On-Board Multi-Core Fault-Tolerant
SAR Imaging Architecture

Helena Cruz*, Rui Policarpo Duarte’, Horacio Neto*
Instituto Superior Técnico, Lisbon, Portugal
Email: *helena.cruz@tecnico.ulisboa.pt, Trui.duarte@tecnico.ulisboa.pt, jicn@inesc—id.pt

Abstract—Nowadays, there is an increasing need for satel-
lites, drones and UAVs to have lightweight, small, autonomous,
portable, battery-powered systems able to generate SAR images
on-board and broadcasting them to Earth, avoiding the time-
consuming data processing at the receivers. SAR is a form of
radar used to generate images of Earth, mounted on moving
platforms, such as satellites, drones or airplanes and is used to
monitor the surface of the Earth. Backprojection is an algorithm
for SAR image generation capable of generating high quality
images, however, it is one of the most computationally intensive
algorithms. Space is a harsh environment, due to the radiation,
which causes temporary or permanent errors on computing
systems, thus, there is a need to mitigate its impact on the
devices by implementing fault tolerance mechanisms to detect
and correct errors. In this research work, an on-board multi-
core embedded architecture was developed for SAR imaging
systems, implementing two fault tolerance mechanisms: lockstep
and reduced-precision redundancy. This architecture aims to
protect the Backprojection algorithm from transient faults in
the processing unit, using a software-only approach, generating
acceptable SAR images in a space environment. The solution
was implemented on a Xilinx SoC device with a dualcore
processor. For error rates similar to the ones measured in a
space environment, the present work produced images with less
0.65dB on average at the expense of a time overhead up to 33%.
Notwithstanding, the Backprojection algorithm executed up to
1.58 times faster than its single-core version algorithm, without
fault tolerance mechanisms.

I. INTRODUCTION

Space is a harsh environment for electronic components
used in circuits and systems. Therefore, systems designed
for spacecrafts or satellites must be highly reliable and be
able to tolerate the levels of radiation present in space. The
main sources of radiation in space are high-energy cosmic ray
protons and heavy ions, protons and heavy ions from solar
flares, heavy ions trapped in the magnetosphere and protons
and electrons trapped in the Van Allen belts [1]. These are
capable of deteriorating the electronic systems and provoking
bit-flips, leading to failures in electronic systems [2]. Fault
tolerance mechanisms are used to increase the reliability of
these systems.

Synthetic-Aperture Radar (SAR) is a form of radar which
is usually mounted on moving platforms such as satellites,
aircrafts and drones and is used to generate 2D and 3D images
of Earth. SAR operates through clouds, smoke and rain and
does not require a light source, making it a very attractive
method to monitor the Earth, in particular, the melting of polar
ice-caps, sea level rise, wind patterns, erosion, drought pre-
diction, precipitation, landslide areas, oilspills, deforestation,
fires, natural disasters such as hurricanes, volcano eruptions
and earthquakes. There is a need for satellites, drones and

Unmanned Aerial Vehicles (UAVs) to have a lightweight,
small, autonomous, portable, battery-powered system able
to generate SAR images on-board and broadcasting them to
Earth, avoiding processing data on the receivers. This paper
describes an architecture for SAR imaging capable of tolerating
faults resulting from radiation in a space environment. This
architecture uses the Backprojection Algorithm to generate
images and is implemented and tested on a System-on-Chip
(SoC) device [3].

II. BACKGROUND

This section introduces SAR, the Backprojection algorithm
and fault tolerance mechanisms.

A. Synthetic-Aperture Radar (SAR)

SAR is a form of radar used to generate 2D and 3D high
resolution images of objects. Unlike other radars, SAR uses the
relative motion between the radar and the target to obtain its
high resolution. This motion is achieved by mounting the radar
on moving platforms such as satellites, aircrafts or drones.
The distance between the radar and the target in the time
between the transmission and reception of pulses creates the
synthetic antenna aperture. The larger the aperture, the higher
the resolution of the image, regardless of the type of aperture
used. To generate SAR images, it is necessary to use an image
generation algorithm, such as the Backprojection Algorithm,
described below.

B. Backprojection Algorithm

Backprojection algorithm takes the following values as input:
number of pulses, location of the platform for each pulse, the
carrier wavenumber, the radial distance between the plane and
target, the range bin resolution, the real distance between two
pixels and the measured heights. Then, for each pixel and each
pulse, the Backprojection algorithm performs the following
steps [4]:

1) Computes the distance from the platform to the pixel.

2) Converts the distance to an associated position (range) in
the data set (received echoes).

3) Samples at the computed range using linear interpolation,
using Eq. 1 [5].

gln+1) —g(n)
Mt D) —r(my ")
e g(n) - Wave sample in the previous adjacent range bin.

e g(n+1) - Wave sample in the following adjacent range
bin.

gw,y(rkr) =g(n) + ()

e 7(n) - Corresponding range to the previous adjacent
bin.
e 7(n+1) - Corresponding range to the following adjacent
bin.
e 7 - Range from pixel f(z,y) to aperture point 0.
4) Scales the sampled value by a matched filter to form the
pixel contribution. This value is calculated using Eq. 2
[5]. dr is calculated using Eq. 3 [5].
ewd| = cos(2 - w-dr)+isin(2-w-dr)

2)

dr=/(x —x1)> + (y—ye)2+ (z —2z)2 =7 (3)

e dr - Differential range from platform to each pixel
versus center of swath.

e Tk, Yk, 2k - Radar platform location in Cartesian coor-
dinates.

e x,v,z - Pixel location in Cartesian coordinates.

e 7. - Range to center of the swath from radar platform.

5) Accumulates the contribution into the pixel. The final
value of each pixel is given by Eq. 4 [5].

f(z,y) = Zgw,y(ﬁc, Or) - w2 @)
k

e f(x,y) - Value of each pixel (z,y).

o 0y - Aperture point.

e w - Minimal angular velocity of wave.

o gzy(7k,0%) - Wave reflection received at ry at 6
(calculated using the linear interpolation in Eq. 1).

Algorithm 1 Backprojection algorithm pseudocode.
Source: PERFECT Manual Suite [4].

1: for all pixels k do

2 fk — 0

3 for all pulses p do

& Rellax— vl

S: b+ |(R— R0)/AR]

6: if b € [0, Npp — 2] then

7 w + [(R— RO)/AR| —b

8 s+ (L—w)-g(p,b) +w-g(p,b+1)

9: fk — fk +ez-ku-R
10: end if

11: end for

12: end for

Algorithm 1 shows the pseudocode to compute the aforemen-
tioned steps. In the fpseudocode, k., represents the wavenumber
and is given by ?, where f. is the carrier frequency of the
waveform and c is the speed of light, aj, refers to the position
of the pixel, and v,,, corresponds to the platform position. The
complex exponential e is equivalent to cos(w) + isin(w)
and, therefore, a cosine and sine computation is implied in the
calculation of each pixel, represented in Eq. 4.

C. Quality Assessment

The quality of a SAR image can be evaluated using Signal-
To-Noise Ratio (SNR) [4]. SNR is used to obtain the relation
between the desired signal and the background noise and is

expressed in decibels. SNR is calculated using Eq. 5. The
larger the SNR value, the greater the agreement between the
values. According to [4], values above 100dB are reasonable.

N
Zk:1 |7’k|2
N 2

Zk:l |7k — tk]

e 7 - Reference value for k-th element.
o t, - Test value for k-th element.
o N - Number of entries to compare.

SNRdB = 1010g10 ((5)

D. Fault Tolerance

Fault Tolerance (FT) is the ability of a system to be able
to remain functional even in the presence of failures. Fault-
tolerant systems are able to detect faults and to recover from
them.

Triple Modular Redundancy (TMR) consists in having three
entities calculating the same value and have a voter entity
compare the results. The most common value is a assumed to
be correct [6], [7].

Lockstep consists in the concurrent execution of the same
application on the different cores of a processor. The state of
each core is periodically checked to ensure the execution is
running without errors. If the states match, the execution is
assumed to be correct and a checkpoint is taken to be used
in case of a future fault. Otherwise, a previous state, resulting
from a checkpoint, is restored. Checkpoints contain the values
of the processor’s registers or variables to be used in future
comparisons. Oliveira et. al [8] presented a similar lockstep
implementation. Process-Level Redundancy (PLR) [9] is a
software-only fault tolerance mechanism that supports TMR
and lockstep with checkpoints.

Reduced-Precision Redundancy (RPR) is used to reduce the
overhead introduced by TMR by using a Full-Precision (FP)
computation and two Reduced-Precision (RP) computations.
RPR can be implemented in hardware, following an architecture
similar to TMR, or software, following an architecture similar
to temporal redundancy (i.e., fault tolerance mechanism where
an operation is executed several times and the correct result
is determined by majority voting). The FP computation
corresponds to the “original computation” and the other two
compute an approximation. Computing the approximations is
more efficient than calculating a full-precision value, decreasing
the overhead of the redudant computations. Examples of
applications that use RPR are [10], [11].

There are several fault-tolerant versions of SAR image
generation algorithms [7], [12], [6]. Jacobs et. al [7] propose
a fault tolerance mechanism for Fast-Fourier Transformer
(FFT) Algorithm based on range and azimuth compression
by implementing Concurrent Error Detection (CED) and using
weighted sum, and also implements scrubbing. Wang et. al
[12] also present a mechanism for FFT algorithm based on a
weighted checksum encoding scheme. Fang et. al [6] describe
a Fault-Management Unit which is resposible for the following
functions: a scrub controller to periodically reload the FPGA
configurations data, a fault detection circuit to periodically test
the hardware, a switching circuit responsible for removing a
faulty processor and replace it by an alternative processor, and
a majority voter circuit, which is responsible for comparing the

results of a TMR mechanism used during the SAR algorithm
execution. The work presented in this section is directed to
protect frequency-domain algorithms [7], [12], such as the FFT,
or SAR systems in general [6]. This work aims to protect the
Backprojection algorithm from faults in the processing unit
caused by radiation, protecting one of the best SAR image
generation algorithms considering the image quality.

III. MULTI-CORE FAULT-TOLERANT ARCHITECTURE

The details of the developed architecture are described in
the next sections, including the lockstep and RPR mechanisms.

A. Algorithm Profiling

The Backprojection algorithm implementation used in this
study is part of the PERFECT Suite [4] and is written in C.
The pseudocode was presented in Algorithm 1 and is based
on the equations presented in the previous section. This suite
also contains three input image sets: small, medium and large,
which generate an image of sizes 512x512, 1024x1024 and
2048x2048 pixels, respectively. For profiling, the chosen input
set was the small one, which took less than 8 minutes. These
times were obtained using the optimization level 03'. To profile
this algorithm, gprof® was used.

Sine

i Others

Fig. 1. Backprojection algorithm profiling.

Cosine

The trigonometric functions are responsible for over 84%
of the execution time of the algorithm, which means that the
potential for the reduced-precision redundancy mechanism lies
in these functions. The rest of the algorithm, including input
and output operations, is executed in under 16% of the time.

B. Proposed Architecture

The Backprojection algorithm, as analysed in the previous
section, can be divided into three blocks: a first and last block
which represent the least intensive sections of the algorithm
and a middle block where the image generation is performed.
The middle block, referred to as image generation, corresponds
to the intensive sections. To reduce the overhead introduced
by the fault tolerance mechanism, when compared to temporal
redundancy or lockstep only, a mixed approach was developed:

e On the sections with less computations, a Lockstep
mechanism was used, as seen in [8], [13], [9], [14]. This
mechanism ensures the initialization is done properly and
the raw SAR data is correct before beginning the image
generation.

« On the sections with more computations, a RPR mecha-
nism was developed. RPR is a special case of temporal

Thttps://gcc.gnu.org/onlinedocs/gec/Optimize-Options.html
Zhttps:/ftp.gnu.org/old- gnu/Manuals/gprof-2.9.1/html_mono/gprof.html

redundancy where, instead of using full-precision com-
putations for the re- dudant values, reduced-precision
computations are used. RPR is used in several applications
[10] where a small fraction of precision is sacrificed for
performance. This allows the generation of an image with
an acceptable quality in the presence of errors without
compromising the overall performance. This mechanism
allows a re- duction in the total overhead when comparing
to other mechanisms, such as lockstep.

The calculation of each pixel, or Backprojection Unit (BPU),
can be done in parallel, which means each core can calculate
one pixel at a time without being necessary for error detection,
contrary to lockstep. The middle block, for this reason, is
protected by RPR, reducing the total overhead in the system.
A scheme of the architecture of the developed fault tolerance
mechanism is displayed in Figure 2, where it is possible to
observe each of the phases of the Backprojection algorithm
and which mechanism is responsible for its protection. In the
middle blocks, approximations are calculated after the complete
computations. The approximations are represented in Figure 2
as Reduced-Precision Backprojection Units (rBPUs).

Beginning of the algorithm
First block Lockstep with checkpoints
Lockstep
BPU BPU
rBPU rBPU
. Reduced-Precision
Middle blocks Redundancy
BPU BPU
rBPU rBPU
Last block End of the algorithm Lockstep with checkpoints

Fig. 2. Architecture of the developed fault tolerance mechanism.

1) Algorithm Parallelization: In this algorithm, the pixel
calculations have no dependencies, therefore, they can be
computed in parallel. The workload can be divided between the
cores statically or dynamically. A static load-balancing mech-
anism was tested, since dynamic load-balancing introduces
overhead in systems. The results of this test are presented in
Table I, where the execution time is presented in function of
the number of pixels per batch. The tested number of BPU
per batch was 4, 8, 16 and 32.

From Table I it is possible to conclude that the number
of BPUs per batch does not have a significant influence on
the total execution time. It is also possible to observe that
the workload is relatively balanced, since there are not any
accentuated differences in the execution times of each core.
This leads to conclude that dynamic load-balancing is not

TABLE I
DUAL-CORE EXECUTION TIMES IN FUNCTION OF THE NUMBER OF PIXELS
PER BATCH. THE LONGER EXECUTION PER BATCH NUMBER IS DISPLAYED
IN BOLD IN THE TABLE.

Original Batches of:
4 8 16 32
Core 0 — 240.4s 240.6s 241.5s 241.7s
Core 1 — 239.9s 239.3s 241.0s 239.4s
Total 477.4s 480.3s 479.9s 482.6s 480.4s

necessary and that the batch number is also indifferent. The
final chosen number of units per batch was 4, since it was the
fastest of all executions in total.

2) Lockstep: The Lockstep solution proposed consists in a
mechanism where two identical SAR applications are executed
simultaneously on a dual-core processor. Both cores execute
the applications until reaching the verification point, where
the application’s variables are compared and, if they match,
the execution is assumed correct. Afterwards, a checkpoint
is created in memory containing these values. The lockstep
mechanism is used during the input reading to avoid the
generation of images from incorrect data. Afterwards, the image
generation starts and the lockstep is no longer active.

3) Reduced-Precision Redundancy: In RPR two values are
calculated: FP, or BPU, and RP, or rBPU. Both FP and RP
values are compared and, if the FP value deviates more than
the acceptable threshold from the RP value, it is assumed the
value is incorrect and the RP value is used instead. If not, the
FP value is assumed correct and is used. The RP value is used
when an error is detected because it is calculated in a shorter
amount of time and thus it is less likely to have been affected
by a fault. The RP values are calculated using optimizations.

a) Trigonometric Functions Optimization: The most
optimizable section of the algorithm are the trigonometric
functions. The optimization functions tested are described
below and the results are presented in Table II.

« COordinate Rotation DIgital Computer (CORDIC) algo-
rithm [15];

o Taylor Series;

o Wilhem’s Look-Up Table (LUT)?;

o libfixmath*;

o Ganssle optimizations [16].

One of the conclusions that can be drawn from the analysis
of Table II is that all optimizations are indeed faster than the
original version, which was expected. However, most of these
optimizations lead to a large precision loss.

The implementation of the CORDIC algorithm used to test
was developed by John Burkardt’. CORDIC is the algorithm
with the worst performance, as can be observed, with all its
tested versions (from 5 to 30 iterations) being slower than any
other version of another algorithm. Even tough the precision
obtained from the 15 iterations and up was relatively good
in comparison with the other algorithms, there were better
alternatives. This was expected, since CORDIC is an algorithm

3https://www.atwillys.de/content/cc/sine-lookup- for-embedded-in-c/
“https://github.com/Petteri Aimonen/libfixmath
Shttps://people.sc.fsu.edu/~jburkardt/c_src/cordic/cordic.html

TABLE II
COMPARISON OF OPTIMIZATION ALGORITHMS.
Time SNR
Original 477.4s 138.9dB
5 iterations ~ 214.7s 30.7dB
10 iterations 238.8s 60.5dB
15 iterations 262.7s 90.5dB
CORDIC) jterations 28635 120.2dB
25 iterations 311.3s 136.1dB
30 iterations 335.1s 136.3dB
3 terms 176.3s 43.6dB
4 terms 186.0s 71.8dB
Taylor Series 5 terms 192.3s 103.8dB
6 terms 201.5s 133.6dB
7 terms 210.4s 135.3dB
Wilhem’s Look-Up Table 1232s 69.1dB
Taylor 1 179.3s 54.5dB
libfixmath Taylor II 158.8s 33.6dB
LUT 134.8s 99.2dB
3 coefficients 163.7s 66.3dB
4 coefficients 167.3s 105.2dB
Ganssle 5 coefficients 170.7s 118.3dB
7 coefficients 176.7s 134.8dB
7 coefficients 19 ¢ 135.30B

(doubles)

with a great performance when no hardware multiplier is
available. This was not the case in the tested environment
and therefore CORDIC was not the best alternative.

The results obtained show that all Taylor Series experiments
required less computational time for the same or better SNR
than CORDIC. Exception for the 25 and 30 CORDIC iterations
which provided approximately 1dB more, but at the expense
of more than 2 minutes.

Comparing the results of the Ganssle optimizations with the
Taylor Series, for the same image the SNR did not differ
significantly, less than 18%. It means that sometimes the
processing time for one is greater than the other, and vice-
versa.

The Wilhem’s Look-Up Table method was the fastest of
the tested and outperformed CORDIC with 5 iterations, Taylor
Series with 3 terms, Taylor I and Taylor II from 1ibfixmath
and 3-coefficient Ganssle. It is a good alternative in systems
with very limited memory since the LUT table occupies 66
bytes only. The LUT variation of libfixmath is more
precise and the execution time difference is not significant
(11 seconds), but requires a larger LUT (200kB). The memory
of the Zybo board does not represent an issue, which means
the 1ibfixmath is a better alternative given the precision
achieved.

Besides the LUT variation, libfixmath provides two functions
based on Taylor Series. These two variations are outperformed
by the Ganssle optimizations and even the au- thor’s Taylor
Series implementation, with worse performance and less
precision. 1ibfixmath LUT variation is one of the best
options for the Backprojection algorithm optimization.

The Ganssle optimizations represent another alternative for
the Backprojection algorithm optimization. The variation with
only 3 coefficients is outperformed by both LUT methods.
Nevertheless, the other variations provide higher precision
without a significant increase in the execution time. There are
two functions that vary only in the type of variables they use:

single-precision or double-precision. Double-precision is more
subject to errors since it requires more bitwise calculations
and the gain in precision is not significant to the point of
being worth it. The 4-coefficient variation does not provide
much more precision when compared to the 1ibfixmath
LUT function and the execution time increases by more than
30 seconds, making the former a better alternative. The 5-
coefficient variation provides more precision with an execution
time increase of less than 36 seconds. The 7-coefficient (im-
plemented with single-precision) function provides a precision
very similar to the original, with a difference of only 4dB in
the SNR, and an increase of more than 42 seconds.

Concluding, the functions that represent a better op-
tion for the Backprojection algorithm optimization are the
libfixmath LUT and the Ganssle variations of 5 and 7 co-
efficients. These three functions are used in the implementation
of the RPR mechanism.

b) Word-Length Optimization: In addition to the trigono-
metric optimization, the impact of the floating-point precision
was also tested. Reducing the precision from double-precision
to single-precision variables in the Backprojection Algorithm
resulted in a 88% quality loss. The original image had a SNR of
138.9dB and the single-precision variation had 15.7dB. Besides
reducing the precision of the variables, it would also be an
option to use fixed-point notation instead of floating-point
notation. This cannot be done with all variables because the
algorithm deals with large values, easily leading to overflow
erTors.

IV. IMPLEMENTATION

The research work developed was tested on a Zybo Zyng-
7000 board [3] from Digilent. This board contains a Zynq
device from Xilinx, an external 512MB DDR3 memory, and
I/O peripherals. The Zynq device contains a Programmable
Logic (PL) and a Processing System (PS). The PL corresponds
to a Xilinx 7-series Field-Programmable Gate Array (FPGA).
The PS main components are a dual-core ARM Cortex-A9
processor (with CPUO and CPU1) and a memory controller.
The Zynq device contains an On-Chip Memory (OCM) with
256kB of RAM and 128kB of ROM.

A. Lockstep

To prepare for the execution of the applications on each
core, it is necessary to divide the memory between the cores,
avoiding overlapping memory positions. Table III presents this
division, showing which addresses belong to which application.
The applications are in the Double Data Rate (DDR) memory
and each of them has the same amount of memory, 100MB,
which allows 312MB of free memory to be used for input
and output data. This information is put in the 1script.1ld
file, generated by the Xilinx SDK when a project is created.
In Table IIT it is possible to observe that both applications
have access to the same OCM memory, since it will be shared
between the cores. This leads to the need for synchronization.

Since the developed application is bare-metal, therefore
without an Operating System (OS), there is no file system
available to deal with input files. To be able to copy the input
information to the board memory it is necessary to use the
Xilinx Software Command-Line Tool (XSCT) [17]. This can

TABLE III
ADDRESS RANGE FOR EACH APPLICATION.

Processor 0 Application Processor 1 Application

DDR Base Address 0x00100000 0x06400000
DDR Size 0x06400000 0x06400000
OCM 1 Base Address 0x00000000 0x00000000
OCM 1 Size 0x00030000 (192KB) 0x00030000
OCM 2 Base Address OxFFFF0000 0xFFFF0000
OCM 2 Size 0x0000FE00 (63.5KB) 0x0000FEOQO

be done using the command mwr, which allows the copy of
data from a file to the board memory. After the input data is
copied into memory, the setup is complete and the applications
can be executed. The architecture of the developed lockstep
mechanism is described in Fig. 3.

a0) [ot)
l |

Prepare Lockstep Prepare Lockstep

l |

Read input

l |

[Check state]

| |

Treat data Treat data

l |

Check state

Read input

Fig. 3. Lockstep architecture.

The first thing applications do when executing is to prepare
for the lockstep. To ensure both processors start at the same
time, there is a synchronization point at the beginning of each
application.

The main issue resulting from concurrent execution [9] is
cache coherence. In order to prevent this, L2 cache, which
is shared between cores, is disabled during lockstep. In a
concurrent application such as this one it is common to
disable both caches. Even when two resources change values
in different memory positions it is possible to generate errors -
this happens because caches work in blocks of words instead
of a single word. In this case, each core has a memory space of
100MB and each application occupies less than 400kB, making
it impossible for one core to change a memory position that
may belong to a block changed by the other core. Therefore,
it is possible to only deactivate L2 cache instead of both cache
levels. This also reduces the overhead introduced by the fault
tolerance mechanism.

After disabling the L2 cache, it is necessary to prepare the
memory for checkpointing. Checkpoints need to be saved in
a reserved section of memory which is going to be accessed
by both cores. This concurrent access also leads to coherency

issues, therefore, it is mandatory to disable the cache in this
section. The memory chosen to store the checkpoints is the
OCM, which has a smaller access time when compared to the
DDR memory, reducing the overhead introduced by disabling
the cache.

The applications on both cores begin by reading the input
data from memory. The raw SAR data, read from the input
file, contains the following variables: f., corresponding to
the carrier frequency, o, corresponding to the range bin, dr,
corresponding to the range bin resolution, an array containing
the position of the platform during the data collection and
an array of pulses. All of these values except the pulses and
platform positions are saved in checkpoints. It is not possible
to save the this data because of their size, which can be over
262MB for the large input set, making it impossible to save
in memory two copies (one for each application). Instead, it is
saved the memory address, ensuring each application is reading
their input from the correct address. This work aims to protect
against faults in the processing unit, assuming the memory is
protected against radiation.

Besides saving the input values, five synchronization vari-
ables are also saved in the OCM, used to synchronize both
cores. The first step is to ensure each core has created, saved
its checkpoint and is ready to compare its state. For this,
p0_saved_flag and pl_saved_flag variables are used.
Once each core has saved their state, the value of these flags is
switched to 1. Each core waits ten seconds for the other core
to save its state, afterwards assumes the other core stopped
responding and is not functional and takes its place, executing
the rest of the program alone. Besides the timeout, there is
also a number of possible tries for each core to try to correct
its errors. When comparing the results, if a core detects a
discrepancy between its own values and the other core’s, the
core rereads these values in an attempt to correct the error.
The maximum number of tries is 10, afterwards the execution
is considered to be incorrect and not recoverable.

After checking the integrity of the input data, the next step,
presented in Fig. 3, is the data treatment. This consists in a
pre- processing of the input data before starting the algorithm.
This pre-processing is followed by another synchronization
point and the states of the applications are compared once
more. There is also a timeout of ten seconds and a maximum
of tries of 10. With the data input concluded, the next step is
to execute the Backprojection algorithm. This step, however,
is not protected by Lockstep but by RPR.

Before the end of the execution it is necessary to ensure that
all data is written in the DDR memory, which can be done
by forcing a flush in cache. Xil_DCacheFlushRange ()
is the Xilinx function [18], used to trigger flushes. Afterwards,
the image can be written into a file using XSCT. To do this,
command mrd, is used.

B. Reduced-Precision Redundancy

The Backprojection algorithm implementation used to test
the FT mechanism [4] consists in three nested loops where the
two outer ones correspond to the x and y coordinates of the
pixel and the inner loop corresponds to the number of pulses.
The pixel value is given by the sum of pulse contribuitions,
as seen previously in Algorithm 1. RPR is implemented by

adding all the pulse contributions, subject to the effect of faults,
and checking for errors against the RP value. Therefore, for
each pixel, the final value is equal to the sum of the protected
pulse calculations. After calculating both the FP and the RP
values, the values are voted on. The FP value is considered
correct if deviates less from a certain threshold from the RP
value. The threshold equals the maximum error between the
approximation and the original value. Concluding, the RPR
mechanism avoids the use of more costly mechanisms, such
as TMR or lockstep, while taking advantage of the dual-core
processor of the Zynq device. This mechanism, similarly to
what was mentioned above about the implemented lockstep,
targets data errors and is not able to detect nor correct control
flow errors.

V. RESULTS

The results from the evaluation of the mechanism are
presented in the next sections.

A. Dual-Core Evaluation

The three precision reduction optimizations that were im-
plemented and tested are the 1ibfixmath LUT and the
5 and 7-coefficient Ganssle trigonometric functions. The
execution times of the complete architecture for each of these
optimizations is presented in Table IV. As can be observed,
the architecture implemented using the 1ibfixmath is 1.58
times faster than the serial original version of the algorithm.
Regarding the 5-coefficient Ganssle algorithm, the execution
was 1.50 times faster than the original and the 7-coefficient
Ganssle algorithm was 1.49 times faster than the original
version. When compared to the dual-core version of the
Backprojection algorithm, the final architecture using the
libfixmath LUT method, the 5-coefficient and 7-coefficient
Ganssle algorithms introduce an overhead of 25.4%, 32% and
33%, respectively.

TABLE IV
COMPARISON BETWEEN THE EXECUTION TIMES DEPENDING ON THE
OPTIMIZATION.

Optimization

Original
(dual-core)

240.4s

Original libfixmath S5-coefficient Ganssle 7-coefficient Ganssle

Execution Time ~ 477.4s 301.5s 317.3s 319.7s

B. Solution Evaluation

To test the developed architecture, a set of tests was imple-
mented. The fault injection was implemented in software and at
compile-time. Regarding the lockstep mechanism in particular,
the objective is to observe the impact of the mechanism on the
performance of the system, since in the presence of faults the
execution is repeated. To test this mechanism, the following
tests were implemented:

o Test 1: Lockstep Deterministic Test The lockstep-
protected section of the applications was affected by a
defined number of faults, causing a bit-flip in a pre-defined
bit of the same pre-defined variable. Six versions of this
test were implemented: a fault occurred 1, 10, 100, 1000,
10000 and 100000 times. The results of this test are
presented in Table V.

o Test 2: Lockstep Dynamic Test The lockstep- protected
section of the applications was affected by a defined
number of faults, causing a bit-flip in a random bit in a
random variable. All lockstep variables could be affected
by a bit-flip at a random moment during the execution. Six
versions of this test were implemented: a fault occurred
1, 10, 100, 1000, 10000 and 100000 times. The results of
this test are presented in Table VI.

Regarding the RPR mechanism, the objective is to observe
the final quality of the generated images, using the SNR,
in the presence of faults. To test the this mechanism, the
following tests were implemented. To inject faults, a fault
injection function was called after every statement and a bit-
flip could or not affect the last modified variable. The frequency
of the bit-flips depends on the test.

o Test 3: RPR Normal Distribution Test According to
[19], the average occurences of bit-flips in space is 1 per
day. To evaluate mechanism on a scenario with worse
conditions, this fault injection follows a normal distribution
with a mean value of 40 and a standard deviation of 5.
The results of this test are presented in Table VII.

o Test 4: RPR 1440 bit-flips per day Test Considering
the average of bit-flips according to [19], a worse-case
scenario was tested: an average of 1440 bit-flips per day,
or one every 60 seconds. The bit-flip affects a random bit
in a random variable. The results of this test are presented
in Table VIIIL.

o Test 5: RPR 2880 bit-flips per day Test Similarly to the
test above, was also tested a scenario where the average
of bit-flips per day is 2880, or one every 30 seconds. The
bit-flip affects a random bit in a random variable. The
results of this test are presented in Table VIIIL.

o Test 6: RPR 8640 bit-flips per day Test A variation of
the tests above was tested: a scenario with an average
of 8640 bit-flips per day, or one every 10 seconds. The
bit-flip affects a random bit in a random variable. The
results of this test are presented in Table VIII.

Each of the RPR tests was executed three times for each of
the optimizations implemented: 1ibfixmath, 5-coefficient
and 7-coefficient Ganssle algorithms. The execution times
are not presented since they do not reflect the behaviour or
perfomance of the mechanism but the impact of the fault
injection, which inserted an overhead of approximately 6 to 7
minutes, with an average of 11 minutes per test.

TABLE V
RESULTS OF TEST 1: LOCKSTEP DETERMINISTIC TEST.

Test 1: Number of injected faults

Number of faults 1 10 100 1000 10000 100000
Execution Time 299.6s 299.6s 300.5s 301.0s 301.1s 308.9s
SNR 138.9dB 138.9dB 138.9dB 138.9dB 138.9dB 138.9dB

C. Energy Consumption

After analysing the impact of the optimizations in the
architecture regarding the total execution time, it is also
important to analyse the impact regarding the total energy
consumption of the system. Table IX presents the power and

TABLE VI
RESULTS OF TEST 2: LOCKSTEP DYNAMIC TEST.

Test 2: Number of injected faults

1 10 100 1000 10000 100000
Execution Time 300.1s 300.7s 301.0s 302.0s 302.4s 309.2s
SNR 138.9dB 138.9dB 138.9dB 138.9dB 138.9dB 138.9dB
TABLE VII

RESULTS OF TEST 3: RPR NORMAL DISTRIBUTION TEST.

Optimization
libfixmath 5-coefficient Ganssle 7-coefficient Ganssle
#1 55.4dB 37.9dB -62.3dB
#2 63.4dB 79.8dB 103.3dB
#3 -inf 82.1dB 94.7dB

energy (work) consumed by each of the implemented versions.
The power was measured by a PL programable power supply
from TTI, measuring the power supplied to the whole system.
Comparing the baseline single-core implementation against
its dual-core version, it is possible to observe that the extra
energy required for the second CPU core is around 150mW
but allowed a reduction of almost half of the processing time.
Depending on the approximation used, the mechanism uses
from 30% to 40% more energy when compared to the baseline.
Moreover, computing approximations makes use of simpler
CPU instructions, therefore consuming less instant power. It
can be observed that the processing time is what impacts the
most in terms of energy consumption.

VI. DISCUSSION

Two tests were designed to test the lockstep mechanism:
a test where the fault injection targeted a pre-defined bit in
a pre-defined variable and a test where the affected bits and
variables were random.

As can be observed in Table V, the SNR values of the
images generated by Test 1 were equal to the original, as
expected, since the lockstep mechanism repeated the loading
from memory in case of error. Nonetheless, the execution time
increased due to the repeated executions. Similarly to Test 1,
the SNR values of Test 2 were equal to the original, which was
expected and the execution time was superior to the error-free
execution.

Regarding the tests used to evaluate the RPR mechanism,
they differed in the bit-flip rate per day. According to [19], the
average of bit-flips per day is one. To evaluate the reliabilty
of the solution, the tests had a bit- flip rate of one every 10
seconds, every 30 seconds and every minute.

Most of the results obtained by Test 3 are not considered
acceptable, since the SNR values are inferior to 100dB,
according to [4]. Two iterations, the third of 1ibfixmath
and the first of the 7-coefficient Ganssle algorithm were either
minus infinite or a negative value, which generate a blank
image.

The overall results the executions of Test 4 were close to
the original SNR value of the image, except the first execution
of the 7-coefficient Ganssle algorithm. The other iterations
deviated from the original value a maximum of 4.1dB and an

TABLE VIII
RPR BIT-FLIP TEST RESULTS

Number of . Optimization
Test P Iteration
bit-flips - :
)) 5-coefficient ~ 7-coefficient
per day libfixmath Ganssle Ganssle
1 138.9dB 138.8dB 19.9dB
4 1440 2 138.6dB 138.5dB 134.8dB
3 138.8dB 138.8dB 138.8dB
1 97.8dB 67.9dB 109.9dB
5 2880 2 8.3dB 129.1dB 34.4dB
3 90.3dB 101.1dB 83.3dB
1 -inf -inf -inf
6 8640 2 -0.4dB -inf nan
3 -inf nan -inf
TABLE IX

ENERGY AND POWER CONSUMPTION OF THE FAULT-TOLERANT
ARCHITECTURE DEPENDING ON THE OPTIMIZATION.

Optimization
.. Baseline . 5-coefficient 7-coefficient
Original (dual-core) libfixmath Ganssle Ganssle
Power 1.695W 1.841W 1.834W 1.829W 1.826W
Energy 808.13J 414.02] 541.93] 581.45J 587.25]

average of 0.65dB. The low SNR value of the first iteration
of the 7-coefficient Ganssle algorithm is justified by the fault
injection in random variables. Certain variables are more critical
than others, for example, the final result of the approximation
has a greater impact on the final image quality.

As can be observed from Table VIII, the overall SNR values
obtained from Test 5 are inferior when compared to the results
of Test 4, which was expected since the rate of bit- flips
doubled. The 5-coefficient Ganssle algorithm provided the
best results of this test: two out of three SNR values are
considered acceptable and the other has a SNR almost half of
the original value. The results obtained using the 7-coefficient
Ganssle algorithm generate one acceptable image. For this test,
the optimization which provided the best results was the 5-
coefficient Ganssle algorithm.

Test 6 had the higher rate of fault injection, 10 bit-flips per
second, as can be observed in Table VIII, the mechanism was
not successful at detecting and correcting faults. The values
in the results table are nan, —oo or negative values, which
generate a blank image. A SNR equal to nan happens when a
bit-flip affects a floating-point variable and the resulting value is
not considered a valid floating-point representation. Regarding
the SNR of —oo, the calculation of this metric involves a
logarithm operation, which equals —co in C when calculating
the logarithm of 0. The mechanism became ineffective due
to the elevated rate of bit-flips, leading to the conclusion the
mechanism is only able to tolerate faults up to a rate similar
to test 5.

VII. CONCLUSIONS

This work explored the development of an architecture for
SAR imaging systems. This architecture consists of an on-
board fault-tolerant system capable of generating SAR images
using the Backprojection Algorithm in a space environment.
The final architecture consists on a dual-core implementation of
the Backprojection Algorithm, protected by two fault tolerance

mechanisms: lockstep and RPR. In spite of the limitations
of the RPR mechanism, the algorithm was tested under
pessimistic conditions, different from the average. Furthermore,
the developed architecture with a mixed approach of lockstep
and RPR was demonstrated to be a good alternative for
intensive space applications.

ACKNOWLEDGMENT

This work was supported by national funds through
Fundacgao para a Ciéncia e a Tecnologia (FCT) with reference
UID/CEC/50021/2019 and project SARRROCA, ”Synthetic
Aperture Radar Robust Reconfigurable Optimized Computing
Architecture” with referencest PTDC/EEI-HAC/31819/2017,
funded by FCT/MCTES, and POCI - Programa Operacional
Competitividade e Internacionalizagdo e PORLisboa — Pro-
grama Operacional Regional de Lisboa.

REFERENCES

[11 E.S. Cor Claeys, Radiation Effects in Advanced Semiconductor Materials
and Devices. Springer-Verlag Berlin Heidelberg, 2002.
[2] L. A. Tambara, “Analyzing the impact of radiation-induced failures in
All Programmable System-on-Chip devices,” 2017.
[3] Xilinx, “Zybo FPGA board reference manual,” 2017.
[4] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo, PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, Pacific Northwest
National Laboratory and Georgia Tech Research Institute, December
2013, http://hpc.pnnl.gov/projects/PERFECT/.
D. Pritsker, “Efficient global back-projection on an FPGA,” in 2015
IEEE Radar Conference (RadarCon), May 2015, pp. 0204-0209.
[6] W.-C. Fang, C. Le, and S. Taft, “On-board fault-tolerant SAR processor
for spaceborne imaging radar systems,” in 2005 IEEE International
Symposium on Circuits and Systems, May 2005, pp. 420-423 Vol. 1.
A. Jacobs, G. Cieslewski, C. Reardon, and A. George, “Multiparadigm
computing for space-based Synthetic Aperture Radar,” pp. 146-152,
2008.
[8] A. B. de Oliveira, L. A. Tambara, and F. L. Kastensmidt, Exploring
Performance Overhead Versus Soft Error Detection in Lockstep
Dual-Core ARM Cortex-A9 Processor Embedded into Xilinx Zynq
APSoC. Cham: Springer International Publishing, 2017. [Online].
Available: https://doi.org/10.1007/978-3-319-56258-2_17
A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“PLR: A software approach to transient fault tolerance for multicore
architectures,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135-148, 2009.
B. Pratt, M. Fuller, and M. Wirthlin, “Reduced-precision redundancy on
FPGAs,” International Journal of Reconfigurable Computing, vol. 2011,
p. 12, 2011. [Online]. Available: http://dx.doi.org/10.1155/2011/897189
A. Ullah, P. Reviriego, S. Pontarelli, and J. A. Maestro, “Majority voting-
based reduced precision redundancy adders,” IEEE Transactions on
Device and Materials Reliability, 2017.
S.-J. Wang and N. K. Jha, “Algorithm-based fault tolerance for FFT
networks,” IEEE Transactions on Computers, vol. 43, no. 7, pp. 849-854,
1994.
M. Didehban, S. R. D. Lokam, and A. Shrivastava, “Incheck:
An in-application recovery scheme for soft errors,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2017, pp.
1-6.
H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient software-based fault
tolerance approach on multicore platforms,” in 2013 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2013, pp. 921-926.
J. Volder, “The cordic computing technique,” in Papers Presented at the
the March 3-5, 1959, Western Joint Computer Conference, ser. IRE-AIEE-
ACM ’59 (Western). New York, NY, USA: ACM, 1959, pp. 257-261.
[Online]. Available: http://doi.acm.org/10.1145/1457838.1457886
J. Ganssle, The Firmware Handbook. Orlando, FL, USA: Academic
Press, Inc., 2004.
Xilinx, “Xilinx Software Command-Line Tool (XSCT) reference guide,”
2016.
Xilinx, “OS and Libraries document collection,” 2014.
ESA, Herschel Observers’ Manual, ESA, Mar. 2014.

[5

=

[7

—

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

