
Welterweight Go: Boxing, Structural Subtyping, and Generics

RAYMOND HU, Queen Mary University of London, United Kingdom

JULIEN LANGE, Royal Holloway, University of London, United Kingdom

BERNARDO TONINHO, Instituto Superior Técnico, University of Lisbon, Portugal and INESC-ID,

Portugal

PHILIP WADLER, University of Edinburgh, United Kingdom

ROBERT GRIESEMER, Google, USA
KEITH RANDALL, Google, USA

Go’s unique combination of structural subtyping between generics and types with non-uniform runtime

representations presents significant challenges for formalising the language.

We introduce WG (Welterweight Go), a core model of Go that captures key features excluded by prior work,

including underlying types, type unions and type sets, and proposed new features, such as generic methods.

We also develop LWG, a lower-level language that models Go’s runtime mechanisms, notably the distinction

between raw struct values and interface values that carry runtime type information (RTTI).

We give a type-directed compilation from WG to LWG that demonstrates how the proposed features

can be implemented while observing important design and implementation goals for Go: compatibility

with separate compilation, and no runtime code generation. Unlike existing approaches based on static

monomorphisation, our compilation strategy uses runtime type conversions and adaptor methods to handle

the complex interactions between structural subtyping, generics, and Go’s runtime infrastructure.

CCS Concepts: • Theory of computation→ Program semantics; Type structures; • Software and its
engineering → Polymorphism.

Additional Key Words and Phrases: Go, Generics, Boxing

ACM Reference Format:
Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall. 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics. Proc. ACM Program. Lang. 10, POPL, Article 79
(January 2026), 28 pages. https://doi.org/10.1145/3776721

1 Introduction
Go is a popular programming language that is widely used in industry. A key characteristic of Go

is structural subtyping of interfaces, unlike other memory managed OO languages such as Java and

C# that are based on nominal typing.

The first work on formalising Go by Griesemer et al. [2020] tackled the extension of Go with

generics (bounded parametric polymorphism). It presented a system that integrates Go’s structural

subtyping and generics in a manner that is compatible with static monomorphisation (as opposed

to, e.g., erasure in Java, and dynamic monomorphisation in C#). This shaped the release of generics

in Go 1.18 in 2022, described as the biggest change in its history [Griesemer and Taylor 2022].

Authors’ Contact Information: Raymond Hu, Queen Mary University of London, London, United Kingdom, r.hu@qmul.ac.uk;

Julien Lange, Royal Holloway, University of London, Egham, United Kingdom, Julien.Lange@rhul.ac.uk; Bernardo Toninho,

Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal and INESC-ID, Lisbon, Portugal, bernardo.toninho@tecnico.

ulisboa.pt; Philip Wadler, University of Edinburgh, Edinburgh, United Kingdom, wadler@inf.ed.ac.uk; Robert Griesemer,

Google, Mountain View, USA, gri@google.com; Keith Randall, Google, Mountain View, USA, keithr@alum.mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART79

https://doi.org/10.1145/3776721

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

https://orcid.org/0000-0003-4361-6772
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0002-0746-7514
https://orcid.org/0000-0001-7619-6378
https://orcid.org/0009-0001-1887-043X
https://orcid.org/0009-0000-9075-1737
https://doi.org/10.1145/3776721
https://orcid.org/0000-0003-4361-6772
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0002-0746-7514
https://orcid.org/0000-0001-7619-6378
https://orcid.org/0009-0001-1887-043X
https://orcid.org/0009-0000-9075-1737
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776721
https://www.acm.org/publications/policies/artifact-review-and-badging-current

79:2 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

This paper tackles several problems in the ongoing design and formal investigation of Go.

• We introduce WG (Welterweight Go). Its purpose is to provide a minimal formal model that

captures essential type system features of Go needed to study sound compilation strategies for

generics, and to investigate new features proposed for future versions of Go, notably generic

methods and method set intersections for generic interfaces. Structural typing in Go implies, for

example, that methods can accept differently-named structs with the same underlying structure:

several subtleties related to various kinds of type coercion are needed, which are absent from

previous work. We focus on generic type unions and type sets, and model the key areas that interact

with Go’s use of structural typing: anonymous types, underlying types, and primitive data and

operators. The combination of these features is absent from models found in the literature. Our

design of WG distils the least set of features that captures all the relevant interactions. We prove

that WG satisfies preservation and progress properties (Theorems 3.5 and 3.6).

• We formalise a lower level language, LWG, to model key mechanisms of the Go runtime. LWG

captures essential elements of the design and implementation of Go—notably the runtime distinction

between struct types and interface types—that WG (or any prior formalism [Ellis et al. 2022;

Griesemer et al. 2020; Sulzmann and Wehr 2023]) on its own does not. We develop LWG as a typed

language and establish its own preservation and progress properties (Theorems 4.1 and 4.2).

• We formalise compilation as a type-directed translation fromWG to LWGand prove its correctness

by a behavioural equivalence (Theorem 5.3). We have designed LWG and compilation to support

the proposed new features while respecting the key criteria set by the Go Team: compatibility with

separate compilation and no code generation during runtime. Our compilation strategy is based on

boxing and runtime type conversions.

Overall, this paper presents the first full account of structural typing for a language with generic

structs, methods and interfaces. We establish type safety results and the design of a type and

behaviour preserving compilation to a low-level model that is feasible in practice. It provides a

framework for investigating the design, implementation and correctness of future extensions to

the Go language and runtime. Method set intersections have been proposed but not yet imple-

mented [dominikh 2022; The Go Team 2024]; these would allow interfaces to contain methods

common to all listed types. Generic methods have been under consideration in a long-standing

proposal [Macías 2021], but have yet to be included in Go due to uncertainty about the best im-

plementation approach [Taylor and Griesemer 2021]. It is important for language designers to

investigate if there are bad interactions between features. For instance, Amin and Tate [Amin and

Tate 2016] have shown that Java generics are unsound. The issue they found could not be expressed

in Featherweight Generic Java [Igarashi et al. 2001], due to its limited feature set.

Formalising LWG and compilation is important for ensuring that the proposed features are

indeed compatible with the requirements of Go and demonstrating how they can be implemented in

practice. A key distinction between base or struct types and interface types in the Go runtime is that

interface types carry runtime type information (RTTI) for dynamic operations (e.g., type assertions)

whereas constants and structs do not. The design of Go crucially depends on the compiler being able

to statically insert runtime operations for safely converting between the distinct cases for constants

or structs and interfaces as related by structural subtyping. The prior high level formalisms lack

this perspective and fail to faithfully model the Go runtime. For example, they use terms 𝑆{...}

to denote runtime struct values, and 𝑆{...}.(𝑇) for type assertions on structs; whereas actual Go

structs, as mentioned, do not carry any RTTI corresponding to the 𝑆 , and expressions that would

dynamically depend on such RTTI are thus not valid in practice.

Unlike the original core formalism of Griesemer et al. [2020] that is based solely on static

monomorphisation, the actual Go runtime records RTTI for generic type arguments dynamically

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:3

using dictionaries that are generated by the compiler and passed around at runtime [Randall 2022].

LWG models Go interfaces by pairing RTTI with method tables, capturing a key aspect of the

actual Go implementation. We show that our approach in fact allows WG, including the proposed

new features, to be directly compiled to LWG without relying on monomorphisation to eliminate

genericity or incurring its associated restrictions (e.g., on polymorphic recursion).

A key challenge for the compilation is to deal with structural subtyping and generic types. The

interplay between these means that generic code must, in general, be statically compiled to handle

two distinct kinds of arguments that can be passed at runtime: base or struct types on the one

hand and interface types on the other. Our solution builds on Go’s framework for implicit runtime

type conversions. It involves generating adaptor code that we can quantify as one extra wrapper

method per method defined in the user program. The benefits are that it supports generic methods

with separate compilation, as opposed to monomorphisation, which requires a whole program

analysis, while as mentioned lifting other present limitations of Go such as the restriction on

polymorphic recursion. In general, our compilation is more efficient and results in less code bloat

than monomorphisation, but involves more type conversions at runtime.

This work was motivated by discussions with the Go Team who requested feedback on the design

of generic type unions and type sets. Two members of the Go Team are coauthors of this paper.

Roadmap. Sec. 2 gives an overview of key concepts in WG, LWG and compilation. Sec. 3 defines

WG and establishes preservation and progress properties. Sec. 4 defines LWG and establishes

preservation and progress properties (independently of WG). Sec. 5 defines the compilation of WG

into LWG and shows that a well-typed WG program and its LWG compilation are behaviourally

equivalent. Sec. 6 discusses related work. We have implemented a minimal prototype of WG and

our compilation approach in an accompanying artifact [Hu et al. 2025].

2 Overview
2.1 WG by Example
Figure 1 gives a WG example. For readability, we use functions (as opposed to methods), anonymous

functions and function types; in our core formalism these can be represented using interfaces,

structs and methods. Type MyInt is defined with underlying basic type int. MyInt is nominally

distinct from int; it can be thought of as a wrapper with no runtime overhead (akin to newtype in

Haskell). Type MyFloat is similar. MyInt and MyFloat have a method String with implementations

that involve static type conversions based on the underlying types. Interface MyNum contains a type
union specifying that the only members of this type are MyInt and MyFloat.

Generic type List has a type parameter a with upper bound any, an alias for the empty interface

(i.e., interface{}), meaning that a can be instantiated by any type. List is defined as an interface

supporting a single method FoldL[b], a fold operation that takes a second type parameter b. By

structural subtyping, any type T that implements FoldL[b] is considered a subtype of List[T].

Structs Nil[a] and Cons[a] implement List[a]. The two fields of Cons[a] depend on its type

parameter. Generic function join takes a List of any type bounded by MyNum, and folds the list by

calling the String method on each item and concatenating them. The idea is that the formals of

the (anonymous) combining function safely support String because they are bounded by MyNum, all

members of which implement String. The main method calls join to fold a list of MyFloat.

The code above the line in Figure 1 is supported by Go, but not by prior formalisms due to

lacking underlying types, type unions and static conversions. The code below is WG only because

Go does not yet support: (1) generic methods (see lines 7,10-12); nor (2) method set intersections for
type unions which is required to support the String call at line 15.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:4 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

1 package main

2 type MyInt int

3 func (x MyInt) String() string { return strconv.Itoa(int(x)) }

4 type MyFloat float64

5 func (x MyFloat) String() string { return strconv.FormatFloat(float64(x), 'E', -1, 64) }

6 type MyNum interface { MyInt | MyFloat }

7 type List[a any] interface { FoldL[b any](f func(v b, w a) b, z b) b }

8 type Nil[a any] struct {}

9 type Cons[a any] struct { head a; tail List[a] }

10 func (x Nil[a]) FoldL[b any](f func(v b, w a) b, z b) b {return z}

11 func (x Cons[a]) FoldL[b any](f func(v b, w a) b, z b) b {

12 return x.tail.FoldL[b](f, f(z, x.head))

13 }

14 func join[a MyNum](x List[a]) String {

15 return x.FoldL[string](func(v string, w a) string { return v + ",␣" + w.String() }, "")

16 }

17 func main() {

18 var xs List[MyFloat] = Cons[MyFloat]{MyFloat(1), Cons[MyFloat]{MyFloat(2), Nil[MyFloat]{}}}

19 fmt.Println(join[MyFloat](xs)) // Prints: ", 1E+00, 2E+00"

20 }

Fig. 1. (top) Code supported by Go and WG; (bottom) code supported by WG only.

2.2 LWG: A First Mini Example
This mini example demonstrates how structural subtyping between base or struct types and

interface types in WG is handled by the Go compiler and runtime.

type C struct { f any } type INum interface { String() string } // MyInt (etc) implements INum

func bar(x INum) MyInt { return C{x}.f.(MyInt) } func main() { return bar(MyInt(42)).String() }

The function bar takes an INum and wraps it in a C struct with field type any. It then accesses the field,

and performs a type assertion to MyInt. It returns the MyInt. The main body expression first calls

bar and passes a MyInt, which is well typed because the MyInt base type structurally implements

all the methods of the INum interface. It then calls String on the result.

The LWG output of compiling the above code is as follows. For readability, we simplify slightly

and use an abridged notation compared to the full formal definitions later.

func bar(x INum) MyInt { return {x.(change any)}.0.(MyInt) }

func main() { return bar(42.(make MyInt 𝜌))#MyInt.String() }

LWG models that in the Go runtime, interfaces are implemented as fat pointers that box a value

and carry its RTTI and a method table, whereas base types and structs are unboxed raw values with

no RTTI or method table. The compiler generates operations for dynamically converting between

the two kinds, via the make and change operations.

• The expression 42.(make MyInt 𝜌) will convert (i.e., box) the raw value 42 to an interface value
of interface type INum. While the raw value itself incurs no runtime overhead, when boxed as an

interface value it will explicitly carry the RTTI denoted by MyInt and the method table denoted by

𝜌 . Here 𝜌 is the method table of MyInt projected to INum, i.e., the String method. Both elements are

statically computed by the compiler and embedded into the output code.

• The expression x.(change any)will convert the interface value held by x at runtime to an interface

value for the any interface. In general such conversions must be done dynamically as the exact base

or struct type (i.e., the RTTI) boxed by the interface value is statically unknown.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:5

• The expression 𝑒#MyInt.String() is a method call that has been statically resolved by the compiler

to be a String call on the type MyInt. Since the receiver sub-expression 𝑒 , i.e., bar(42.(make MyInt 𝜌))

is of type MyInt, it will evaluate to a raw value at runtime; all such calls on a receiver of base or

struct type must be statically resolved because the raw values at runtime do not carry any RTTI or

method tables for dynamic dispatch.

The LWG reduction proceeds as follows.

bar(42.(make MyInt 𝜌))#MyInt.String() Make the interface value (MyInt,𝜌,42)

→ bar((MyInt,𝜌,42))#MyInt.String() Call function bar (substitute the method body)

→ {(MyInt,𝜌,42).(change any)}.0.(MyInt)#MyInt.String() Change the interface value to any

→ {(MyInt,𝜖,42)}.0.(MyInt)#MyInt.String() Select the first field of the struct (i.e., f in C)

→ (MyInt,𝜖,42).(MyInt)#MyInt.String() Assert the boxed type is MyInt (and unbox)

→ 42#MyInt.String() Call the statically resolved method MyInt.String

→∗ "42" Final result value

Note the change to any results in an empty method table 𝜖 since any has no methods. Overall, using

runtime conversions to keep method tables aligned with the expected interface type is key to

Go’s implementation of structural subtyping. Since an interface can be openly implemented by

any struct with an arbitrary superset of the required methods, aligning the method table with the

interface allows calls to be dynamically dispatched based on the method offset for that interface.

The type assertion to MyInt dynamically checks the RTTI and, in this case, unboxes the value.

2.3 LWG and Generics
The current implementation of Go uses a combination of static monomorphisation and runtime

management of RTTI for generic type arguments [Randall 2022]. Prior work [Griesemer et al.

2020] has formalised monomorphisation as a translation from a core subset of generic Go to non-

generic Go. By contrast, this paper focuses on formalising the lower level mechanisms of the Go

runtime in LWG, and the compilation from WG to LWG. We model Go’s RTTI for generic types

by reusing the existing infrastructure for interface values: in an interface value (𝑅,𝜌,𝑣), we allow

the RTTI element 𝑅 to be a ground generic type, e.g., 𝑆 [𝑇] – 𝑇 is a sequence of ground types

that corresponds to the dictionaries used by the Go runtime. In our system, we could consider

monomorphisation as an optimisation to eliminate some of the runtime boxing and conversion

operations: with appropriate restrictions, we could monomorphise generic WG to non-generic WG

and then compile to LWG. However, this paper shows that WG can be compiled directly to LWG

and, unlike monomorphisation, requires no restrictions.

We briefly illustrate some of the challenges and subtleties of LWG and our compilation arising

from the interplay between structural subtyping, generics and Go’s runtime infrastructure.

One key aspect is the type system for LWG. Consider again a runtime interface value (MyInt,𝜖,42)

that boxes a MyInt under the any interface. How should we type this interface value? Should it

be typed as an any according to its interface? Unfortunately, this would break type safety of the

compiled code. Below on the left is a well-typed WG expression (recall the generic bound of Cons is

any). On the right is the LWG compilation and its reduction step that converts the constant into the

interface value mentioned above: neither expression before nor after the step would be well-typed

because the struct requires its first field expression to be of type MyInt, not any.

Cons[MyInt]{MyInt(42), ...} Cons[MyInt]{42.(make MyInt 𝜖), ...} → Cons[MyInt]{(MyInt,𝜖,42), ...}

Should the interface value be typed as a MyInt according to its RTTI? Unfortunately, this would

break progress for LWG: bogus LWG expressions such as (MyInt,𝜖,42).String()would be well-typed

but stuck, as the String call cannot be dispatched by an empty method table 𝜖 . Neither option is

adequate on its own. Section 4 presents the LWG type system which tracks both.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:6 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

type List[a any] interface { ...; Fold(f func(v a, w a) a, z a) a }

func (x Cons[a]) Fold(f func(v a, w a) a, z a) a {return x.FoldL[a](f, z)}

type MyIntCons struct { head MyInt; tail List[MyInt] }

func (x MyIntCons) FoldL[b any](f func(v b, w MyInt) b, z b) b {return x.tail.FoldL[b](...)}

func (x MyIntCons) Fold(f func(v MyInt, w MyInt) MyInt, z MyInt) MyInt {return x.FoldL[MyInt](...)}

Fig. 2. Extending the example from Fig. 1.

As a final example for this overview, consider the WG code in Figure 2 where we add a second

method to List and define a version of Cons specifically for MyInt. Note that both Cons[MyInt] and

MyIntCons are structural subtypes of List[MyInt]. Now consider this WG function:

func foo(x List[MyInt]) MyInt { return x.Fold(..., 0) }

How should we compile this function? How should the argument 0 be passed in the call to Fold?

Statically, we do not know if the runtime value of x will be (i) a Cons[MyInt], noting that the

compilation of Fold for Cons[a] expects an interface value for its generic formal bounded by any,

or (ii) a MyIntCons, where Fold expects a raw MyInt. Sec. 5 presents our compilation that addresses

this problem by building on Go’s approach to statically generating runtime type conversions.

3 Welterweight Go
In this section we introduce Welterweight Go (WG), an extension of Featherweight Generic Go

(FGG) [Griesemer et al. 2020], a core calculus of Go with generics. WG extends FGG with a selection

of core and recent type-level additions to Go, notably anonymous (interface and struct) types, type

unions (an idiomatic form of untagged sum types) and static type conversions.

Type unions bridge Go’s interface bounds with basic types and operators. Go overloads operators

like < on basic types (integers, floats, strings) but requires arguments of the same type. Since

operators are not methods, interface bounds alone cannot permit their use on generic types,

creating a gap that type unions fill. For example, it is not possible to define a generic Min function

by appealing to the overloaded < operator via interface bounds alone. To account for this lack of

expressiveness, the Go team introduced type unions, which enable the kind of genericity mentioned

above. A generic Min function can be written as:

type Ordered interface { int | float64 | ~string }

func Min[T Ordered](x T, y T) T { if x < y { return x } else { return y } }

The Ordered interface denotes a type union, satisfied by any int, float64 or any type whose

underlying type is string (∼𝑈 refers to the set of all types whose underlying type is 𝑈). The use of

Ordered as a bound for type parameter T warrants the use of any built-in operator that is common

to all types in the union, making the definition correct. The mix of ∼ and non-∼ elements offers

fine-grained control over the constraint: T may be instantiated by int specifically but not other

named types with int as the underlying representation, whereas T may be instantiated by any type

with string as its underlying representation.

In their full generality, type unions can include lists of both types and methods, and can be used

as named or anonymous type parameter bounds in the language (although they cannot be used

directly as types). Type unions in the language generalises interfaces to be understood not only as

sets of methods but also as sets of types.

From FGG to WG. Whereas FGG provides a faithful model of Go’s subtyping relation for named
interfaces, WG fully models both implementability of anonymous and named interface types,

relying on method and type sets to faithfully account for type unions, as well as Go’s concept of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:7

Field name 𝑓

Method name 𝑚

Variable name 𝑥

Type parameter 𝛼

Type name 𝑡,𝑢 (𝑡,𝑢 ≠ 𝐵)

Base types 𝐵 ::= int | bool | . . .
Type 𝑅, 𝑆,𝑇 ,𝑈 ::= 𝐵 | 𝐿 | 𝑡 [𝑆] | 𝛼
Type/bound pair Φ,Ψ ::= 𝑇@𝑉

Type literal 𝐿 ::=

Structure struct {𝑓 Φ}

Interface interface {𝐹}
Method signature 𝑀 ::= [𝛼 𝑆] (𝑥 Φ) Ψ
Declaration 𝐷 ::=

Type declaration type 𝑡 [𝛼 𝑆] 𝑇
Method declaration func (𝑥 𝑡 [𝛼 𝑆]) 𝑚𝑀 {return 𝑒}

Program 𝑃 ::= package main; 𝐷 func main() {_ = 𝑒}

Type term 𝐶 ::= 𝑇 | ∼𝑇
Type union 𝐸 ::= 𝐶 | 𝐶 |𝐸
Interface element 𝐹 ::=𝑚𝑀 | 𝐸
Constants 𝑐 ::= 0 | 1 | . . .
Operators ◦ ::= + | ∗ | ∧ | . . .
Expression 𝑒 ::=

Variable 𝑥

Method call 𝑒.𝑚[𝑆] (𝑒)
Structure literal 𝑇{𝑒}
Select 𝑒.𝑓

Type assertion 𝑒.(𝑇)
Type conversion 𝑇 (𝑒)
Constant 𝑇 (𝑐)
Operation ◦(𝑒)

Fig. 3. WG syntax

assignability, which generalises implementability to account for anonymous types. Moreover, to

accurately model the full range of features provided by type unions, we consider base types and

operators in WG. Finally, in WG we can also naturally account for Go’s type conversion operator.

This is necessarily absent from FGG, which includes only type assertion.
Assignability in Go relies on the notion of underlying type which in turn is a cornerstone of

the language formalism. In the type union Ordered, the clause that includes string types is written

∼string. Go allows a new type with the same underlying memory representation as another to be

defined as a nominally distinct type and to which, for instance, additional methods can be attached.

By using the ∼ type operator we can include not just the type (e.g.) string itself, but also all types

whose underlying type is string (i.e., all types whose underlying representation is a string).

3.1 WG Syntax
The syntax of WG is given in Figure 3. Field names 𝑓 , method names𝑚, variable names 𝑥 , type

parameters 𝛼 , and type names 𝑡 form the basic identifiers. Types 𝑇 include base types 𝐵 (such as

int and bool), type literals 𝐿, (parameterised) named types 𝑡 [𝑆], type parameters 𝛼 . We write 𝑆

for a (possibly empty) list of 𝑆𝑖 . We use the notation 𝑇@𝑉 to annotate types with their bounds,

where𝑇 is the actual type and𝑉 is its bound. In WG, when𝑇 is a type parameter 𝛼 ,𝑉 represents its

declared bound; when 𝑇 is a concrete instantiation of a type parameter, 𝑉 represents the bound of

that parameter; otherwise𝑉 = 𝑇 . For instance, in a struct type literal struct {𝑓 Φ}, we assume that

every field type is annotated with its bound. Such annotations can be straightforwardly inferred

during type checking. Our formalisation of WG would be identical if we replaced annotations𝑇@𝑉

with simple types 𝑇 . However, the type-directed compilation to LWG described in Section 5 would

become significantly more complex to present without these annotations.

An interface type literal interface {𝐹} contains a sequence of elements, i.e., method signatures

(𝑀) or unions of type terms (𝐸). Each union specifies that the interface is only satisfied by its

members. Type terms 𝐶 can be either types 𝑇 , or their approximation ∼𝑇 which specifies all types

whose underlying type is𝑇 . Note, a type declaration type𝑈 𝑇 introduces a new named type𝑈 with

underlying type given by 𝑇 : if 𝑇 is also named, Go’s notion of assignability (Sec. 3.2) distinguishes

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:8 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

underΔ (𝐵) = 𝐵 underΔ (𝐿) = 𝐿
(type 𝑡 [𝛼 𝑆] 𝑇) ∈ 𝐷 𝜂 = (𝛼 := 𝑅)

underΔ (𝑡 [𝑅]) = underΔ (𝑇 [𝜂])
(𝛼 : 𝑇) ∈ Δ

underΔ (𝛼) = underΔ (𝑇)

underΔ (∼𝑉) = 𝑉
(𝛼 : 𝑇) ∈ Δ

tyvarΔ (𝛼)
(𝛼 : 𝑇) ∈ Δ

noUnionΔ (𝛼)
struct (𝑇)

noUnionΔ (𝑇)
base(𝑇)

noUnionΔ (𝑇)

underΔ (𝑇) = interface {𝑚𝑀}

noUnionΔ (𝑇) 𝑇@𝑉 ⇂1 = 𝑇⇂1 𝑇@𝑉 ⇂2 = 𝑉

(𝛼 : 𝑇) ∈ Δ

boundsΔ (𝛼) = 𝑇

¬tyvarΔ (𝑇)
boundsΔ (𝑇) = 𝑇

underΔ (𝑇) = struct {𝑓 Φ}

fieldsΔ (𝑇) = 𝑓 Φ (𝑚[𝛼 𝑆] (𝑥 Φ) Ψ)⇂1 =𝑚[𝛼 𝑆] (𝑥 Φ⇂1) Ψ⇂1

(func (𝑥 𝑡 [𝛼 𝑆]) 𝑚[𝛽 𝑇] (𝑦 Φ) Ψ {return 𝑒}) ∈ 𝐷 𝜃 = (𝛼 := 𝑆 ′ ∪ 𝛽 :=𝑇 ′)
body(𝑡 [𝑆 ′] .𝑚[𝑇 ′]) = (𝑥,𝑦 : Φ⇂1 [𝜃]).𝑒 : Ψ⇂1 [𝜃]

Fig. 4. WG: auxiliary definitions

𝑇 and𝑈 nominally, but ∼𝑇 allows to express compatibility of (nominally-distinct) types with the

same underlying type. Method signatures𝑀 take the form [𝛼 𝑆] (𝑥 Φ) Ψ, where type parameters 𝛼

are bounded by types 𝑆 , parameters 𝑥 have types Φ, and the return type is given by Ψ. Type literals
can be used in place of named types, in which case we call them anonymous types.
Expressions include variables, method calls, structure literals, field selection, type assertions,

type conversions, typed constants, and operations. We model only explicitly typed constants

𝑇 (𝑐) such as int(42) or float64(42.0), abstracting away Go’s untyped constants as their type

inference is orthogonal to our work. A program 𝑃 consists of a sequence of declarations 𝐷 and a

top-level expression 𝑒 , written in the stylised form shown in the figure to make it legal Go. We

often abbreviate it as 𝐷 ▷ 𝑒 .

3.2 Typing and Subtyping in WG
Go’s type system is built around interface satisfaction through structural subtyping (a.k.a. “duck

typing”). A key ingredient of subtyping in Go is the notion of underlying type (written underΔ (𝑇),
where Δ is a type environment) as formalised in Figure 4 along with other auxiliary definitions.

The underlying type of a base type (resp. type literal) is itself. The underlying type of a type

variable is its bound, recorded in Δ, and the underlying type of a named type is the underlying type

of the RHS of its declaration. We use the following notation: iface(𝑇) holds when𝑇 is an interface or

a type variable, struct (𝑇) holds when𝑇 is a struct, base(𝑇) when𝑇 ’s underlying type is a base type
(see the online extended version for formal definitions). We define a few additional predicates: tyvar
is used to distinguish type variables from other types, noUnion is used to discriminate interfaces

that specify type unions. Figure 4 also introduces functions to retrieve the bound of a type, the

fields of a struct, and the body of a method. Function 𝑇@𝑉 ⇂1 returns the first element of a pair

type, recursively applying the transformation; 𝑇@𝑉 ⇂2 returns the second such element.

The Go specification defines interface satisfaction with two flavours: implementability and

assignability. We formalise both relations in Figure 5.

Implementability determines whether a type satisfies an interface. Assignability, on the other

hand, governs when a value of one type can be assigned to a variable of another type, extending

implementability. Before Go 1.18, an interface was solely defined by its methods and so any

type implementing those methods would satisfy the interface, regardless of its declared type. To

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:9

Types of interfaces typesΔ (𝑇) typesΔ (𝐹) typesΔ (𝐶) typesΔ (𝐸)

¬iface(𝑇)
typesΔ (𝑇) = {𝑇⇂1}

underΔ (𝑇) = interface {𝐹}

typesΔ (𝑇) =
⋂

{typesΔ (𝐹𝑖) | 𝐹𝑖 ∈ 𝐹 } typesΔ (𝑚𝑀) = U

typesΔ (∼𝑇) = {∼𝑇⇂1} typesΔ (𝐸) =
⋃

{typesΔ (𝐶) | 𝐶 ∈ 𝐸}

Methods of interface methodsΔ (𝑇) methodsΔ (𝐹) methodsΔ (𝐶)

methodsΔ (𝐵) = ∅
struct (𝐿)

methodsΔ (𝐿) = ∅
underΔ (𝑇) = interface {𝐹}

methodsΔ (𝑇) =
⋃

{methodsΔ (𝐹𝑖) | 𝐹𝑖 ∈ 𝐹 }

¬iface(𝑡 [𝑆 ′])
methodsΔ (𝑡 [𝑆 ′]) = {𝑚𝑀 [𝜂] | (func (𝑥 𝑡 [𝛼 𝑆]) 𝑚𝑀 {return 𝑒}) ∈ 𝐷, 𝜂 = (𝛼 := 𝑆 ′)}

methodsΔ (𝑚𝑀) = {𝑚𝑀} methodsΔ (∼𝑇) = methodsΔ (𝑇)
|𝐸 | > 1

methodsΔ (𝐸) =
⋂

{methodsΔ (𝐶) | 𝐶 ∈ 𝐸}

Implements 𝑇 <:Δ 𝑈

<:𝛼

𝛼 <:Δ 𝛼

<:𝑇

¬iface(𝑇)
𝑇 <:Δ 𝑇

<:𝐼

iface(𝑈) ¬tyvarΔ (𝑈) methodsΔ (𝑇)⇂1 ⊇ methodsΔ (𝑈)⇂1
∀𝐶 ∈ typesΔ (𝑇) : 𝐶 ∈ typesΔ (𝑈) ∨ (∼𝑉 ∈ typesΔ (𝑈) ∧ underΔ (𝐶) = 𝑉)

𝑇 <:Δ 𝑈

Assignable 𝑇 ≺:Δ 𝑈

≺:<:
𝑇 <:Δ 𝑈

𝑇 ≺:Δ 𝑈

≺:𝑡𝐿
underΔ (𝑡 [𝑆]) = 𝐿

𝑡 [𝑆] ≺:Δ 𝐿

≺:𝐿𝑡
𝐿 = underΔ (𝑡 [𝑆])

𝐿 ≺:Δ 𝑡 [𝑆]

Fig. 5. Implements and Assignability relations. U is defined s.t. 𝑇 ∈ U for all 𝑇 .

handle operators on generic types, interfaces were extended in Go 1.18, to also include explicit

type unions, allowing developers to restrict which types can satisfy an interface beyond just

method requirements. Figure 5 formalises this through two auxiliary functions that return type

sets (typesΔ (𝑇)) and method sets (methodsΔ (𝑇)).
The typesΔ (𝑇) function returns the type set of a type, and particularly the set of types explicitly

listed in an interface, possibly flagged with ∼𝑇 notation. The type set of a non-interface type, is the

singleton set of this type. The type set of elements of an interface correspond to the intersection

of their respective type sets. The type set of a method signature is the universe of all types (U),
i.e., methods alone do not constrain types. Let U be the universe of all types, axiomatically defined

such that for any type 𝑇 we have that 𝑇 ∈ U. The type set of an approximation is itself (∼𝑇). The
type set of a union of types is the union of their type sets.

The methodsΔ (𝑇) function extracts method signatures attached to a type 𝑇 . The method set of

base types and anonymous structs is empty. The method set of an interface is the union of the

method set of its elements. The method set of a named, non-interface type is the (instantiated)

signatures of its declared methods. The method set of a method signature is the singleton of itself.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:10 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Well-formed types Δ ⊢ 𝑇 ✓
b

Δ ⊢ Φ ✓m Δ ⊢ 𝑇 ✓

t-nc

Δ ⊢ 𝑇 ✓ noUnionΔ (𝑇)
Δ ⊢ 𝑇 ✓

b

t@v-bc

Δ ⊢ 𝑇 ✓
b

𝑉 = boundsΔ (𝑇)
Δ ⊢ 𝑇@𝑉 ✓m

t-named

Δ ⊢ 𝑅′ ✓ (type 𝑡 [𝛼 𝑅] 𝑇) ∈ 𝐷 𝜂 = (𝛼 := 𝑅′) 𝛼 [𝜂] <:Δ 𝑅 [𝜂]
Δ ⊢ 𝑡 [𝑅′] ✓

Well-formed declarations 𝐷 ✓
t-type

Δ = 𝛼 : 𝑅 ¬tyvarΔ (𝑇) ∅ ⊢ 𝛼 𝑅 ✓ Δ ⊢ 𝑇 ✓

type 𝑡 [𝛼 𝑅] 𝑇 ✓

t-func

¬iface(𝑡 [𝛼]) distinct (𝑥,𝑦) (type 𝑡 [𝛼 𝑅] _) ∈ 𝐷 ∅ ⊢ 𝛼 𝑅 ✓ 𝛼 : 𝑅 ⊢ 𝛽 𝑆 ✓
Δ = 𝛼 : 𝑅, 𝛽 : 𝑆 Δ ⊢ Φ ✓m Δ ⊢ Ψ ✓m Δ; 𝑥 : 𝑡 (𝛼), 𝑦 : Φ⇂1 ⊢ 𝑒 : 𝑈 𝑈 ≺:Δ Ψ⇂1

func (𝑥 𝑡 [𝛼 𝑅]) 𝑚[𝛽 𝑆] (𝑦 Φ) Ψ {return 𝑒} ✓

Fig. 6. Well-formed types and declarations

The method set of ∼𝑇 is the method set of 𝑇 . The method set of a union of types is the intersection

of the method sets of its elements (note that when |𝐸 | = 1, case 𝑇 or case ∼𝑇 applies).

We can now define subtyping precisely. Figure 5 (bottom) defines interface implementation

(<:Δ) and assignability (≺:Δ) relations. A type 𝑇 implements an interface 𝑈 if (1) 𝑇 ’s method set

is a superset of 𝑈 ’s method set and (2) 𝑇 ’s type set is a subset of 𝑈 ’s type set. The function _⇂1
essentially erases (recursively) our type annotations in method signatures and within types, e.g.,

𝑇@𝑉 ⇂1 = 𝑇⇂1. Aspect (2) involves checking that each element in the type set of 𝑇 is directly in the

type set of𝑈 or is otherwise covered by an appropriate ∼𝑉 .

We note that the official Go Language Specification [The Go Team 2025] defines interface

satisfaction purely in terms of type sets. We give an equivalent definition that explicitly tracks

both type sets and method sets as separate components of our subtyping judgements. This design

choice faithfully models the actual implementation of the Go compiler, which maintains analogous

internal representations tracking both aspects independently.

Assignability extends implementation with rules for dealing with named types and their under-

lying types, capturing Go’s implicit type conversion rules. Note that ≺: is reflexive via <:, but it is
not transitive, as Rules ≺:𝑡𝐿 and ≺:𝐿𝑡 require one of the types to be anonymous.

The WG type system relies on type and method declarations to be well-formed. We show key

rules in Figure 6. The judgement J ✓ ensures types are well-formed, possibly under variable and

type parameter contexts. We specify two variants of this judgement: Δ ⊢ 𝑇 ✓b holds when 𝑇 is a

basic interface, i.e., not a union as defined in Figure 4. In WG and in Go, variables and parameters

must be assigned a type 𝑇 such that 𝑇 ✓b holds. Judgement Δ ⊢ Φ ✓m simply enforces that our

meta-theoretic annotations are well-formed.

Type declarations in WG require their bound types and body to be well-formed. Method declara-

tions enforce additional constraints: the receiver must be a non-interface type, parameters must be

distinct, and the method body must be well-typed under the appropriate context, see Figure 6. We

relegate some wellformedness rules for interface and struct definition to the online appendix as

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:11

Expressions Δ; Γ ⊢ 𝑒 : 𝑇
t-call

Δ ⊢ 𝑆 ′ ✓
b

(𝑚[𝛼 𝑆] (𝑥 Φ) Ψ) ∈ methodsΔ (𝑅)
Δ; Γ ⊢ 𝑒 : 𝑅 Δ; Γ ⊢ 𝑒 : 𝑇 𝜂 = (𝛼 := 𝑆 ′) 𝛼 [𝜂] <:Δ 𝑆 [𝜂] 𝑇 [𝜂] ≺:Δ Φ⇂1 [𝜂]

Δ; Γ ⊢ 𝑒.𝑚[𝑆 ′] (𝑒) : Ψ⇂1 [𝜂]
t-literal

struct (𝑇) Δ ⊢ 𝑇 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑆 (𝑓 Φ) = fieldsΔ (𝑇) 𝑆 ≺:Δ Φ⇂1

Δ; Γ ⊢ 𝑇{𝑒} : 𝑇

t-var

(𝑥 : 𝑇) ∈ Γ

Δ; Γ ⊢ 𝑥 : 𝑇

t-field

Δ; Γ ⊢ 𝑒 : 𝑇 struct (𝑇) (𝑓 Φ) = fieldsΔ (𝑇)
Δ; Γ ⊢ 𝑒.𝑓𝑖 : Φ𝑖⇂1

t-op

Δ; Γ ⊢ 𝑒 : 𝑇 underΔ (𝑇) = 𝐵 𝐵 ∈ dom(◦)
Δ; Γ ⊢ ◦(𝑒) : 𝑇

t-op-𝛼
Δ; Γ ⊢ 𝑒 : 𝛼 {underΔ (𝑉) | 𝑉 ∈ types(Δ(𝛼))} ⊆ dom(◦)

Δ; Γ ⊢ ◦(𝑒) : 𝛼

Programs 𝑃 ✓
t-prog

distinct (tdecls(𝐷)) distinct (mdecls(𝐷)) 𝐷 ✓ ∅; ∅ ⊢ 𝑒 : 𝑇
package main; 𝐷 func main() {_ = 𝑒} ✓

Fig. 7. WG typing

they are similar to those of FGG. A wellformedness restriction is that interfaces are restricted so

that unions cannot include type variables nor interfaces with non-empty method sets.

We show key typing rules in Figure 7. For simplicity, we enforce that operators take as argument

and return type values of the same type. Generalising the typing of operators is straightforward

but orthogonal to our design. The expression typing judgement Δ; Γ ⊢ 𝑒 : 𝑇 (where Δ maps type

parameters to their bounds and Γ maps variables to their types) follows typical patterns. For

instance, Rule t-call handles generic type parameter instantiation through substitution 𝜂, it also

ensures that the instantiated type parameters satisfy their bounds. Observe how implementability

(<:Δ) is used to check that type instances implements their bounds, while assignability (≺:Δ) is
used to check that struct fields and method arguments are compatible with their declared types.

Rule t-op deals with operators when the underlying type of the operands is a base type. We write

dom(◦) for the set of types on which ◦ is defined. Rule t-op-𝛼 allows the operands to be typed

with a type variable 𝛼 , in which case all types in the bound of 𝛼 must support ◦.
For the sake of space, typing rules for type assertions (as in FGG), constants (standard), and

conversions are in the online appendix. Essentially a conversion 𝑇 (𝑒) is well-typed if 𝑒 has type𝑈

and either𝑈 ≺:Δ 𝑇 or underΔ (𝑈) = underΔ (𝑇), for a suitable Δ.

Example 3.1 (Assignability). Consider the following well-typed WG (and Go) code:

type Point struct { x int; y int } func (p Point) move() {}

type Coord struct { x int; y int } type Converter struct { }

func (c Converter) toPoint(coord struct{ x int, y int}) Point { return coord }

func (c Converter) toAnonymous(p Point) struct{ x int; y int} { return p }

The code above defines two identical named struct types Point and Coord, with Point having

a method move, and a struct Converter with methods toPoint and toAnonymous, both with the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:12 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

same body. Method toPoint essentially converts its (anonymously typed) argument into a Point

struct, while toAnonymous does the reverse. Intuitively, the body of toPoint is well-typed because

an anonymous struct of the specified shape matches exactly with the shape of type Point and

so the return is justified (struct{x int; y int} ≺: Point). Dually, we can always treat a named

type as its (anonymous) underlying type and so the body of toAnonymous is also well-typed (Point

≺: struct{x int; y int}). Notably, the calls Converter{}.toPoint(struct{x int; y int}{1,1}),

Converter{}.toPoint(Point{1,1}) and Converter{}.toPoint(Coord{1,1}) are all well-typed inWG

(and Go). Similarly, Converter{}.toAnonymous(Point{1,1}) is well-typed. However, the invocation

Converter{}.toAnonymous(Coord{1,1}) is ill-typed since Coord ≺: Point does not hold.
A program is well-typed if its declarations are well-formed and pairwise distinct.

Example 3.2 (Implementability and Unions). Consider the following well-typed WG code:

type Addable interface { int | float64 | ~string }

type Printable interface { ~int | ~string ; customPrint() string }

type MyString string

func (x MyString) customPrint() string { ... }

type MyInt int

func (x MyInt) customPrint() string { ... }

type C struct { }

func (t C) Combine[T Addable](x T, y T) T { return x+y }

func (t C) Print[T Printable](x T) string { return x.customPrint() }

The Addable type union includes types int, float and all types whose underlying type is string.

MyString and MyInt have both a custom printing method. It is not the case that both types satisfy the
constraint specified by Addable: C{}.Combine[MyString](MyString("a"),MyString("b"))) is well-

typed, but C{}.Combine[MyInt](MyInt(2),MyInt(3)) is not. Since Addable lists int explicitly but

refers to ∼string, we have types(Addable) = {int, float, string, MyString} and so MyString <:

Addable but MyInt <:/ Addable.

The example also defines interface Printable, consisting of all types whose underlying types

are either int or string that also have a customPrint method defined on them. Thus, method

Print and the calls C{}.Print[MyInt](MyInt(2)) and C{}.Print[MyString](MyString("a")) are all

well-typed, since types(Printable) = {int, string, MyInt, MyString} and methods(Printable) =

{ customPrint() string } and thus MyString <: Printable and MyInt <: Printable.

3.3 Operational Semantics of WG
The operational semantics of WG are presented in Figure 8, defining a reduction relation 𝑑 −→ 𝑒

defined over a standard evaluation context. Values in WG consist of structure literals 𝑇 {𝑣} and
typed constants 𝑇 (𝑐). Given such a value we define type(𝑇{𝑣}) = type(𝑇 (𝑐)) = 𝑇 .

Most rules are standard: Rule r-op evaluates primitive operations via a semantic function 𝛿 ;

the type conversion rules r-convert-b, -s and -i specify the behaviour of type conversions. A

conversion to a base type or a struct type collapses all other (nested) type conversions. A conversion

to an interface type is silently erased, due to the nature of values in WG. The type environment is

empty in fields∅ in r-field (resp. <:∅ in r-assert) since reductions consider closed, ground terms.

While the essence of the operational semantics is standard, we note that field selection and

method calls are augmented with type conversions. The field selection rule r-field introduces a

type conversion to the type of the projected field. Similarly, the method invocation rule r-call

adds type conversions of the method arguments and its eventual return value.

These type conversions are key in bridging the gap between the type system’s (structural)

subtyping relations and the runtime representation of values. Recall Example 3.1. If we consider

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:13

Values 𝑣 ::= 𝑇{𝑣} | 𝑇 (𝑐)
Evaluation context 𝐸 ::=

Hole □
Operator ◦(𝑣, 𝐸, 𝑒)
Method call receiver 𝐸.𝑚[𝑇] (𝑒)
Method call arguments 𝑣 ′ .𝑚[𝑇] (𝑣, 𝐸, 𝑒)

Structure 𝑇{𝑣, 𝐸, 𝑒}
Select 𝐸.𝑓

Type assertion 𝐸.(𝑇)
Type conversion 𝑇 (𝐸)

Reduction 𝑑 −→ 𝑒

r-field

(𝑓 Φ) = fields∅ (𝑇)
𝑇{𝑣}.𝑓𝑖 −→ Φ𝑖⇂1 (𝑣𝑖)

r-call

(𝑥,𝑦 : 𝑇) .𝑒 : 𝑈 = body(type(𝑣 ′) .𝑚[𝑆])
𝑣 ′ .𝑚[𝑆] (𝑣) −→ 𝑈 (𝑒 [𝑥 := 𝑣 ′, 𝑦 :=𝑇 (𝑣)])

r-assert

type(𝑣) <:∅ 𝑇
𝑣.(𝑇) −→ 𝑣

r-op

𝛿 (◦, 𝑣) = 𝑣 ′

◦(𝑣) −→ 𝑣 ′

r-convert-b

base(𝑇)
𝑇 (𝑈 (𝑐)) −→ 𝑇 (𝑐)

r-convert-s

struct (𝑇)
𝑇 (𝑈 {𝑣}) −→ 𝑇{𝑣}

r-convert-i

iface(𝑇)
𝑇 (𝑣) −→ 𝑣

r-context

𝑑 −→ 𝑒

𝐸 [𝑑] −→ 𝐸 [𝑒]

Fig. 8. WG reduction

the dynamics of calls to methods toPoint and toAnonymous from the example, the need for type

conversions becomes clear: the call Converter{}.toPoint(struct{x int; y int}{1,1}) requires a

conversion to type Point since we must be able to treat the return value of toPoint as if it were

a Point struct. For instance, we may use it as a receiver of a call to move, which is only defined

on Point. Similarly, the call Converter{}.toAnonymous(struct{x int; y int}{1,1}) also requires a

conversion of its argument to Point—the body of the method can in principle call upon any method

of Point. Since method calls look up the appropriate method body by inspecting the runtime type

of the receiver, these type conversions ensure that the runtime objects line up accordingly. The call

Converter{}.toPoint(struct{x int; y int}{1,1}) thus evaluates to Point{1,1} as needed.

Note that although it is not the case that types Coord and Point are assignable, we may use

type conversions between the two types. In a call such as Converter{}.toPoint(Coord{1,1}), our

semantics will first type convert Coord to its anonymous underlying struct type (the type conversion

of the method argument) and from that type to Point (the conversion of the return value). The

method call results in the expression Point(struct{x int; y int}(Coord{1,1})), which reduces

in one step to Point(struct{x int; y int}{1,1}) and then to the value Point{1,1}.

While the description above focuses on method calls, struct field accesses must behave similarly,

and so those too require explicit type conversions in our semantics.

3.4 Metatheory of WG
In this section we report the type safety of WG, following mostly standard arguments of type

preservation and progress. As usual, type preservation relies on type and expression-level substitu-

tion lemmas (and several standard related lemmas that relate substitutions, subtyping and type

well-formedness which we omit from the main text for the sake of conciseness).

Notably, due to the type conversions that are generated by our operational semantics, the

substitution property need not appeal to subtyping.

Lemma 3.3 (Term Substitution). If Δ; Γ, 𝑥 : 𝑇 ⊢ 𝑒 : 𝑈 and Δ; Γ ⊢ 𝑒′ : 𝑇 then Δ; Γ ⊢ 𝑒 [𝑥 := 𝑒′] : 𝑈 .

As usual in languages with subtyping, type preservation is defined by appealing to the implements

relation, essentially due to the dynamics of rules r-convert-i and r-assert. However, there is a

subtlety due to the fact that most typing rules rely on assignability. As this relation is not transitive,

the contextual cases of the type preservation proof are less standard. However, we can derive a

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:14 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Field index 𝑖

Method table 𝜌 ::=𝑚 ↦→ 𝑇 .𝑚 ∪ ◦ ↦→ ◦𝑇
Expression 𝑒 ::=

Variable 𝑥

Dynamic Method call 𝑒.𝑚[𝑆] (𝑒) Type assertion 𝑒.(𝑇@𝑉)
Static Method call 𝑒#𝑇 .𝑚[𝑆] (𝑒) Make Type 𝑒.(𝑆 →𝜌 Φ)
Structure literal 𝑇{𝑒} Change Type 𝑒.(𝑆 → 𝑇@𝑉)
Interface value Φ(𝑆, 𝜌, 𝑒) Static Change 𝑒.(𝑆 ↠ 𝑇)
Select 𝑒.𝑖 Constant 𝑇 (𝑐)
Dynamic operation ◦(𝑒) Static operation ◦#𝑇 (𝑒)

Fig. 9. LWG syntax

quasi-transitivity property that relates implementable and assignable types accordingly, which

allows us to conclude type preservation for the contextual cases as needed.

Lemma 3.4 (Quasi-transitivity). Let Δ ⊢ 𝑇,𝑇 ′, 𝑆 ✓. If 𝑇 <:Δ 𝑇
′ and 𝑇 ′ ≺:Δ 𝑆 then 𝑇 ≺:Δ 𝑆 .

Theorem 3.5 (Type Preservation). If Δ; Γ ⊢ 𝑒 : 𝑇 and 𝑒 −→ 𝑒′ then Δ; Γ ⊢ 𝑒′ : 𝑈 for some 𝑈
such that ⊢ 𝑈 <:Δ 𝑇 .

We say expression 𝑒 panics if there exists an evaluation context 𝐸, value 𝑣 and type 𝑇 such that

𝑒 = 𝐸 [𝑣 .(𝑇)] and type(𝑣) <:/ 𝑇 .

Theorem 3.6 (Progress). If ∅; ∅ ⊢ 𝑒 : 𝑇 then either 𝑒 is a value, 𝑒 −→ 𝑒′ for some 𝑒′, or 𝑒 panics.

4 Low-Level Welterweight Go
We propose a low-level model of Go that, compared to WG, more closely reflects the runtime

mechanisms of actual Go. It introduces an additional kind of value, the interface value which we

illustrate with the following WG example:

type Drawable interface { ... } type Shape interface { ... } // Assume Shape <:∅ Drawable

type C struct {} func (t C) f[T Drawable](x T) T { return x }

type Circle struct {p Point; r int} // Assume Circle ≺:∅ Shape

func main() { _ = C{}.f[Shape](Circle{}) }

where we assume that Circle ≺:∅ Shape <:∅ Drawable. In LWG when the value Circle{ . . . } is
passed to function f at runtime, it is boxed in an interface value such as:

Shape@Drawable(Circle, 𝜌, Circle{Point{1, 1}, int(2)})
In this interface value, the ghost Shape specifies the interface logical type (which may be an

instantiated type parameter), Drawable (another interface) represents the type bound that Shape
must satisfy, and Circle is the concrete implementation type (i.e., a struct). The pale red shade

indicates ghost types, i.e., information that has no operational runtime significance. It is used in

the formal type system and compilation only, not in the operational semantics. In the interface

value above, the ghost Shape@Drawable specifies the type of the interface, i.e., it is a value of type

Shape which has only access to the methods of Drawable.
We also introduce a notion of boxy-ness. We say a struct value by itself is an unboxed value,

while an interface value is a box that contains a struct value (above, the nested Circle{ . . . }). The
other elements of an interface value represent RTTI (the non-ghost Circle) and the method table
𝜌 (mapping abstract methods of Drawable to their implementations in Circle). For any interface

value 𝑇@𝑉 (𝑆, 𝜌, 𝑣) we always require that 𝑆 ≺:∅ 𝑇 <:∅ 𝑉 .

In accordance with actual Go, our low-level model distinguishes two kinds of method calls.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:15

Circle{ . . . }#Circle.Draw() Shape@Drawable(Circle, 𝜌, Circle{ . . . }) .Draw()
Above on the left is a static method call. The Go compiler generates these when the type of the

receiver expression is a struct (or named base) type, which above is Circle. The Circle.Draw part

of the static call can be interpreted as a statically-compiled jump address for the target method.

Above on the right is a dynamic method call. Operationally, the receiver must be an interface value.
The low-level operational semantics dynamically looks up the target method Draw in the table 𝜌 .

A key point is that structural subtyping in WG’s type system permits, e.g., a struct value to be

passed as a method call argument for a compatible interface-typed parameter—yet the two kinds are

not operationally interchangeable at the lower-level. Besides the distinct low-level mechanisms for

method calls, the two kinds have different representations in memory: the layout of a struct value

depends on its field types, while the layout of an interface value is a fixed “fat pointer” structure.

Mediation between the two kinds of values is resolved by the Go compiler. Based on static

typing information, it inserts operations for “boxing” of struct values and “box conversion” between

interface types. We add these operations as expressions to our low-level language, matching what

can be concretely witnessed in the actual Go compiler.

The syntax of LWG (Figure 9) reflects the characteristics discussed above. For simplicity LWG

re-uses the syntax of declarations and types from WG (Figure 3) but the syntax of expressions

is revised to include: interface values, two types of method calls, and operations for boxing and

conversions. Additionally, field names in field accesses are substituted by the index of the field,

type assertion uses 𝑇@𝑉 targets, and type conversions are no longer present. This changes reflects

the implementation of actual Go and the assumptions that only interfaces carry RTTI at runtime.

The semantics of LWG is given in Figure 10. We discuss LWG’s semantics before its type system

because they directly correspond to Go’s runtime behaviour, whereas LWG’s type system (presented

in Section 4.1) exists solely for our meta-theory. We start by giving a high-level overview of the

operations for value conversions. Consider the following Go declarations:

type Shape interface { Draw() Shape } func (x Circle) Draw() Shape { return x }

Boxing – a.k.a. “Make Type”. Consider the Draw method above which returns x of type Circle
while its signature declares Shape as return type. Since Circle is a structural subtype of Shape
(Circle <: Shape), the method is well-typed in WG. At the low-level, however, values of type

Circle are of struct kind, while the method return type Shape is of interface kind, which have

incompatible memory formats. To resolve such cases, the Go compiler inserts a make operation. In

the compiled program, the return expression of Draw becomes: x.(Circle →𝜌 Shape@Shape). The
compiler knows Shape and Circle statically, hence 𝜌 can be produced at compile-time. At runtime,

this make operation will box the Circle struct value in a Shape interface value. Notice that the

RTTI Circle comes from the Circle statically embedded by the compiler.

Circle{ . . . }.(Circle →𝜌 Shape@Shape) −→ Shape@Shape(Circle, 𝜌, Circle{ . . . })
Box conversion – a.k.a. “Change Type”. Assume we add another method:

func (x Circle) Render() any { return x.Draw() }

The return types of Draw and Render are both of interface kind. However, interface values contain

method tables that must align with the type of the interface. The method table of a Shape interface

value contains Draw, whereas the method table of any is empty, regardless of the boxed struct

value (i.e., Circle{ . . . } for both). To resolve such cases, the Go compiler inserts a Change-Type
operation. The return expression of Render becomes x.Draw().(Shape → any@any) .
At runtime, this operation will re-box the Circle struct value (that was boxed by the Shape

interface value returned by Draw) in an any interface value. To do so, it dynamically creates the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:16 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Values 𝑤 ::= 𝑇 {𝑣} | 𝑇 (𝑐) 𝑣 ::=𝑤 | Φ(𝑆, 𝜌,𝑤)
Evaluation context 𝐸 ::=

Hole □
Dyn Operator ◦(𝑣, 𝐸, 𝑒)
Operator ◦#𝑇 (𝑣, 𝐸, 𝑒)
Dyn Method call receiver 𝐸.𝑚[𝑇] (𝑒)
Dyn Method call arguments 𝑣 ′ .𝑚[𝑇] (𝑣, 𝐸, 𝑒)
Method call receiver 𝐸#𝑇 .𝑚[𝑇] (𝑒)
Method call arguments 𝑣 ′#𝑇 .𝑚[𝑇] (𝑣, 𝐸, 𝑒)

Structure 𝑇{𝑣, 𝐸, 𝑒}
Select 𝐸.𝑖

Type assertion 𝐸.(𝑇@𝑉)
Make type 𝐸.(𝑆 →𝜌 Φ)
Change type 𝐸.(𝑆 → 𝑇@𝑉)
Static change 𝐸.(𝑆 ↠ 𝑇)

Auxiliary functions

(func (𝑥 𝑡 [𝛼 𝑆]) 𝑚[𝛽 𝑇] (𝑦 Φ) Ψ {return 𝑒}) ∈ 𝐷

bodyL (𝑡 .𝑚) = [𝛼 ; 𝛽] (𝑥,𝑦).𝑒
𝐿 <:Δ 𝑇

mkTableΔ (𝐿,𝑇) = ∅

𝑡 [𝑅] <:Δ 𝑇 O = {◦ | {underΔ (𝑉) | 𝑉 ∈ typesΔ (𝑇)} ⊆ dom(◦)}
mkTableΔ (𝑡 [𝑅],𝑇) = [𝑚 ↦→ 𝑡 .𝑚 | 𝑚𝑀 ∈ methodsΔ (𝑇)] ∪ [◦ ↦→ ◦𝐵 | ◦ ∈ O, 𝐵 = under (𝑡 [𝑅])]

Reductions 𝑒 −→ 𝑒′

select

𝑆{𝑣}.𝑖 → 𝑣𝑖

make

𝑤.(𝑆 →𝜌 𝑇@𝑈) → 𝑇@𝑈 (𝑆, 𝜌,𝑤)

change-type

𝜌′ = mkTable∅ (𝑆,𝑈)
Φ(𝑆, 𝜌,𝑤).(𝑇 → 𝑇 ′

@𝑈) → 𝑇 ′
@𝑈 (𝑆, 𝜌′,𝑤)

static-change-s

𝑆{𝑣}.(𝑆 ↠ 𝑇) → 𝑇 {𝑣}

static-change-c

𝑆 (𝑐) .(𝑆 ↠ 𝑇) → 𝑇 (𝑐)

assert-ok𝑆

Φ(𝑆, 𝜌,𝑤).(𝑆@𝑆) → 𝑤

assert-ok𝐼

iface(𝑉) 𝑆 <:∅ 𝑈 𝜌 = mkTable∅ (𝑆,𝑉)
Φ(𝑆, 𝜌′,𝑤).(𝑈@𝑉) → 𝑈@𝑉 (𝑆, 𝜌,𝑤)

call-dyn

𝑈 = 𝑡 [𝑅] [𝛼 ; 𝛽] (𝑥,𝑦).𝑒 = bodyL (𝜌 (𝑚))
Φ(𝑈 , 𝜌, 𝑣) .𝑚[𝑆] (𝑣) → 𝑒 [𝛼 := 𝑅] [𝛽 := 𝑆] [𝑥 := 𝑣] [𝑦 := 𝑣]

call-static

[𝛼 ; 𝛽] (𝑥,𝑦).𝑒 = bodyL (𝑡 .𝑚)
𝑤#𝑡 [𝑅] .𝑚[𝑆] (𝑣) → 𝑒 [𝛼 := 𝑅] [𝛽 := 𝑆] [𝑥 := 𝑤] [𝑦 := 𝑣]

op-dyn

∀𝑖 . 𝑣𝑖 = Φ(𝑆, 𝜌, 𝑣 ′𝑖) 𝛿 (𝜌 (◦), 𝑣 ′) = 𝑣 ′′

◦(𝑣) −→ Φ(𝑆, 𝜌, 𝑣 ′′)
op-static

under∅ (𝑇) = 𝐵 𝛿 (◦𝐵, 𝑣) = 𝑣 ′

◦#𝑇 (𝑣) −→ 𝑣 ′

context

𝑒 → 𝑑

𝐸 [𝑒] → 𝐸 [𝑑]

Fig. 10. LWG reduction

new method table (cf. Make) based on the RTTI Circle carried by the old interface value and the

new interface type any (embedded by the compiler)—in this case, yielding the empty method table.

Shape@Shape(Circle, 𝜌, Circle{ . . . }) .(Shape → any@any) −→ any@any(Circle, ∅, Circle{ . . . })

Static cast – a.k.a. “Static change”. Assume we add another method:

func (x Circle) asStruct() struct{p Point; r int} { return x }

The “Static-Change” operation performs a “conversion” between assignable non-interface types.

This operation does not perform any actions related to boxing such as RTTI or method tables (in

Go it supports reflection which we are not modelling here). The return expression of asStruct
becomes: x.(Circle ↠ struct {𝑝 Point, 𝑟 int}) .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:17

Since it is converting between struct types, the compiler statically knows both the old and the

new types anyway. Static-change is necessary to obtain a type safety result for LWG.

Circle{Point{1, 1}, int(2)}.(Circle ↠ struct {𝑝 Point, 𝑟 int}) −→ struct {𝑝 Point, 𝑟 int}{Point{1, 1}, int(2)}

We review Figure 10 in more detail. Values in LWG consist of structure literals 𝑇 {𝑣}, typed
constants𝑇 (𝑐), and interface value Φ(𝑆, 𝜌,𝑤). The reduction rules rely on context 𝐸, similar to WG.

Function mkTableΔ (𝑆,𝑇) returns a table mapping method names specified in interface 𝑇 to those

implemented in the type named 𝑡 when 𝑆 = 𝑡 [𝑅], as well as operators defined on all types listed in

𝑇 to those defined on 𝑡 (◦𝑡 denote the definition of ◦ for 𝑡). When 𝑆 is an anonymous type, then

the table is empty. Function bodyL (𝑡 .𝑚) returns the body of method𝑚 defined for type 𝑡 as well

relevant bindings for parameters. Note that the type arguments 𝑇 passed to generic types (𝑡 [𝑇])
and methods (𝑚[𝑇] (𝑒)) correspond to the dictionaries used by the Go runtime (cf. Section 2). For

readability, we syntactically separate type parameters 𝛼 ; 𝛽 from value parameters 𝑥,𝑦, but both are

treated uniformly as substitutable variables in the operational semantics.

Following the discussion above, the reduction rules are straightforward. Rule select extract

a field from a struct, using the field index 𝑖 . Rules make, change-type, and static-change-s,

static-change-c formalise the behaviour of boxing and type conversion operations discussed

above. Observe that assert-ok𝑆 allows an interface value to be “unboxed”. Rule call-dyn and

call-static are for dynamic and static method calls, respectively. In the dynamic case, we first

have to look-up the “address” of method𝑚 in the method table 𝜌 ; while we can jump directly to 𝑡 .𝑚

in the static case. In both cases, formal (type) parameters are substituted by the (type) arguments.

The rules for operators work similarly. In the dynamic case, we look-up the implementation of ◦
for type 𝑆 via the table 𝜌 ; in the static case we can perform the concrete operation directly.

4.1 Typing in LWG
The typing rules for LWG are presented in Figures 11 and 12. A key feature of the LWG type system

are types of the form𝑇@𝑉 , where𝑇 represents the logical type and𝑉 tracks the available methods

and the runtime representation constraint. Our compilation (Section 5) uses these annotated types

to determine boxing status. Indeed type variables denote boxed values, but after instantiation

this information is lost—a type variable instantiated with a base type loses its boxing annotation.

Without this information, the compiler cannot determine when (un)boxing is required.

When 𝑇 = 𝑉 , we have standard Go types that are either consistently boxed (interfaces) or

unboxed (structs/base types). When𝑇 ≠ 𝑉 , then𝑇 is a type parameter 𝛼 or a concrete instantiation

that must be boxed and satisfy interface 𝑉 . For example, int@any represents an integer value that

has been boxed into an any interface. As a general rule, if ¬iface(𝑉) then𝑇 = 𝑉 . The𝑉 component

determines both the runtime representation ("boxy-ness") and the available method set for dynamic

dispatch, while 𝑇 preserves the precise information needed for static typing. This dual tracking is

essential because Go’s structural subtyping allows the same logical operation to require different

runtime representations depending on context: a method call on a struct receiver expects unboxed

arguments, while a matching method signature in a generic interface may expect boxed arguments,

yet we cannot always determine statically which will be needed.

The well-formedness checks for LWG are similar to those of WG. We do not repeat the rules

for type declarations as they are the same as for WG. Judgement Δ ⊢ 𝑇@𝑉 ✓b holds when 𝑇 is

a basic interface (i.e., not a union) and 𝑉 is a well-formed type. An LWG method declaration is

well-formed if it is defined on a concrete type (𝑡) and its body 𝑒 has type Ψ, matching the method

signature, with the appropriate context. Note how 𝑥 has type 𝑡 [𝛼]@𝑡 [𝛼].
Method calls are treated similarly to WG but deal with the two forms of method calls and

subtyping is not used between actual arguments and declared types. Rule t-static-call applies

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:18 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Well-formed types and declarations Δ ⊢ Φ ✓
b

t@v-b

Δ ⊢ 𝑇 ✓
b

Δ ⊢ 𝑉 ✓ ¬tyvarΔ (𝑉)
Δ ⊢ 𝑇@𝑉 ✓

b

t-func

¬iface(𝑡 [𝛼]) distinct (𝑥,𝑦) (type 𝑡 [𝛼 𝑅] 𝑇) ∈ 𝐷 ∅ ⊢ 𝛼 𝑅 ✓
𝛼 : 𝑅 ⊢ 𝛽 𝑆 ✓ Δ = 𝛼 : 𝑅, 𝛽 : 𝑆 Δ ⊢ Φ ✓

b
Δ ⊢ Ψ ✓

b
Δ; 𝑥 : 𝑡 [𝛼]@𝑡 [𝛼], 𝑦 : Φ ⊢ 𝑒 : Ψ

func (𝑥 𝑡 [𝛼 𝑅]) 𝑚[𝛽 𝑆] (𝑦 Φ) Ψ {return 𝑒} ✓

Expressions Δ; Γ ⊢ 𝑒 : Φ
t-dyn-call

Δ ⊢ 𝑆 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑅@𝑉

iface(𝑉) (𝑚[𝛽 𝑆′] (𝑦 Φ) Ψ) ∈ methodsΔ (𝑉) 𝜂 = (𝛽 := 𝑆) Δ; Γ ⊢ 𝑒 : Φ[𝜂] 𝛽 [𝜂] <:Δ 𝑆 ′ [𝜂]
Δ; Γ ⊢ 𝑒.𝑚[𝑆] (𝑒) : Ψ[𝜂]

t-static-call

Δ ⊢ 𝑆 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑅@𝑅

¬iface(𝑅) (𝑚[𝛽 𝑆′] (𝑦 Φ) Ψ) ∈ methodsΔ (𝑅) 𝜂 = (𝛽 := 𝑆) Δ; Γ ⊢ 𝑒 : Φ[𝜂] 𝛽 [𝜂] <:Δ 𝑆 ′ [𝜂]
Δ; Γ ⊢ 𝑒#𝑅.𝑚[𝑆] (𝑒) : Ψ[𝜂]

t-interface

∅ ⊢ 𝑇@𝑉 ✓
b

¬iface(𝑆)
iface(𝑉) ¬iface(𝑇) ⇒ 𝑆 = 𝑇 ∅; Γ ⊢ 𝑒 : 𝑆@𝑆 𝑆 ≺:∅ 𝑇 <:∅ 𝑉 𝜌 = mkTable∅ (𝑆,𝑉)

∅; Γ ⊢ 𝑇@𝑉 (𝑆, 𝜌, 𝑒) :𝑇@𝑉

t-var

(𝑥 : Φ) ∈ Γ

Δ; Γ ⊢ 𝑥 : Φ

t-literal

Δ ⊢ 𝑇 ✓
b

struct (𝑇) Δ; Γ ⊢ 𝑒 : Φ (_ Φ) = fieldsΔ (𝑇)
Δ; Γ ⊢ 𝑇{𝑒} : 𝑇@𝑇

t-field

struct (𝑇) Δ; Γ ⊢ 𝑒 : 𝑇@𝑇 (_ 𝑆@𝑉) = fieldsΔ (𝑇)
Δ; Γ ⊢ 𝑒.𝑖 : 𝑆𝑖@𝑉𝑖

Fig. 11. LWG: Typing for declarations and expressions

when the receiver expression has type 𝑅@𝑅 with 𝑅 not an interface. Rule t-dyn-call applies when

the receiver has type 𝑅@𝑉 with 𝑉 an interface. The method must be in 𝑉 ’s method table.

Rule t-interface ensures the boxed expression 𝑒 is a concrete struct or base type, that 𝑆 is

assignable to the interface type 𝑇 , and that 𝑇 implements the bound 𝑉 . The method table 𝜌 must

map the methods of the bound 𝑉 to their concrete implementations in 𝑆 . If the value is boxing into

a concrete type, then the RTTI must match the logical type (𝑆 = 𝑇).

Rules t-var, t-literal, and t-field are straightforward. Note that, a struct type 𝑇 is typed with

𝑇@𝑇 which implies an unboxed value since ¬iface(𝑇).
We comment on the rules for boxing and conversion, see Figure 12. Make, 𝑒.(𝑇 →𝜌 𝑈@𝑉),

creates an interface value by boxing a concrete value. Hence Rule t-make applies only when

converting from a non-interface type to an interface type. Change-type, 𝑒.(𝑇 → 𝑈@𝑉 ′), converts
between different interface types by updating the method table while preserving the boxed value,

hence Rule t-change applies only when both source and target are interface types. Note that

the premises of these rules match those of Rule t-interface as such terms reduce to interface

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:19

Expressions Δ; Γ ⊢ 𝑒 : Φ
t-make

Δ ⊢ 𝑇 ✓
b

Δ ⊢ 𝑈@𝑉 ✓
b

¬iface(𝑇)
¬iface(𝑈) ⇒ (𝑇 = 𝑈) iface(𝑉) Δ; Γ ⊢ 𝑒 : 𝑇@𝑇 𝑇 ≺:Δ 𝑈 <:Δ 𝑉 𝜌 = mkTableΔ (𝑇,𝑉)

Δ; Γ ⊢ 𝑒.(𝑇 →𝜌 𝑈@𝑉) : 𝑈@𝑉

t-change

Δ ⊢ 𝑇@𝑉 ✓
b

Δ ⊢ 𝑈@𝑉 ′ ✓
b

iface(𝑉) ¬iface(𝑈) ⇒ 𝑇 = 𝑈 iface(𝑉 ′) Δ; Γ ⊢ 𝑒 : 𝑇@𝑉 𝑇 ≺:Δ 𝑈 <:Δ 𝑉 ′

Δ; Γ ⊢ 𝑒.(𝑇 → 𝑈@𝑉 ′) : 𝑈@𝑉 ′

t-static-change

Δ ⊢ 𝑇 ✓
b

Δ ⊢ 𝑈 ✓
b

¬iface(𝑇) ¬iface(𝑈) Δ; Γ ⊢ 𝑒 : 𝑇@𝑇 underΔ (𝑈) = underΔ (𝑇)
Δ; Γ ⊢ 𝑒.(𝑇 ↠ 𝑈) : 𝑈@𝑈

t-assert𝐼

iface(𝑇) Δ ⊢ 𝑇@𝑈 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑆@𝑉 iface(𝑉) iface(𝑈) 𝑇 ≺:Δ 𝑈

Δ; Γ ⊢ 𝑒.(𝑇@𝑈) : 𝑇@𝑈

t-assert𝑆

¬iface(𝑇) Δ ⊢ 𝑇 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑆@𝑉 iface(𝑉) 𝑇 <:Δ 𝑉

Δ; Γ ⊢ 𝑒.(𝑇@𝑇) : 𝑇@𝑇

t-stupid

¬iface(𝑇) Δ ⊢ 𝑇@𝑈 ✓
b

Δ; Γ ⊢ 𝑒 : 𝑆@𝑉 𝑇 <:/ Δ 𝑉 𝑇 ≺:Δ 𝑈

Δ; Γ ⊢ 𝑒.(𝑇@𝑈) : 𝑇@𝑈

t-const

Δ ⊢ 𝑇 ✓
b

underΔ (𝑇) = ctype(𝑐)
Δ; Γ ⊢ 𝑇 (𝑐) : 𝑇@𝑇

t-op-static

Δ; Γ ⊢ 𝑒 : 𝑇@𝑇 underΔ (𝑇) = 𝐵 𝐵 ∈ dom(◦)
Δ; Γ ⊢ ◦#𝑇 (𝑒) : 𝑇@𝑇

t-op-dyn

Δ; Γ ⊢ 𝑒 : 𝛼@𝑇 (𝛼 : 𝑇) ∈ Δ {underΔ (𝑉) | 𝑉 ∈ types(𝑇)} ⊆ dom(◦)
Δ; Γ ⊢ ◦(𝑒) : 𝛼@𝑇

t-op-runtime

Δ; Γ ⊢ 𝑒 : 𝑇@𝑈 underΔ (𝑇) = 𝐵 𝐵 ∈ {underΔ (𝑉) | 𝑉 ∈ types(𝑇)} ⊆ dom(◦)
Δ; Γ ⊢ ◦(𝑒) : 𝑇@𝑈

Fig. 12. LWG: additional typing rules

values. Static-change, 𝑒.(𝑇 ↠ 𝑈), performs conversions between struct or base types without any

boxing operations, hence rule t-static-change applies only when both 𝑇 and𝑈 are concrete type.

Type assertions and constants (Rules t-assert𝐼 and t-assert𝑆 , and t-const) are straightforward.

We write ctype(𝑐) for the type of constant 𝑐 , e.g., ctype(42) = int. Rule t-stupid is a standard

rule [Griesemer et al. 2020; Igarashi et al. 2001] to avoid that expressions become ill-typed during

reduction. It is used for runtime terms only.

The last three rules deal with static and dynamic form of operators. Rule t-op-static handles

operators on concrete types that are resolved statically. In this case, the operator must be available

on the underlying type of 𝑇 . Rule t-op-dyn handles operators for type parameters, in which case

the operator must be available for all underlying types of types listed in 𝛼 ’s type bound (𝑇). Rule

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:20 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Compilation: types ⟨𝑇 ⟩ 𝑚𝑀 ↦→𝑚𝑀′ Φ ↦→ Φ′ 𝐶 ↦→ 𝐶 𝑇 ↦→ 𝑇 ′ ⌊𝑇 ⌋ ⌊Φ⌋

iface(Φ⇂2)
⟨Φ⟩ = Φ

¬iface(𝑇)
⟨𝑇@𝑇 ⟩ = 𝑇@Any

d-sig

𝑆 ↦→ 𝑆 ′ Φ ↦→ Φ′ Ψ ↦→ Ψ′

𝑚[𝛽 𝑆] (𝑦 Φ) Ψ ↦→𝑚𝐷 [𝛽 𝑆′] (𝑦 ⟨Φ′⟩) ⟨Ψ′⟩

d-type-b

𝐵 ↦→ 𝐵

d-tvar

𝛼 ↦→ 𝛼

d-type-named

𝑆 ↦→ 𝑆 ′

𝑡 [𝑆] ↦→ 𝑡 [𝑆 ′]

d-type-struct

Φ ↦→ Φ′

struct {𝑓 Φ} ↦→ struct {𝑓 Φ′}

d-type-iface

𝐹 ↦→ 𝐹 ′

interface {𝐹} ↦→ interface {𝐹 ′}

d-tilde

𝑇 ↦→ 𝑇 ′

∼𝑇 ↦→ ∼𝑇 ′

d-or

𝐶 ↦→ 𝐶′ 𝐸 ↦→ 𝐸′

𝐶 |𝐸 ↦→ 𝐶′ |𝐸′

d-pair

𝑇 ↦→ 𝑆 𝑉 ↦→ 𝑈

𝑇@𝑉 ↦→ 𝑆@𝑈

𝑇 ↦→ 𝑆

⌊𝑇 ⌋ = 𝑆

𝑇 ↦→ 𝑆 𝑉 ↦→ 𝑈

⌊𝑇@𝑉 ⌋ = 𝑆@𝑈

Fig. 13. Auxiliary notations and compilation rules for types

t-op-runtime is necessary to handle runtime terms where a generic parameter bounded by 𝑉 has

been instantiated by a type 𝑇 whose underlying type is a base type.

4.2 Metatheory of LWG
We prove LWG’s type safety through progress and preservation arguments. Unlike WG, type

preservation does not require the implements relation because interface and struct values are

distinct at runtime, and typing requires exact type matches rather than assignability. Though this

seems restrictive, our compilation procedure (Section 5) shows that all well-typed WG programs

can be compiled to LWG using suitable make and change type primitives.

Theorem 4.1 (Type Preservation). If Δ; Γ ⊢ 𝑒 : 𝑇 and 𝑒 −→ 𝑒′ then Δ; Γ ⊢ 𝑒′ : 𝑇 .
We define panics as in WG, noting that progress implies that only type assertions may effectively

fail at runtime, not make or change type.

Theorem 4.2 (Progress). If ∅; ∅ ⊢ 𝑒 : 𝑇 then either 𝑒 is a value, 𝑒 −→ 𝑒′ for some 𝑒′, or 𝑒 panics.

5 Compilation
Monomorphisation tackles the problem of data layouts for generic code by generating all possibly

needed specialisations, which typically requires a whole program analysis. An alternative approach

more compatible with separate compilation is a uniform (or boxed) representation using pointer

indirection, which requires runtime boxing/unboxing actions.

Our compilation strategy is based on the latter approach. The key points and challenges are how

we (i) reuse Go’s pre-existing runtime infrastructure for interfaces to perform the type-directed

static compilation and the runtime boxing, and (ii) achieve a uniform compilation strategy given

Go’s structural typing, as we discuss in Section 5.2.

5.1 Repurposing Go’s Runtime Infrastructure
We repurpose interface values as boxes that represent values of generic type, with boxing performed

by LWG’s make and change type operations. This is natural since interface values are already

boxed in the Go runtime, and generic values have interface-like status with bounds that constrain

their operations. Unboxing is performed by type assertions. We present our compilation strategy

as a translation from well-typed WG programs to LWG programs using a ↦→ arrow.

Figure 13 gives the compilation of types to prepare the program with uniform handling of

dynamic methods. Each method𝑚 occurring in interfaces is renamed to𝑚𝐷 (𝐷 for dynamic) and its

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:21

Compilation: synthetic casts Δ; Γ ⊢ 𝑒 : 𝑈 ↦→Φ 𝑒′

make-iface

iface(𝑉) ¬iface(𝑆) iface(𝑇) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ 𝜌 = mkTableΔ (⌊𝑆⌋, ⌊𝑉 ⌋)
Δ; Γ ⊢ 𝑒 : 𝑆 ↦→𝑇@𝑉 𝑒′ .(⌊𝑆⌋ →𝜌 ⌊𝑇@𝑉 ⌋)

make-bs

iface(𝑉) ¬iface(𝑆) ¬iface(𝑇) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ 𝜌 = mkTableΔ (⌊𝑇 ⌋, ⌊𝑉 ⌋)
Δ; Γ ⊢ 𝑒 : 𝑆 ↦→𝑇@𝑉 𝑒′ .(⌊𝑆⌋ ↠ ⌊𝑇 ⌋).(⌊𝑇 ⌋ →𝜌 ⌊𝑇@𝑉 ⌋)

change

iface(𝑈) iface(𝑉) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Δ; Γ ⊢ 𝑒 :𝑈 ↦→𝑇@𝑉 𝑒′ .(⌊𝑈 ⌋ → ⌊𝑇@𝑉 ⌋)

static-change

¬iface(𝑈) ¬iface(𝑇) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Δ; Γ ⊢ 𝑒 :𝑈 ↦→𝑇@𝑇 𝑒′ .(⌊𝑈 ⌋ ↠ ⌊𝑇 ⌋)

Fig. 14. Compilation rules: generate synthetic casts

signature is adapted so that all argument and return types are boxed (using ⟨𝑇 ⟩). The rules ensure
these changes are made consistently, including in literal interface types in struct definitions. We

introduce ⌊𝑇 ⌋ (resp. ⌊Φ⌋) as a shorthand for a compiled type.

To compile expressions and method declarations, we rely on an auxiliary judgement given in

Figure 14. In Δ; Γ ⊢ 𝑒 : 𝑈 ↦→Φ 𝑒′, 𝑒 is a well-typed WG expression, 𝑒′ is an LWG expression that

𝑒 compiles into, and Φ is the target LWG type of 𝑒′. This judgement determines which synthetic

casts (make, change or static-change) are needed in the resulting expression. Interface values are

created in two situations. Rule make-iface handles non-interface expressions used at interface types

(standard Go interface creation), computing method table 𝜌 with methods of 𝑆 listed in interface 𝑉 .

Rule make-bs handles generic value boxing: non-interface source type 𝑆 with non-interface target

type 𝑇 but interface bound 𝑉 , creating an interface value with method table from 𝑇 for 𝑉 .

For example, consider the WG declaration type Cell[T any] struct{ val T@any }. Initialising

Cell[int]{int(42)} requires boxing the integer for uniform representation. The integer field

compiles to int(42).(int →𝜌 ⌊int@any⌋) via Rule make-bs. Field access generates unboxing via

Rule select-boxed and the bound any allows us to identify a boxed int.

Rule change handles interface type 𝑈 to interface type 𝑉 conversion via Rule change-type

(Figure 10). Unlike make, the method table must be computed at runtime when the runtime type

becomes known. This showcases reuse of Go’s interface infrastructure: existing interface values

instantiating type parameters are adapted to the interface specified by the type parameter bound.

Rule static-change applies when neither source type 𝑈 nor target bound 𝑇 are interfaces.

Such transformations convert between assignable WG types, similar to type conversions in

WG’s operational semantics. Consider type StringerCell struct{ val Stringer@Stringer }. As-

sume int <:∅ Stringer, in StringerCell{int(42)}, the field int(42) compiles to int(42).(int →𝜌

⌊Stringer@Stringer⌋) by rule make-iface. Rules box and nbox are variants to ensure all values

are boxed, this is used in dynamic method calls and matches the ⟨Φ⟩ function introduced earlier.

The compilation of expressions is formalised in Figures 15 and 16. In judgement Δ; Γ ⊢ 𝑒 ↦→ 𝑒′, 𝑒
is a well-typed WG expression (under suitable contexts Δ and Γ) and 𝑒′ is an LWG expression that

𝑒 compiles into. Rules Var, Const, and Assert are straightforward. Rule Conversion essentially

replaces a WG static conversion with the appropriate synthetic cast.

The compilation of field selection is given by Rules Select-boxed and Select-unboxed, the

selected rule depends on whether the struct field needs to be unboxed or not. For Rule Select-boxed,

the type of field 𝑓𝑖 is 𝑆𝑖@𝑉𝑖 , where 𝑆𝑖 is not a type variable and 𝑉𝑖 is an interface. This means that

either the field denotes a generic type that has been instantiated or it is a value of interface type

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:22 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Compilation: expressions Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Var

Δ; Γ ⊢ 𝑥 ↦→ 𝑥

Const

Δ; Γ ⊢ 𝑇 (𝑐) ↦→ 𝑇 (𝑐)

Assert

Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Δ; Γ ⊢ 𝑒.(𝑇) ↦→ 𝑒′ .(⌊𝑇 ⌋@⌊boundsΔ (𝑇)⌋)

Conversion

Δ; Γ ⊢ 𝑒 : 𝑆 Δ; Γ ⊢ 𝑒 : 𝑆 ↦→𝑇@boundsΔ (𝑇) 𝑒
′

Γ ⊢ 𝑇 (𝑒) ↦→ 𝑒′

Struct

_ Φ = fieldsΔ (𝑇) Δ; Γ ⊢ 𝑒 : 𝑈 Δ; Γ ⊢ 𝑒 :𝑈 ↦→Φ 𝑒′

Δ; Γ ⊢ 𝑇 {𝑒} ↦→ ⌊𝑇 ⌋{𝑒′}
Select-boxed

Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑒 :𝑇 𝑓 𝑆@𝑉 = fieldsΔ (𝑇) ¬tyvarΔ (𝑆𝑖) iface(𝑉𝑖) 𝑓𝑖 = 𝑓

Δ; Γ ⊢ 𝑒.𝑓 ↦→ 𝑒′ .𝑖 .(⌊𝑆𝑖 ⌋@⌊𝑆𝑖 ⌋)
Select-unboxed

Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑒 :𝑇 𝑓 𝑆@𝑉 = fieldsΔ (𝑇) (tyvarΔ (𝑆𝑖) ∨ ¬iface(𝑉𝑖)) 𝑓𝑖 = 𝑓

Δ; Γ ⊢ 𝑒.𝑓 ↦→ 𝑒′ .𝑖

op-static

Δ; Γ ⊢ 𝑒 : 𝑇 ¬tyvarΔ (𝑇) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Δ; Γ ⊢ ◦(𝑒) ↦→ ◦#⌊𝑇 ⌋ (𝑒′)

op-dyn

Δ; Γ ⊢ 𝑒 : 𝛼 Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Δ; Γ ⊢ ◦(𝑒) ↦→ ◦(𝑒′)

Fig. 15. Compilation rules: expressions (part 1)

(in which case 𝑆𝑖 = 𝑉𝑖). In the former case the value will be boxed at runtime but is treated in the

remaining source WG program as if it were a plain value of type 𝑆𝑖 . In both cases we insert a type

assertion to ⌊𝑆𝑖⌋ which will unbox the value in the former case and leave it unchanged (as needed)

in the latter. Rule Select-unboxed applies when 𝑆𝑖 is a type variable or 𝑉𝑖 is not an interface type.

No unboxing is needed: if 𝑆𝑖 is a type variable, the field must remain boxed to use operations from

its bound; if 𝑉𝑖 is not an interface, the field is already unboxed.

Rules op-static and op-dyn deal with operators. Recall that the WG type system enforces that

the operands have all the same type, which is either a type whose underlying type is a base type,

or a type variable whose bound supports ◦. The first rule applies when the type of the operand is

not a type variable, hence it must be a static operator invocation. If the type of the operand is a

type variable, then it is a dynamic invocation and the second rule applies.

5.2 Boxing and Structural Typing
We now move on to the compilation of methods and method calls. It turns out that Go’s structural

typing makes the treatment of methods especially subtle as we illustrate below.

Example 5.1. Consider the following WG code:

type Processor[T any] interface { process(input T) T }

type IntProcessor struct {} // IntProcessor <:∅ Processor[int]

func (p IntProcessor) process(input int) int { return input }

type GenericProcessor[T any] struct {} // GenericProcessor[T] <:{T:any} Processor[T]

func (p GenericProcessor[T any]) process(input T) T { return input }

type Client struct {}

func (c Client) useProcessor(processor Processor[int]) int { return processor.process(int(42)) }

The code above defines a generic interface Processor[T]with a method process. We then define a

non-generic struct type IntProcessorwith a processmethod from int to int. Notably, IntProcessor

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:23

Compilation: boxing casts Δ; Γ ⊢ 𝑑 : 𝑈 Z⇒Φ 𝑑′

box

¬iface(𝑉) Δ; Γ ⊢ 𝑑 :𝑈 ↦→𝑇@Any 𝑑
′

Δ; Γ ⊢ 𝑑 :𝑈 Z⇒𝑇@𝑉 𝑑′

nbox

iface(𝑉) Δ; Γ ⊢ 𝑑 :𝑈 ↦→𝑇@𝑉 𝑑′

Δ; Γ ⊢ 𝑑 :𝑈 Z⇒𝑇@𝑉 𝑑′

Compilation: method calls Δ; Γ ⊢ 𝑒 ↦→ 𝑒′

Call𝑆 -boxed

Δ; Γ ⊢ 𝑒 : 𝑅 ¬iface(𝑅) 𝑚[𝛽 𝑆 ′′] (𝑦 Φ) 𝑇@𝑉 ∈ methodsΔ (𝑅) ¬tyvarΔ (𝑇 [𝜂])
iface(𝑉 [𝜂]) 𝜂 = (𝛽 := 𝑆) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑑 : 𝑈 Δ; Γ ⊢ 𝑑 :𝑈 ↦→Φ[𝜂] 𝑑′

Δ; Γ ⊢ 𝑒.𝑚[𝑆] (𝑑) ↦→ 𝑒′#⌊𝑅⌋ .𝑚[⌊𝑆⌋] (𝑑′) .(⌊𝑇 [𝜂]⌋@⌊𝑇 [𝜂]⌋)
Call𝑆 -unboxed

Δ; Γ ⊢ 𝑒 : 𝑅 ¬iface(𝑅) 𝑚[𝛽 𝑆 ′′] (𝑦 Φ) 𝑇@𝑉 ∈ methodsΔ (𝑅) 𝜂 = (𝛽 := 𝑆)
(¬iface(𝑉 [𝜂]) ∨ tyvarΔ (𝑇 [𝜂])) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑑 : 𝑈 Δ; Γ ⊢ 𝑑 :𝑈 ↦→Φ[𝜂] 𝑑′

Δ; Γ ⊢ 𝑒.𝑚[𝑆] (𝑑) ↦→ 𝑒′#⌊𝑅⌋ .𝑚[⌊𝑆⌋] (𝑑′)
Call𝐼

Δ; Γ ⊢ 𝑒 : 𝑅 iface(𝑅) 𝑚[𝛽 𝑆′′] (𝑦 Φ) 𝑇@𝑉 ∈ methodsΔ (𝑅) ¬tyvarΔ (𝑇 [𝜂])
𝜂 = (𝛽 := 𝑆) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑑 : 𝑈 Δ; Γ ⊢ 𝑑 :𝑈 Z⇒Φ[𝜂] 𝑑′

Δ; Γ ⊢ 𝑒.𝑚[𝑆] (𝑑) ↦→ 𝑒′ .𝑚𝐷 [⌊𝑆⌋] (𝑑′) .(⌊𝑇 [𝜂]⌋@⌊𝑇 [𝜂]⌋)
Call𝐼𝛼

Δ; Γ ⊢ 𝑒 : 𝑅 iface(𝑅) 𝑚[𝛽 𝑆 ′′] (𝑦 Φ) 𝑇@𝑉 ∈ methodsΔ (𝑅) tyvarΔ (𝑇 [𝜂])
𝜂 = (𝛽 := 𝑆) Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ Δ; Γ ⊢ 𝑑 : 𝑈 Δ; Γ ⊢ 𝑑 :𝑈 Z⇒Φ[𝜂] 𝑑′

Δ; Γ ⊢ 𝑒.𝑚[𝑆] (𝑑) ↦→ 𝑒′ .𝑚𝐷 [⌊𝑆⌋] (𝑑′).(⌊𝑇 [𝜂]⌋ → ⌊𝑇 [𝜂]@𝑉 [𝜂]⌋)

Fig. 16. Compilation rules: expressions (part 2)

implements Processor[int]. Struct type GenericProcessor is a generic version IntProcessor, it

implements Processor[T] for any T. We further define a useProcessor method on a client struct,

which takes an argument of type Processor[int] and invokes the method process on it.

Following our uniform compilation strategy and considering interface Processor, it would be

expected that its process method would take a boxed argument and return a result. Thus, when

compiling the body of useProcessor the compiler would box the argument to process and then

unbox the return value, in order for it to match the signature of useProcessor which has a non-

generic return. The attentive reader might have already identified the problem with this naive

approach: while IntProcessor implements Processor[int], its process method is a plain int to

int method with no reason for it to receive or return boxed values. Thus if we pass a value

of type IntProcessor as an argument to useProcessor, the box and unbox operations would be

incorrect. If instead we were to pass a value of type GenericProcessor[int], which also implements

Processor[int], the boxing strategy described above would be correct.

This example reveals a fundamental challenge in the uniform compilation of methods in the pres-

ence of structural typing:When compiling amethod bodywe cannot a priori predict which interfaces
the type will implement and so we cannot locally determine what arguments must be boxed or not

(e.g. method process in IntProcessor and in GenericProcessor). Dually, when considering the call

site to an interface method (e.g., the call to process in useProcessor) we also cannot statically deter-

mine the type of the method receiver and so we cannot predict whether arguments and return values

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:24 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

need to be boxed by inspecting the signature of the interface. We can manifest the issue further by

considering an additional interface type SimpleProcessor interface {process(x int) int}. We

have that both IntProcessor and GenericProcessor[int] implement SimpleProcessor and any con-

text performing a call to process on a value of type SimpleProcessor has no way of determining if

the receiver expects boxing (i.e., GenericProcessor) or not (i.e. IntProcessor).

Adaptor Methods. Our solution to this issue is to compile two versions of each method𝑚: One

whose signature (and name) is identical to the source WG signature and whose body is compiled

accordingly; and a dynamic adaptor version𝑚𝐷 of the method, that expects all arguments and

return value to be boxed. The body of𝑚𝐷 redirects to𝑚 with the appropriate unboxing operations.

We first address the compilation of method calls. The rules are given in Figure 16. The rules are

split into two categories, depending on whether the call is on an interface (i.e., a dynamic call) or
on a non-interface (i.e., a static call): Rule Call𝐼 and Rule Call𝐼𝛼 deal with the former, and the

two Call𝑆 rules deal with the latter. Two rules per category are required to deal with potential

unboxing of the value returned by the call.

In the static call cases, the arguments are compiled according to their WG signature, via the

synthetic cast judgement. If the return type of𝑚 is boxed then we unbox it (Call𝑆 -boxed) since

the calling context expects an unboxed result; otherwise, we leave it unchanged (Call𝑆 -unboxed).

The compilation of dynamic calls boxes all arguments, as needed by the adaptor (the Z⇒ judgement

boxes all values, see Figure 16). As for the return type, we check whether it is a type variable in

WG. If so, then the method call happens in a context where the return type is still parametric and

must therefore be boxed according to the bound of the type variable. We will see that the adaptor

method𝑚𝐷 returns a boxed value with an empty method table (the bound information is only

determined at the call site). Thus, we change the type accordingly, so that the appropriate method

table is generated (rule Call𝐼𝛼). If the return type is not a type variable, then we type assert the

result to the return type. This has the effect of unboxing the result if needed by the calling context.

Revisiting our initial example, the call to process in the body of useProcessor compiles to a

dynamic call to the adaptor for process, boxing the integer argument and unboxing the return

value, since the return of process in Processor[int] is not a type variable, Rule Call𝐼 applies, we

obtain: processor.process𝐷 (int(42).(int → int@any)) .(int@int).
The compilation of method declarations is given in Figure 17. Rule d-func generates twomethods

per WG method𝑚. Method𝑚 is the compiled version of the original method, with an identical

signature (modulo type compilation) and with method body obtained by compiling the source body.

Adaptor method𝑚𝐷 bridges dynamic method call destined to𝑚. Its signature is obtained by forcing

the types of arguments and the return type to be boxed—achieved by the auxiliary function ⟨Φ⟩.
The adaptor method body consists of a (static) call to method𝑚, generated by an auxiliary Adapt

function that inspects the WG signature of𝑚 to determine which arguments need to be unboxed

and whether the return value of𝑚 needs to be boxed. To ensure the adaptor returns a boxed result,

we insert a make instruction with an empty method table via the synthetic cast (⌊𝑉 ⌋ →∅ ⌊𝑉@Any⌋)
when required. Finally, Rule d-type compiles type declarations. Its sole purpose is to apply the ⌊Φ⌋
transformation on all (anonymous) interfaces it may contain.

5.3 Properties of Compilation
Compilation of a well-typed WG program results in a well-typed LWG program that preserves the

behaviour of the original WG program. The former property is embodied in Theorem 5.2, which

states that a well-typed WG expression of type 𝑇 compiles to a well-typed LWG expression of

type ⌊𝑇 ⌋@⌊boundsΔ (𝑇)⌋, presupposing all declarations in the ambient program are compiled. The

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:25

Compilation: declarations Δ; Γ ⊢ 𝐷 ↦→ 𝐷

d-func

𝑚𝑀 =𝑚[𝛽 𝑆] (𝑦 Φ) Ψ Φ = 𝑇@𝑇 ′ Δ = 𝛼 : 𝑅, 𝛽 : 𝑆 Γ = 𝑥 : 𝑡 [𝛼], 𝑦 : 𝑇

𝑅 ↦→ 𝑅′ 𝑆 ↦→ 𝑆 ′ Δ; Γ ⊢ 𝑒 :𝑉 Δ; Γ ⊢ 𝑒 :𝑉 ↦→Ψ 𝑒′

𝐷 = func (𝑥 𝑡 [𝛼 𝑅′]) 𝑚𝐷 [𝛽 𝑆′] (𝑦 ⌊⟨Φ⟩⌋) ⌊⟨Ψ⟩⌋ { return Adapt((𝑥 𝑡 [𝛼 𝑅]) 𝑚𝑀) }
func (𝑥 𝑡 [𝛼 𝑅]) 𝑚𝑀 {return 𝑒} ↦→ {𝐷, func (𝑥 𝑡 [𝛼 𝑅′]) 𝑚[𝛽 𝑆 ′] (𝑦 ⌊Φ⌋) ⌊Ψ⌋ {return 𝑒′}}

iface(𝑉 ′) ¬iface(𝑇 ′
𝑖) =⇒ 𝑑𝑖 = 𝑦𝑖 .(⌊𝑇𝑖@𝑇 ′

𝑖 ⌋) iface(𝑇 ′
𝑖) =⇒ 𝑑𝑖 = 𝑦𝑖 .(𝑇𝑖 → 𝑇𝑖@𝑇 ′

𝑖)
Adapt((𝑥 𝑡 [𝛼 𝑅]) 𝑚[𝛽 𝑆] (𝑦 𝑇@𝑇 ′) 𝑉@𝑉 ′) = 𝑥 .𝑡 [𝛼]#𝑚[𝛽] (𝑑)

¬iface(𝑉) ¬iface(𝑇 ′
𝑖) =⇒ 𝑑𝑖 = 𝑦𝑖 .(⌊𝑇𝑖@𝑇 ′

𝑖 ⌋) iface(𝑇 ′
𝑖) =⇒ 𝑑𝑖 = 𝑦𝑖 .(𝑇𝑖 → 𝑇𝑖@𝑇 ′

𝑖)
Adapt((𝑥 𝑡 [𝛼 𝑅]) 𝑚[𝛽 𝑆] (𝑦 𝑇@𝑇 ′) 𝑉@𝑉) = 𝑥 .𝑡 [𝛼]#𝑚[𝛽] (𝑑).(⌊𝑉 ⌋ →∅ ⌊𝑉@Any⌋)

d-type

𝑅 ↦→ 𝑅′ 𝑇 ↦→ 𝑇 ′

type 𝑡 [𝛼 𝑅] 𝑇 ↦→ type 𝑡 [𝛼 𝑅′] 𝑇 ′

Fig. 17. Compilation rules: method declarations

resulting type captures the essence of our typing scheme for LWG, where expressions are assigned

a (logical) type but also track the type bound.

Theorem 5.2. If Δ; Γ ⊢ 𝑒 : 𝑇 and Δ; Γ ⊢ 𝑒 ↦→ 𝑒′ then ⌊Δ⌋; ⌊Γ⌋Δ ⊢ 𝑒′ : ⌊𝑇 ⌋@⌊boundsΔ (𝑇)⌋.
Before stating our behavioural correspondence result, we define how WG and LWG programs

should be related. All definitions introduced here are given formally in the online appendix.

There is a lowering simulation between a WG program 𝐷 ▷ 𝑒 and an LWG program 𝐷 ′ ▷ 𝑒′, if
whenever 𝑒 −→ 𝑑 then 𝑒′ −→∗ 𝑑 ′, and 𝑒′ and 𝑑 ′ are in a lowering simulation. Also, if 𝑒 is a value,

then 𝑑 is an equivalent value; and if 𝑒 is stuck, then so is 𝑑 . A lifting simulation is the reverse, e.g., if

𝑑 can make a move, then 𝑒 should be able to match it, etc. The theorem below relies on relation ≏
(a weak bisimulation) on LWG expressions and which essentially adds or removes synthetic casts.

Theorem 5.3. Suppose 𝐷 ▷ 𝑒 ✓, then: R def
= { (𝑒, 𝑑 ′) | ∃𝑑. ∅; ∅ ⊢ 𝑒 ↦→ 𝑑 and 𝑑 ≏ 𝑑 ′ } is a lowering

simulation; and R def
= { (𝑑, 𝑒) | ∃𝑑 ′ . ∅; ∅ ⊢ 𝑒 ↦→ 𝑑 ′ and 𝑑 ≏ 𝑑 ′ } is a lifting simulation.

6 Related Work
This work fits within the established tradition of programming language research that studies

formal models of real-world languages, e.g., [Amin and Rompf 2017; Griesemer et al. 2020; Grigore

2017; Igarashi et al. 2001; Jung et al. 2018; Kennedy and Syme 2001; Park et al. 2015].

Formal investigations of Go. Griesemer et al. [2020] presented the first core formalism of Go

in FGG (Featherweight Generic Go), modelling generic types and structural subtyping. WG was

initially motivated by an investigation into the type safety of the features of type unions and type

sets. This quickly led to the observation that FGG’s core subset fails to characterise significant

semantic features of Go. By relying on nominal typing of structs and omitting underlying and

anonymous types, FGG does not accurately model Go’s structural typing that allows methods to

accept differently-named structs with the same underlying structure. FGG relies solely on interface-

driven subtyping, which does not capture Go’s full structural typing nor expose the subtleties

in different type coercions: assignability (a non-transitive superset of interface subtyping), static

conversions (safe no-ops), and dynamic assertions (requiring RTTI).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

79:26 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Various approaches to implementing Go have been studied based on FGG. Griesemer et al. [2020]

formalised monomorphisation as a translation from FGG to non-generic FG. Ellis et al. [2022] pre-

sented an approach based on translating FGG to non-generic FG using structs to implement RTTI

dictionaries for generic type arguments. Sulzmann and Wehr [2023] presented an approach of

translating FGG sans dynamic type assertions (and RTTI) to an untyped 𝜆-calculus similar to that

known from Haskell type classes. All these remain within FGG, and thus do not consider the fea-

tures that we have introduced in WG. None consider the underlying mechanics of the Go runtime,

such as interface values, RTTI, runtime type conversions and static versus dynamic resolution of

operations, as in LWG. In LWG, we distinguish concrete runtime items (e.g., RTTI) from ghost

entities used by our metatheory to establish our correctness properties. Note that LWG actions and

rules that operate solely on ghost entities correspond to no-ops in an actual implementation.

Regarding correctness, Griesemer et al. [2020] shows FGG programs and their FG monomorphi-

sations are bisimilar. Ellis et al. [2022] show their FGG to FG translation is a bisimulation up to

dictionary resolution. Sulzmann and Wehr [2023] show their (untyped) 𝜆-calculus translation is

value and divergence preserving. By contrast, we establish a behavioural equivalence between high

level WG and compilations into low level LWG. The challenges we address in this paper relate to

establishing safety for LWG and the correspondence between high and low level behaviours.

Implementations of generics. Various approaches have been used to implement generics in OO

languages with differing implications and trade-offs. Java employs an erasure approach [Bracha

et al. 1998] where generic type information is discarded by the compiler, which restricts pro-

grams from performing operations that may dynamically depend on such. C# employs a mixed

approach [Kennedy and Syme 2001; Yu et al. 2004] where generic code for object types is generated

once statically, supported by RTTI at runtime, but generic code for primitives types is specialised

dynamically by JIT compilation. The type theoretic study of RTTI for polymorphism dates back

to Harper and Morrisett [1995] and Crary et al. [1998]. Rust employs static monomorphisation [The

Rust Team 2025; Turon 2015], enabling zero-cost abstractions at the cost of output code size and

compilation time. All use nominal subtyping, and do not tackle the interplay between structural

subtyping, generics and non-uniform representations (interfaces vs. constants/structs) as in Go.

As discussed earlier, Go employs static monomorphisation [Griesemer et al. 2020] and runtime

dictionary passing [Randall 2022]. The Go compiler monomorphises code up to GC shapes with

RTTI for lost type information to balance specialisation against code size. This incurs compilation

costs and restrictions such as disallowing polymorphic recursion. This paper instead combines Go’s

runtime infrastructure for type conversions with statically generated adapter code, incurring more

runtime conversions but supporting all of WG, including proposed features like generic methods,

while lifting restrictions and maintaining separate compilation compatibility.

Leroy [1992] presented an approach of boxing and unboxing generic function arguments and re-

sults for ML, with careful treatment of higher order functions. It does not consider subtyping and the

language disallows polymorphic recursion. By contrast, our work tackles the problem of compiling

generic code in the presence of structural subtyping between non-uniform representations.

In future work, we will consider techniques to optimise our approach, such as combining our

adaptors with localised monomorphisation of package private code, and statically safe elimination

of type conversions [Leroy 1992]. The overhead of runtime assembly of runtime type-reps can be

optimised by pre-computing and caching maps from open types to their reps when a generic type

or method is instantiated [Viroli and Natali 2000].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

Welterweight Go: Boxing, Structural Subtyping, and Generics 79:27

Acknowledgments
We would like to thank Ian Lance Taylor for valuable discussions, and the anonymous reviewers

for their feedback. This work was supported by national funds through Fundação para a Ciência e

a Tecnologia, I.P. (FCT) under projects UID/50021/2025 and UID/PRR/50021/2025.

Data-Availability Statement
We have implemented a minimal prototype of WG and LWG in Go as interpreters, and our com-

pilation approach as a translation from WG to LWG. The interpreters perform type checking of

programs and reduction of their main expressions. Our software artifact is available on Zenodo [Hu

et al. 2025]. It also includes the examples from this paper as tests.

References
Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 666–679. doi:10.1145/3009837.3009866

Nada Amin and Ross Tate. 2016. Java and Scala’s type systems are unsound: the existential crisis of null pointers. In

Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA). 838–848.
Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. Making the Future Safe for the Past: Adding

Genericity to the Java Programming Language. In Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA ’98), Vancouver, British Columbia, Canada, October 18-22, 1998.
ACM, 183–200. doi:10.1145/286936.286957

Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. 1998. Intensional Polymorphism in Type-Erasure Semantics.

In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98), Baltimore,
Maryland, USA, September 27-29, 1998. ACM, 301–312. doi:10.1145/289423.289459

dominikh. 2022. Method sets section doesn’t seem quite right for interfaces with type lists. https://github.com/golang/go/

issues/51183. GitHub issue #51183, Go programming language repository.

Stephen Ellis, Shuofei Zhu, Nobuko Yoshida, and Linhai Song. 2022. Generic Go to Go: dictionary-passing, monomorphisation,

and hybrid. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1207–1235. doi:10.1145/3563331
Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernardo Toninho, Philip Wadler, and Nobuko

Yoshida. 2020. Featherweight go. Proc. ACM Program. Lang. 4, OOPSLA (2020), 149:1–149:29. doi:10.1145/3428217

Robert Griesemer and Ian Lance Taylor. 2022. An Introduction To Generics. https://go.dev/blog/intro-generics

Radu Grigore. 2017. Java generics are turing complete. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM, 73–85. doi:10.1145/3009837

Robert Harper and J. Gregory Morrisett. 1995. Compiling Polymorphism Using Intensional Type Analysis. In Conference
Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995. ACM Press, 130–141. doi:10.1145/199448.199475

Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall. 2025. Welterweight Go:

Boxing, Structural Subtyping and Generics (Artifact). Zenodo. doi:10.5281/zenodo.17741038

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java and GJ.

ACM Trans. Program. Lang. Syst. 23, 3 (2001), 396–450. doi:10.1145/503502.503505
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: securing the foundations of the rust

programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34. doi:10.1145/3158154

Andrew Kennedy and Don Syme. 2001. Design and Implementation of Generics for the .NET Common Language Runtime. In

Proceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Snowbird,
Utah, USA, June 20-22, 2001. ACM, 1–12. doi:10.1145/378795.378797

Xavier Leroy. 1992. Unboxed Objects and Polymorphic Typing. In Conference Record of the Nineteenth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992. ACM
Press, 177–188. doi:10.1145/143165.143205

Mario Macías. 2021. proposal: spec: allow type parameters in methods. GitHub Issue. https://github.com/golang/go/issues/

49085 Issue #49085, golang/go repository.

Daejun Park, Andrei Stefanescu, and Grigore Rosu. 2015. KJS: a complete formal semantics of JavaScript. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 346–356. doi:10.1145/2737924.2737991

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/289423.289459
https://github.com/golang/go/issues/51183
https://github.com/golang/go/issues/51183
https://doi.org/10.1145/3563331
https://doi.org/10.1145/3428217
https://go.dev/blog/intro-generics
https://doi.org/10.1145/3009837
https://doi.org/10.1145/199448.199475
https://doi.org/10.5281/zenodo.17741038
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3158154
https://doi.org/10.1145/378795.378797
https://doi.org/10.1145/143165.143205
https://github.com/golang/go/issues/49085
https://github.com/golang/go/issues/49085
https://doi.org/10.1145/2737924.2737991

79:28 Raymond Hu, Julien Lange, Bernardo Toninho, Philip Wadler, Robert Griesemer, and Keith Randall

Keith Randall. 2022. Go 1.18 Implementation of Generics via Dictionaries and Gcshape Stenciling. https://github.com/golang/

proposal/blob/e9af402b19db4352e7831b33a3f47719e86a5267/design/generics-implementation-dictionaries-go1.18.md

Martin Sulzmann and Stefan Wehr. 2023. A type-directed, dictionary-passing translation of method overloading and

structural subtyping in Featherweight Generic Go. J. Funct. Program. 33 (2023). doi:10.1017/S0956796823000047
Ian Lance Taylor and Robert Griesemer. 2021. Type Parameters Proposal: No parameterizedmethods. https://go.googlesource.

com/proposal/+/refs/heads/master/design/43651-type-parameters.md#no-parameterized-methods

The Go Team. 2024. The Go Programming Language Specification: Method sets. https://go.dev/ref/spec#Method_sets

The Go Team. 2025. The Go Programming Language Specification. https://golang.org/ref/spec

The Rust Team. 2025. Generic Data Types. https://doc.rust-lang.org/book/ch10-01-syntax.html Chapter 10.1.

Aaron Turon. 2015. Abstraction without overhead: traits in Rust. https://blog.rust-lang.org/2015/05/11/traits.html

Mirko Viroli and Antonio Natali. 2000. Parametric polymorphism in Java: an approach to translation based on reflective

features. In Proceedings of the 2000 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA 2000), Minneapolis, Minnesota, USA, October 15-19, 2000. ACM, 146–165. doi:10.1145/353171.353182

Dachuan Yu, Andrew Kennedy, and Don Syme. 2004. Formalization of generics for the .NET common language runtime. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004. ACM, 39–51. doi:10.1145/964001.964005

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 79. Publication date: January 2026.

https://github.com/golang/proposal/blob/e9af402b19db4352e7831b33a3f47719e86a5267/design/generics-implementation-dictionaries-go1.18.md
https://github.com/golang/proposal/blob/e9af402b19db4352e7831b33a3f47719e86a5267/design/generics-implementation-dictionaries-go1.18.md
https://doi.org/10.1017/S0956796823000047
https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#no-parameterized-methods
https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#no-parameterized-methods
https://go.dev/ref/spec#Method_sets
https://golang.org/ref/spec
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://blog.rust-lang.org/2015/05/11/traits.html
https://doi.org/10.1145/353171.353182
https://doi.org/10.1145/964001.964005

	Abstract
	1 Introduction
	2 Overview
	2.1 WG by Example
	2.2 LWG: A First Mini Example
	2.3 LWG and Generics

	3 Welterweight Go
	3.1 WG Syntax
	3.2 Typing and Subtyping in WG
	3.3 Operational Semantics of WG
	3.4 Metatheory of WG

	4 Low-Level Welterweight Go
	4.1 Typing in LWG
	4.2 Metatheory of LWG

	5 Compilation
	5.1 Repurposing Go's Runtime Infrastructure
	5.2 Boxing and Structural Typing
	5.3 Properties of Compilation

	6 Related Work
	Acknowledgments
	References

