutions fall
back to SGL after 10 retries.

4.1 Transaction processing
We evaluate the performance of SPHT using the STAMP [6]
benchmark suite and TPC-C [37]. STAMP was already used
to evaluate several prior related solutions [4, 14, 15], since
it encompasses transactional applications that, although not
originally proposed for PM, would transparently benefit from
PM to attain crash-tolerance and/or have access to larger
heaps. TPC-C is widely used to benchmark database systems.

4.1.1 STAMP

STAMP includes 8 benchmarks, but we do not consider Bayes,
as it is known to generate unstable performance results [7]. We
consider the standard low contention workloads for Vacation
and Kmeans. We also configured Kmeans to generate an
additional workload with lower contention (KMEANS_VLOW),
thus enabling the PTMs to achieve higher scalability levels.

Fig 4a reports throughput as a function of the number of
worker threads. The top row contains low contention work-
loads (VACATION_LOW, SSCA2 and KMEANS_VLOW). The
second row contains contention-prone workloads (INTRUDER,
KMEANS_LOW and GENOME). And the bottom row have

3bitbucket.org/daniel_castro1993/spht
4cc-HTM has to activate checkpointing upon completing each transaction

in order to comply with immediate durability (see transaction barrier in [15]).

bitbucket.org/daniel_castro1993/spht


(a) Throughput.

(b) Probability of different outcomes for a transaction.

(c) Transaction time breakdown.
Figure 4: STAMP [6] using standard (++) parameters: (a) throughput; (b) probability for a transaction to commit or abort in
HTM, or enter the SGL; (c) breakdown of time spent: in SGL, commits in HTM, aborts in HTM, and in the commit phase.

workloads that are notoriously unsuited for HTM (YADA and
LABYRINTH), since their long transactions have a memory
footprint that often exceeds the CPU cache capacity.

Low contention benchmarks. SPHT achieves the largest
gains with respect to the considered baselines in VACA-
TION_LOW, where it scales up to 64 threads (with a small
drop at 33 threads, when we start activating threads on the
second socket [2]). At the maximum thread count, SPHT is
2.6× faster than NV-HTM (the second best solution). This
can be explained by analyzing the data in Fig 4c, which re-
ports a breakdown of the percentage of time spent by each
solution in different activities: at 64 threads, NV-HTM spends
significantly more time in the commit phase than SPHT, 76%
vs 62%. As a consequence, the ratio between the time spent
processing transactions and the time spent committing is ~2×
higher for SPHT (~60% vs ~30%). Analogous considerations
apply to cc-HTM, which spends almost 95% of time in the
commit phase starting at 32 threads, when the single back-
ground applier thread becomes the system’s bottleneck.

Analyzing the data in Fig 4b, which reports the probability
for a transaction to abort, commit in HTM or by using the
SGL, we notice that the HTM-based solutions suffer from
a non-negligible abort probability even when using a single
thread. We verified that this is the case also for non-durable
HTM. The reason is that the memory footprint of some trans-
actions exceed the HTM capacity. As the thread count grows,
though, Crafty and DudeTM experience a much higher abort
rate than SPHT. In Crafty’s case, rolling back the transac-

tion and replaying it afterwards (and using a conservative
mechanism to detect conflicts in between these phases [14])
leads to higher conflict rates than with the SPHT’s variants.
In DudeTM’s case, the global serialization clock imposes
spurious conflicts, which are amplified at high thread counts.

SPHT-FL and SPHT-BL remain the most competitive solu-
tions at high thread count, although they impose an overhead
of up to around 25% in VACATION_LOW as well as in SSCA2
w.r.t. the no linking version. It should be noted, however, that
the overhead incurred by the linking mechanism is at most
5% in all the other benchmarks. In KMEAN_VLOW, though,
the linking variants actually outperform SPHT-NL. The ex-
planation for this behaviour is that the additional operations
performed by the linking variants in the commit phase serve
as a back-off mechanism, reducing the overall contention. Al-
though not shown in Fig 4b for space constraints, the abort
rate with KMEANS_VLOW at 64 threads is 79%, 45% and 43%
for SPHT-NL, SPHT-FL and SPHT-BL, respectively.

Finally, at high thread count, the gains of the SPHT variants
w.r.t. existing solutions tend to reduce in KMEANS_VLOW,
as this benchmarks generates higher contention than VACA-
TION_LOW and SSCA2. Still, at 64 thread the SPHT variants
achieve ~30% higher throughput than the best baseline (NV-
HTM) and ~5× speed-ups w.r.t. the remaining ones.

Contention-prone benchmarks. These benchmarks scala-
bility is inherently limited by their contention prone nature:
above a given number of threads the likelihood of conflicts be-
tween transactions grows close to 1 and throughput is severely



hampered in all solutions. Yet, it is worth noting that, in IN-
TRUDER and KMEANS_LOW, all the SPHT variants do scale
to a large number of threads and achieve significant speed-ups
w.r.t. all other solutions: e.g., SPHT achieves a peak through-
put that is ~30% higher than the most competitive baseline,
i.e., NV-HTM, scaling up to 24 threads.

HTM-unfriendly workloads. Finally, in LABYRINTH and
YADA, as expected, PSTM outperforms all the HTM-based
solutions, including SPHT. That is not surprising given that
these benchmarks generate large and contention prone trans-
actions, which do not lend themselves to be effectively par-
allelized using HTM. It is also unsurprising that most of the
HTM-based solutions achieve similar performance in these
HTM-unfriendly workloads, where a significant fraction of
the transactions has to be committed using the SGL (in which
case all the tested solutions tend to follow a very similar
behavior). The only exception being Crafty, which incurs a
much larger overhead than the other HTM-based solutions,
due to the large abort costs that it incurs in these workloads.

4.1.2 TPC-C

We implemented three transactions of the TPC-C benchmark,
namely Payment, New-Order and Delivery, and report the re-
sults in Fig 5. All solutions suffer a throughput drop when
they enter hyper-threading after 16 threads, which we do not
observe in STAMP. After that drop, SPHT and its linking
variants are the only solutions capable of scaling up to 48
threads. As in KMEANS, the backoff introduced by the linking
mechanism allows SPHT-FL and SPHT-BL to reduce abort
rates (bottom plot of Fig 5). NV-HTM stops scaling above
8 threads, although achieving abort rates that are compara-
ble to or lower than SPHT’s. This suggests that NV-HTM
is being bottle-necked by its sequential commit mechanism.
DudeTM exhibits the same issues as in VACATION_LOW: after
12 threads the global clock creates spurious aborts that hinder
throughput (as shown, e.g., at 16 threads). cc-HTM’s back-
ground thread limits its scalability beyond 8 threads. Crafty’s
non-destructive undo logging scheme also imposes higher
abort rates than NV-HTM and SPHT.

4.2 Log replay
We evaluate the two main novel techniques at the basis of
the proposed log replay scheme: (i) linking transactions in
the log and (ii) using multiple parallel replayers. For space
constraints, we cannot explicitly evaluate the gains deriving
from our NUMA-aware design, which, however, we use in all
the experiments discussed next. Overall, in the tested system,
our NUMA-aware design doubles the bandwidth available to
the replayer threads, which is key to increase scalability.

The efficiency of these mechanisms is affected by a number
of variables including: (i) the heap size; (ii) the average num-
ber of writes per transaction; (iii) the use of filtering technique

Figure 5: TPC-C using 32 warehouses, 95% Payment, 2%
New Order, 3% Delivery transactions.

Figure 6: Performance benefits of linking.

and the level of duplicates in the log.
We explore those parameters with a synthetic benchmark

in which transactions access the persistent heap uniformly at
random, generating a configurable number of writes in each
transaction. Once the benchmark completes, the LR fully
replays the produced logs and we evaluate its throughput in
terms of number of logged writes replayed per second. In the
following, we set the number of worker threads to 64, each
producing one log (i.e., total of 64 logs to replay).

Linking. Fig 6 shows the relative gain in log processing
throughput stemming from linking with respect to a classi-
cal solution [4, 28], called sorting, where the replay order is
established by analyzing all the per-thread logs. In this exper-
iment, the logs contain a total of 10M transactions. We vary
on the x-axis the heap size and consider 4 scenarios in which:
(i) transactions issue either 1 or 5 writes; (ii) replayer uses
either 1 or 8 threads. Linking provides the largest benefits for
small heaps (up to 3.5× speed-ups below 4MB). For large
heaps, the gains of linking tend to reduce, but remain still
solid (~50%) with 8 parallel replayers and 1 W/TX.

These result can be explained by considering that the heap
size affects the locality of the writes issued in the replay phase



Figure 7: Speedup of parallel replay for 1MB and 512MB
heap. The no-filter approach is compared with filtering for
two levels of duplicates in the log: 20% and 80%.

and to what extent this write traffic can be served within the
CPU cache (22MB in our case): if the writes can be replayed
in cache, their relative cost decreases, amplifying the gains
stemming from using an efficient mechanism to determine
which transaction to replay next. Analogously, the number
of writes per transaction affects the relative frequency of use
linking and sorting. In fact, we see that generally the fewer
the writes per transaction, the larger the gains of linking5.

Parallel replay. Next, in Fig 7 we study how varying the
degree of parallelism affects the speed-ups achievable w.r.t.
sequential replay. We consider in this study also a version
of the log replay that exploits the backward filtering tech-
nique [4], and use our synthetic benchmark to generate logs
with 20% and 80% of duplicate writes.

The right plot, which considers a 512MB heap, shows peak
gains of up to 2.8×. The use of filtering favours the scalability
of the parallel replay technique and the maximum speed-ups
are obtained for 20% of duplicates. This can be explained by
considering that filtering reduces the write traffic towards PM,
which represents the bottleneck in the no-filter scenario. For
the case of 80% duplicates, though, filtering also reduces sub-
stantially the amount of writes that are effectively generated
during the replay process. Accordingly, this reduces also the
opportunities from benefiting from the proposed parallel log
replay, which explains why the absolute speedups decrease
as the duplicates’ level grows from 20% to 80%.

With small heaps of 1MB (left plot), the efficiency of the
parallel log replay degrades significantly. Only for the case
of filtering with 20% of duplicates we observe speedups of
~20% (at 8 threads). In the other considered scenarios, paral-
lelism ends up hindering performance. This can be explained
by considering that writes to such a small heap are served
entirely in the processor’s cache and that the existence of a
(possibly large) number of replayers intensively updating such
a small working set is likely to generate strong contention
and interference in the cache subsystem. Although this result
pinpoints a limitation of the proposed technique, we argue
that most applications that make use of large scale multicore

5Except for the case of 1 thread and heaps smaller than 8MB, arguably
due to caching effects.

Figure 8: Log replay in VACATION_LOW and GENOME.
replayers 1 2 4 8 16

VACATION_LOW
8.64%
(±0.03)

6.32%
(±0.01)

5.81%
(±0.03)

5.20%
(±0.02)

4.75%
(±0.01)

GENOME
8.85%
(±0.04)

5.76%
(±0.05)

4.99%
(±0.06)

4.26%
(±0.03)

3.82%
(±0.05)

Table 2: L1 cache misses in the replay phase using linking.

machines and PM will likely adopt much larger heaps.
Next we evaluate the joint use of parallel replay and link-

ing, this time using realistic benchmarks, namely, VACA-
TION_LOW and GENOME (shown in Fig 8). The proposed
parallel log replay scheme has better throughput when com-
pared to a conventional sorting approach, yielding ~1.3× and
~2.1× peak speedup, resp., for VACATION_LOW and GENOME
at 16 threads. The joint use of linking further amplifies the
speedups of parallel replay by an additional 35%, demonstrat-
ing how these two techniques can be effectively employed in
synergy to accelerate the log replay process.

Finally in table Table 2 we report the L1 cache misses
when varying the number of replayers from 1 to 16. We can
observe that the cache misses decrease as the parallelism
increases. This is expected, since all the replaying threads
scan the whole log (i.e., generate the same stream of read
accesses), confirming that this cost is amortized by an increase
in the cache hits as the thread count increases.

5 Conclusions

This paper pinpointed several scalability limitations that affect
existing PTM systems for off-the-shelf HTM. We tackled
these limitations by proposing SPHT, a novel PTM system
that integrates a number of innovative techniques targeting
both the transaction processing and the log replay phases.

We evaluated SPHT in a system equipped with Intel Optane
DC PM and compared it against other 5 state of the art PTM
systems that had been so far only evaluated via emulation.
SPHT achieves of up to 2.6× throughput gains during trans-
action processing, when compared to the most competitive
baseline, accelerating log replay by up to 2.8×.
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