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Abstract. Synthetic Aperture Radar is a form of radar widely used to
extract information about the surface of the target. The transformation
of the signals into an image is based on DSP algorithms that perform
intensive but repetitive computation over the signal data. Traditionally,
an aircraft or satellite acquires the radar data streams and sends it to be
processed on a data center to produce images faster. However, there are
novel applications demanding on-board signal processing to generate im-
ages. This paper presents a novel implementation for an on-board embed-
ded SoC of an accelerator for the BackProjection algorithm, which is the
reference algorithm for producing images of SAR sensors. The method-
ology used is based on a HW/SW design partition, where the most time
consuming computations are implemented in hardware. The accelerator
was specified in HLS, which allows to reuse the code from the original
implementation of the algorithm in software. The accelerator performs
the computations using floating-point arithmetic to produce the same
output as the original algorithm. The target SoC device is a Zynq 7020
from Xilinx which has a dual-core ARM-A9 processor along with a re-
configurable fabric which is used to implement the hardware accelerator.
The proposed systems outperformed the software-only implementation
in 7.7× while preserving the quality of the image by adopting the same
floating-point representations from the original software implementation.

Keywords: FPGA · Synthetic Aperture Radar · DSP · BackProjection
· Zynq · SoC · Reconfigurable Accelerator.

1 Introduction and Motivation

Remote sensing technologies such as Synthetic-Aperture Radar (SAR) have been
widely used monitor the surface of the Earth, in particular, ships and oil spills
tracking at sea, ice-caps and sea level, terrain erosion, drought and landslides,
deforestation, fires, and other types of natural disasters. The main strength of
SAR is that it operates even in presence clouds, smoke and rain and without
a light source, hence, making it a very attractive method to generate images
of Earth’s surface. A SAR sensor can be mounted on-board flying platforms
such as satellites, aircrafts and drones. Moreover, with the advancements in the
technology and signal processing methods, there are increasing business oppor-
tunities for satellites, drones and Unmanned Aerial Vehicles (UAVs) equipped
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Fig. 1. Illustration of SAR operation and its physical parameters.

with lightweight, small, and autonomous systems for on-board processing and
generation of SAR images and subsequent broadcasting them, avoiding the time-
consuming processing data at the receivers. However, its implementation in low-
power embedded systems is limited to simplified implementations of the algo-
rithm. While they are able to reduce the processing time, they sacrifice the image
quality.

At the moment, the reference algorithm for SAR imaging is BackProjection
(BP), which computes the contribution of each reflected pulse, to the SAR sensor,
for each pixel on the resulting image. This process is time consuming as the
projections all of the received pulses have to be computed for all the pixels in
the image. Figure 1 illustrates the parameters involved in the operation of a
SAR mounted on a moving platform, and also in the BP algorithm, namely R
which is the range of the swath for each pulse, and x, which is the distance to
the terrain covered by the pulse, for different azimuth positions.

Recent radiation tests [5] on System-on-Chip (SoC) Zynq devices from Xilinx
have shown that they provided a good performance under a harsh environment,
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therefore there is an increasing interest in adopting such systems on-board satel-
lites and aircrafts. These devices have a dual-core ARM A9 CPU along with a
reconfigurable fabric which is capable of implementing a hardware accelerator
to alleviate the computations from the CPU, and speedup the overall execution
time.

This work introduces a novel accelerator architecture for SAR imaging using
the BackProjection image generation algorithm and its evaluation on a SoC
device.

This paper is organized as follows. Section 2 presents the background on
BP algorithm and existing accelerators. Section 3 is dedicated to the profile
of the algorithm, which determines which parts of the implementation require
more processing time, and thus be the candidates for hardware acceleration.
Section 4 details the implementation of the hardware accelerator using High-
Level Synthesis (HLS). Section 5 presents the HW/SW system design, and its
performance and resources are discussed in Section 6. Section 7 concludes the
paper with the final remarks.

2 Background

2.1 BackProjection

The following nomenclature related to the BackProjection algorithm is adopted
in this paper:

– R - Differential range from platform to each pixel at the center of the swath.
– xk, yk, zk - Radar platform location in Cartesian coordinates.
– x, y, z - Pixel location in Cartesian coordinates.
– rc - Range to center of the swath from radar platform.
– f(x, y) - Value of each pixel (x, y).
– θk - Aperture point.
– rk - Range from pixel f(x, y) to aperture point θk.
– ω - Minimal angular velocity of wave.
– gx,y(rk, θk) - Wave reflection received at rk at θk (calculated using the linear

interpolation in equation 2).
– s(n) - Wave sample in the previous adjacent range bin.
– r(n) - Corresponding range to the previous adjacent bin.

As aforementioned, the BP algorithm computes the contribution of each re-
flected pulse for each pixel on the resulting image. The BP algorithm takes
the following values as input: number of pulses, location of the platform for each
pulse, the carrier wave number, the radial distance between the plane and target,
the range bin resolution, the real distance between two pixels and the measured
heights. For each pixel and each pulse, the BP algorithm, performs the following
steps:

1. Computation of the distance from the platform to the pixel:

R =
√

(x− xk)2 + (y − yk)2 + (z − zk)2 − rc (1)
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2. Conversion of the distance to an associated position (range) in the data set
(received echoes).

3. Obtain the samples at the computed range via linear interpolation, using
equation 2 [6].

gx,y(rk) = g(n) +
s(n+ 1)− s(n)

r(n+ 1)− r(n)
· (rk − r(n)) (2)

4. Scales the sampled value by a matched filter to form the pixel contribution.
This value is calculated using equation 3 [6]. dr is calculated using equation
1 [6].

eiω2|
−→rk| = cos(2 · ω · dr) + i sin(2 · ω · dr) (3)

5. Accumulates the contribution into the pixel. The final value of each pixel is
given by equation 4 [6].

f(x, y) =
∑
k

gx,y(rk, θk) · ei·ω·2·|
−→rk| (4)

The pseudocode to compute the aforementioned steps is shown in algorithm 2.
ku represents the wave number and is given by 2πfc

c , where fc is the carrier
frequency of the waveform and c is the speed of light, ak refers to the position of
the pixel, and vp, corresponds to the platform position. The complex exponential
eiω is equivalent to cos(ω)+i sin(ω) and, therefore, a cosine and sine computation
is implied in the calculation of each pixel, represented in equation 4.

Algorithm 1 BackProjection algorithm pseudocode, from [2].

1: for all pixels k do
2: fk ← 0
3: for all pulses p do
4: R← ||ak − vp||
5: b← b(R−R0)/∆Rc
6: w ← b(R−R0)/∆Rc − b
7: s← (1− w) · g(p, b) + w · g(p, b+ 1)
8: fk ← fk + s · ei·ku·R

9: end for
10: end for

2.2 FPGA Accelerators for BackProjection

There are several accelerators for the BP algorithm, however they often target
High Performance Computing (HPC) systems for real-time generation of im-
ages. The work in [4] uses OpenCL to program 16 GPUs (with 2048 cores each),
receives all signals in 17.7 seconds and takes 1 second to produce an image.
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There are also some implementations of accelerators on FPGA do variations
of the BP algorithm such as: fast-BP [7], factorized-BP [8] or even an incom-
plete implementation [9]. Even though they perform faster than the complete
BP algorithm the image quality is degraded, therefore they are not useful for
comparison with the proposed architecture. Previous work on implementing the
BP algorithm targeting SoC devices can be found in [3]. However, the authors
focused on acceleration by distributing the load on the two cpu cores and intro-
ducing a light-weight software-only fault-tolerance mechanism, and don’t benefit
from any accelerator on the reconfigurable fabric.

3 Algorithm Profiling

The profiling of the BP algorithm running, on a single core of the A9 ARM
processor of the target Zynq device, was required to determine which parts of
the algorithm should be accelerated given that not all parts of a Digital Signal
Processing (DSP) algorithm consume the same time to process and the device
has limited resources. The implementation of the BP algorithm adopted was the
one available in [2], and presented in the listing 1.1.

Listing 1.1. BackProjection code

void backpro j e c t i on ( ) {
s a r c o n s t a n t s c a l c u l a t i o n ( ) ;
for ( i y = 0 ; iy < BP NPIX Y ; ++iy ) {

const double py = (−BP NPIX Y/2.0 + 0 .5 + iy ) ∗ dxdy ;
for ( i x = 0 ; ix < BP NPIX X ; ++ix ) {

complex accum ;
const double px = (−BP NPIX X/2.0 + 0 .5 + ix ) ∗ dxdy ;
accum . re = accum . im = 0.0 f ;
for (p = 0 ; p < N PULSES ; ++p) {

x d i f f = p latpos [ p ] . x−px ;
y d i f f = p latpos [ p ] . y−py ;
z d i f f = p latpos [ p ] . z−z0 ;
sqr t aux = xd i f f ∗ x d i f f+y d i f f ∗ y d i f f+z d i f f ∗ z d i f f ;
R = sq r t ( sqr t aux ) ;
const double bin = (R − R0)∗ dR inv ;
complex sample , prod , ma t ch ed f i l t e r ;
const int b i n f = ( int ) bin ;
const f loat w = ( f loat ) ( bin−(double ) b i n f ) ;
sample . re =(1.0 f−w)∗ data [ p ] [ b i n f ] . r e+w∗data [ p ] [ b i n f +1] . re ;
sample . im=(1.0 f−w)∗ data [ p ] [ b i n f ] . im+w∗data [ p ] [ b i n f +1] . im ;
double angle aux = 2 .0 ∗ ku ∗ R;
s i gna l t emp l a t e . re = cos ( angle aux ) ;
s i gna l t emp l a t e . im = s in ( angle aux ) ;
ma t c h e d f i l t e r r e s u l t = cmult ( sample , s i gna l t emp l a t e ) ;
accum . re += ma t c h e d f i l t e r r e s u l t . re ;
accum . im += ma t c h e d f i l t e r r e s u l t . im ;

} // pu lse
image [ i y ] [ i x ] = accum ;

} // x
} // y

} // func

The obvious functions to be accelerated in hardware are the square root (sqrt)
and the trigonometric (sin, cos) functions from the inner loop. The remaining
functions in the implementation are sums and multiplications. Nevertheless, in
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this algorithm there is a final accumulation operation at the end of the inner
loop, which can be seen as a reduce operation, and thus a scale down in the
number of data transfers required.

In the profiling, an image of 512x512 pixels was generated from a set of
512 pulses, with 512 samples for each pulse. For 512 complex floating-point
input samples it produces a single complex floating-point result, which results
in reduction of required throughput.

Table 1 summarizes the processing times of the most time consuming math-
ematical operations in the BP algorithm. All times are in nanoseconds and were
measured for 1000 repetitions of the execution of each operation on the ARM
processor, compiled with -O3 compiler optimization. Table 2 presents the pro-
cessing times for a set for the computation of a single pixel, a set of 512 pixels
and complete image of 512x512 pixels. The processing time for a single pixel
corresponds to the processing of 512 input pulses.

Operation Time [ns] % Execution Time

Sqrt 50 1.3%
Sin+Cos 3108 84.3%

Misc 530 15.4%
Total 3688 100.0%

Table 1. Execution times for the mathematical operations in the implementation of
the algorithm.

Number of Pixels Processing Time

1 1.88 ms
512 936 ms

512x512 487,5 s
Table 2. Execution time for sets of pixels.

4 SAR BackProjection Accelerator

The accelerator targeted the most time consuming operations of the BP algo-
rithm, and was specified using Xilinx HLS. Using HLS and maintaining the
floating-point representation allows to reutilize parts of the source code. It also
guarantees that the images produced will have the same result as original imple-
mentation of the BP algorithm. The accelerator was implemented as a single IP
core, where it receives the range values and samples for 512 pulses. The range
values are double precision floating-point numbers whereas the samples are com-
plex single-precision floating-point numbers. The operations implemented on the
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accelerator correspond to the ones on line 9 of the algorithm’s pseudocode :
fk ← fk + ei·ku·R, see algorithm 2.

In this specification, it is noteworthy the separation of the computations be-
tween two loops in the HLS specification. The first loop obtains the data for the
range values R from the streaming interface, computes their product with 2πKu
to serve as input to sine and cosine operations and stores the results in local
memories. The second loop receives the pulse samples also via the streaming in-
terface, performs the complex multiplication with the result from sine and cosine
and writes the result to the output streaming interface. Figure 3 illustrates the
sequence diagram of the relations between the building blocks of the accelerator.

Fig. 2. Organization of the accelerator.

Table 3 summarizes the FPGA resources required to implement the BP ac-
celerator from the HLS specification. The HLS tool was instructed to produce
a circuit design capable of operating at 100 MHz. It produced an IP core which
requires a minimum of 60 clock cycles in latency, of which 24 cycles are required
by the CORDIC IP core instantiated by the HLS.
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Algorithm 2 HLS accelerator specification.

1: for all pulses p do
2: input← inStream.read()
3: R← input.data()
4: angle← 2.R.Ku
5: s, c← hls :: sincos(angle)
6: mem sin[p]← s
7: mem cos[p]← c
8: end for
9: for all pulses p do

10: input← inStream.read()
11: sample.re← input.data()
12: sample.im← input.data()
13: matched filter result← (mem cos[p] + imem sin[p]) · sample
14: acc← acc+matched filter result
15: outStream.write(acc) . pixel val
16: end for

Resource Utilization % Total on Zynq-7020

BRAM18K 2 1%
DSP48E 34 15%

LUTs 13986 26%
Table 3. Estimate of resources required to implement the BP accelerator reported by
Vivado HLS.

5 HW/SW Project

The HW/SW project to implement the BP algorithm follows the partition cre-
ated for the accelerator of the algorithm. The accelerator was integrated in the
system by establishing a connection to the CPU via an AXI streaming interface,
which is connected through a Direct Memory Access (DMA) controller. Figure 3
illustrates the Vivado project containing the hardware blocks, including the BP
accelerator (axis sar1 datapath 0) and the ARM processor (Processing System).
On the software-side, the accelerator is used issuing data transfers between the
DMA controller and the memory. The software running on the ARM processor
is partially from [2].

The listing 1.2 shows the simplified C code running on the ARM A9 cpu. The
initial part of the code corresponds to the initialization of constants as in the
original code [2]. The loops for all pixel computations was changed so that only
the range computations are performed in software and the rest of the algorithm in
the hardware accelerator. Moreover, the original loop which iterated all the pulse
samples was removed as they are computed by the accelerator. The interaction
with the accelerator happens through the DMA, before instructing to transfer
input values of range and sample values from the DDR to the accelerator, it is
programmed to wait for the computation of a row of (512) pixels.
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Fig. 3. Hardware project design on Vivado.

Listing 1.2. BackProjection code

void backpro j e c t i on ( ) {
s a r c o n s t a n t s c a l c u l a t i o n ( ) ;
for ( i y = 0 ; iy < BP NPIX Y ; ++iy ) {

const double py = (−BP NPIX Y/2.0 + 0 .5 + iy ) ∗ dxdy ;
DMA Transfer ( image + iy ∗ r ow o f f s e t ) ; // ACCL 2 DDR image row
for ( i x = 0 ; ix < BP NPIX X ; ++ix ) {

complex accum ;
const double px = (−BP NPIX X/2.0 + 0 .5 + ix ) ∗ dxdy ;
accum . re = accum . im = 0.0 f ;
for (p = 0 ; p < N PULSES ; ++p) {

x d i f f = p latpos [ p ] . x−px ;
y d i f f = p latpos [ p ] . y−py ;
z d i f f = p latpos [ p ] . z−z0 ;
sqr t aux = xd i f f ∗ x d i f f+y d i f f ∗ y d i f f+z d i f f ∗ z d i f f ;
R = sq r t ( sqr t aux ) ;
const double bin = (R − R0)∗ dR inv ;
complex sample , prod , ma t ch ed f i l t e r ;
const int b i n f = ( int ) bin ;
const f loat w = ( f loat ) ( bin−(double ) b i n f ) ;
DMA Transfer ( range ) ; // DDR 2 ACCL
DMA Transfer ( samples ) ; // DDR 2 ACCL

} // pu lse
} // x

} // y
} // func

6 Results and Discussion

The proposed system was implemented on a Zynq-7020 device xc7z020iclg400-1l
installed on a Pynq-Z2 from TUL. The system was tested with two images, a
synthetic one provided in the Perfect Suite[2], shown in figure 4 on the left, and
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a real one from the AFRL dataset1, shown in the same figure on the right. Both
images are 512x512 pixels. The software for the ARM CPU was compiled with
the -O3 optimization compilation option.

6.1 Processing Time

From the original algorithm profiling, it was found that the algorithm required
487.5 seconds to complete the generation of a 512x512 pixels image. The pro-
cessing times for the computations made by the accelerator in software, which
corresponds to line 9 of the pseudocode, required 1667.3 us, whereas the same
computations in the accelerator required only 37.31 us, which corresponds to a
reduction of 44.68×. Table 4 summarizes the execution times to compute differ-
ent loops of the algorithm, being the pulses the inner most loop and the Y pixels
the outmost loop. An iteration on a loop requires the complete execution of its
inner loops.

Loop Number of Pixels Processing Time

512 pulses 1 234,5 us
X pixels 512 120.05 ms
Y pixels 512x512 61,46 s

Table 4. Processing time of the proposed HW/SW architecture for different pixel
quantities.

Comparing the total processing times for an 512x512 image, between the
original software-only implementation and the one with the accelerator, the one
with the accelerator is 7.7× faster than the original one.

Amdhal’s Law [1] states the theoretical speedup (S) of a program is given
that part (p) of it can be accelerated of an amount (s), equation 5.

S =
1

(1− p) + p
s

(5)

The accelerated part of algorithm (p) corresponds to 89% of the original
execution time, and it is accelerated 44.68 times, hence achieves a theoretical
speedup of 7.69, which is validated by the speedup result of 7.75 obtained from
the experiment.

6.2 Hardware Resources

The resources required to implement the accelerator on the reconfigurable fabric
of the device are dominated by the DSP blocks which consume about 64% of
the total available on the device. Table 5 summarizes the resources required to
implement the accelerator on the reconfigurable fabric of the Zynq device.

1 https://www.sdms.afrl.af.mil/index.php?collection=gotcha

https://www.sdms.afrl.af.mil/index.php?collection=gotcha
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Fig. 4. Synthetic SAR image from the Perfect benchmark suite (top) and real SAR
image from the AFRL dataset (bottom).
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Resource Utilization % Total on Zynq-7020

LUT 11517 21.65
BRAM 4 2.86
DSP 141 64.09

Table 5. Summary of resource utilization to implement the accelerator on a Zynq-7020
device.

6.3 Energy Consumption

The current consumption was measured using a UM24C USB power meter, con-
nected between the host computer and the Pynq-Z2 FPGA board, during the
experiments. Figure 5 shows the power consumption measured, which details
the consumption for power-on, configuration of the device and execution of the
algorithm with the reconfigurable accelerator. The average power consumption
of the whole system during the computation of the BP algorithm is 1.796 W.

The power estimate, from Vivado, provides insight on the on-chip power
consumption, which is 1.584 W. The difference between the measurement and
the estimate is around 200 mW (12%) and is attributed to other components
present on-board, such as memories, ethernet controller and LEDs, which are not
taken into account Vivado. Figure 6 shows the details of the power consumption,
where 86% of the total on-chip power is consumed by the CPU (PS7). The DSP
blocks are the elements on the reconfigurable fabric that consume the most as
they are the most utilized during the execution of the BP algorithm.

The software-only implementation consumes on average 1.72 W. Even though
the system with the hardware accelerator requires more 76 mW of instant
power, it finishes 7.1 minutes earlier than the software-only implementation.
In comparison with the original software-only execution on the CPU, which con-
sumed 241.5 mWh (772.2 J), the system with the hardware accelerator requires
30.4 mWh (109,55 J), which represents 14.18% of the total energy consumption
by the system. For a system supported by batteries as the proposed one, for the
same battery charge the proposed system is capable of processing almost 8×
more images than the traditional implementation.

7 Conclusions

The work presented in this paper proposes a novel HW/SW implementation
of the BP algorithm on an embedded SoC platform for on-board processing of
SAR imaging. The creation of the accelerator was facilitated by the adoption of
HLS to migrate sets of arithmetic operations from software into hardware. The
proposed architecture was able to achieve a speedup of 7.7× over the software-
only implementation while preserving the quality of the image. Future work will
focus on moving other operation of the BP algorithm into hardware to further
improve the performance of the accelerator.
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Fig. 5. System current consumption during the different stages of the experiment.

Fig. 6. On-chip power consumption distributed across the different elements.
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