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The construction of a nonlinear regression metamodel for simulation requires experimen-
tal designs that better explore the nonlinearities of the system. The proposed sequential
procedure focuses on simulation scenarios in sub-regions where the input–output behav-
ior is more interesting. It takes into account, not only the inputs, but also the output
(response) value of the metamodel. The resulting experimental design ensures that the
scaled response values are evenly spread over a scaled response surface. Although the focus
is on nonlinear regression metamodels, the method may be applied to other types of meta-
models. This design procedure is illustrated for one-dimensional and two-dimensional
inputs, and the results are compared with space filling designs. The use of bootstrapping
for metamodel validation stresses the importance of validation in a metamodeling context.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Computer simulation models are one of the most widely used tools to perform sensitivity analysis of a system response.
However, the interpretation of large amounts of data produced by the simulation study can become an intimidating task. The
representation of the simulation input–output relationships through a simple mathematical function exposes in a straight-
forward manner the simulation’s behavior. Such a representation of the simulation model, or metamodel [5], requires fewer
computer resources than the computer simulation model itself. Metamodels may be very useful in answering ‘what if’ ques-
tions and can be used for verifying and validating and optimizing the simulation model as well. In the simulation literature,
metamodels are also called response surfaces, emulators, etc. A metamodel approximates the simulation system. Due to
their simple construction and use, general linear metamodels have been frequently used by simulation analysts and some
researchers [8,23]. However, most real-life systems, such as problems involving queuing systems [40], exhibit nonlinear
behavior. The use of linear metamodels (e.g. the intensively studied low-order polynomials) are unable to provide an accept-
able global fit to curves of arbitrary shape. To overcome this limitation, some researchers have proposed a number of non-
linear metamodels that provide a better and more realistic global approximation of the simulation’s input–output
relationship; for example, nonlinear regression metamodels [32,34], Kriging metamodels [24], and neural nets [3]. Some
nonlinear functions may fit the data well and with fewer and more meaningful parameters than linear approximations, thus
making the interpretation of the system and its analysis more intuitive. The construction of a metamodel requires the selec-
tion of a design, and the determination of the concomitant metamodel type, the estimation of the metamodel parameters,
and the validation of the resulting metamodel.
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The selection of an efficient set of inputs, or experimental design, at which to run the simulation and compute the output
can be an important challenge. Analysts need experimental designs capable of efficiently exploring an intricate simulation
model characterized by a complex response surface, possibly containing some nonlinearities. A good experimental design
should effectively explore an experimental region of a multi-dimensional input space through a small number of design
points. The remaining stages of the metamodel’s construction rely heavily on a good selection of the inputs used as training
data to predict the output. Some sequential experimental design strategies have been proposed for finding inputs that opti-
mize (instead of answering what-if questions) the output of a simulation model [16].

Several specialized methods for building metamodels have been proposed, including input selection based on Latin
hypercube experimental designs [27]. Such one-shot designs, where all design points are selected prior to the execution
of the simulation experiments, offer little or no escape for exploring the nonlinearities of the metamodel’s response. Indeed,
if the model is seriously in doubt, the misspecification of the metamodel itself can lead to completely inappropriate forms of
design. Linear regression [11,25] and Kriging [30,42] methods have been proposed and compared [2] with mixed results.
Other comparisons based on the relative performances of the metamodeling designs [28,30,39] have been presented in order
to aid practitioners decide which designs to use.

The dependency on the true values of the underlying unknown model’s parameters is one of the main difficulties asso-
ciated with optimal experimental designs for nonlinear models [13,31]. These optimal experimental designs require strong a
priori assumptions on the metamodel’s type and on the nature of the response, for example, white noise [22]. As a result, this
type of designs may be completely inappropriate when the input–output relation is in doubt.

Frequently, simulation experiments are implemented sequentially, except possibly when parallel computers are used [22].
Therefore, new inputs can be selected based on the information gathered in previous stages of the simulation experiment. A
careful selection of inputs may require fewer runs than fixed-sample (one-shot) designs, leading to more efficient experimen-
tal designs. This characteristic is most critical when we are dealing with complex systems that require expensive simulations.
Such designs are particularly useful when the experimenter may be more interested in obtaining a good prediction over a
localized region. Recently, in a Kriging metamodeling context, both Kleijnen and van Beers [24] and Sasena et al. [36] devel-
oped sequential designs; see also Alam et al. [1], Brantley and Chen [7], Hendrickx and Dhaene [14] and Keys and Rees [16].

In this article, however, we focus on metamodel techniques for the design of experiments, to be analyzed through a pos-
sibly nonlinear regression metamodel. If the metamodel response is nonlinear, then the usual measures of performance of a
design depend on the parameters being estimated. A sequential approach is then naturally suggested: one should choose
design points so as to maximize a measure of performance evaluated at the estimates obtained from observations made
at previous design points.

Santos and Santos [35] proposed a sequential design to improve the overall accuracy of a nonlinear regression metamodel
with a single input. The procedure adds new points to the design where there are large gaps in the output. It is noted that this
technique needs to be conjugated with initial evenly spaced inputs in order to assess regions where the response is regular.
The approach improves the accuracy of the resulting metamodel compared with the results of an evenly spaced design. In
this paper, we propose an algorithm to address multiple inputs. This algorithm is based on a wire-frame representation of
the response surface using a mesh of triangles. The construction of the wire-frame borrows ideas from 3D computer graphics
algorithms, where there is a need to expose the details of 3D objects. The values of each factor are scaled to the interval [0;1]
to account for significantly different ranges of each input; the response is also scaled to the same interval in order to nor-
malize distance calculations. In our method the design points are selected to ensure an approximate uniform response
behavior. As a result, it concentrates design points in sub-regions where the input–output behavior is of more interest. Sub-
sequent design points are chosen to minimize the response surface gaps. These gaps correspond to triangles with large areas.
The results are compared with an evenly spaced experimental design. Our comparisons are motivated by the fact that rel-
atively little attention has been paid to the interaction between the choice of an experimental design and the resulting non-
linear metamodel accuracy.

This paper is organized as follows. In Section 2, the construction procedure for the general nonlinear multi-dimensional
input metamodel is presented, excluding the experimental design component; the construction procedure includes the
establishing of asymptotic results for the least squares estimators, the use of a nonparametric test for checking the variance
heterogeneity in simulation experiments, and the use of bootstrapping for metamodel validation. Section 3 is dedicated to
the proposed experimental design for multi-dimensional input, as well as the unidimensional simplification. In Section 4 two
application examples are presented to illustrate unidimensional and two-dimensional input experimental designs. Section 5
summarizes the results and suggests directions for future work.

2. Metamodel construction

The metamodeling construction process should follow a scientific approach if meaningful conclusions are to be drawn
from the experimental data [10]. First the simulation practitioner should state the objective of the study (prediction, opti-
mization, . . .), choose the controllable input variables (factors), select the response variable (output) and specify the region
of interest within a previously determined operating region of the system. To represent the simulation model, an approxi-
mating statistical model is postulated for the data generating process. Given a response, Y, and a vector of independent fac-
tors X influencing Y, the relationship between X and Y is represented by a mathematical transfer function f characterized by a
Please cite this article in press as: M. Isabel Reis dos Santos, P.M. Reis dos Santos, Sequential experimental designs for non-
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parameter vector h. In order to estimate the model’s unknown parameters, an experimental design must be performed. This
experimental design must be chosen according to a specific criterion, usually the minimization of the mean squared error or
the determinant of the variance of the least squares estimator ĥ of h. To perform the experiments and collect the data, the
analyst must select an appropriate design class, the levels of the factors and the number of replications for each design point,
ri. Finally, an adequacy test must be executed to determine if the resulting metamodel is a valid surrogate of the original
simulation model.

2.1. Nonlinear metamodel choice

To represent the simulation model, the following nonlinear regression model in the unknown parameters h ¼ ½h1 . . . hm�T is
proposed as a metamodel
Plea
linea
Yij ¼ f ðXi�; hÞ þ �ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ri; ð1Þ
where �ij represents the inaccuracy of the metamodel plus intrinsic noise of the stochastic simulation model and f is an un-
known function simpler than the simulation model. We assume that E½�ij� ¼ 0 and Var ½�ij� ¼ r2

i , with ri > 0.
The factor settings for the ith simulation configuration, named scenario, are specified by the design point Xi�, where the

set of such points constitutes the experimental design. For each scenario, ri independent replications of the simulation model
are carried out so the simulation yields ri observations Yij ðj ¼ 1; . . . ; riÞ. The variance of Yij is estimated by
r̂2
i ¼

Xri

j¼1

ðYij � Yi�Þ2=ðri � 1Þ; i ¼ 1; . . . ;n; ð2Þ
where Yi� ¼
Pri

j¼1Yij=ri, i ¼ 1; . . . ;n:
Good metamodeling practice means that the analyst should strive to find the simplest metamodel that captures the

essential characteristics of the system. Nonlinear metamodels require the selection of a transfer curve that can be parame-
trized to mimic the input–output relationship of the simulation model. Whenever some a priori insight about the system’s
behavior is known, a specific curve can be assumed. Otherwise, an initial set of design points must be simulated and the
respective values plotted, ðXi�;YijÞ, i.e. the scatter diagram. A visual check enables the selection of a curve (or curve candi-
dates) that might provide a good fit for the simulation input–output relationship, selected from known functional relation-
ships; see [37, pp. 329, 338, 340].

2.2. Estimation of regression parameters

In metamodel estimation, statistical techniques are used to estimate the unknown parameters of the hypothesized meta-
model. If the error variances vary with the experimental points, this estimation may use the weighted nonlinear least squares
method. The members of a statistical population of responses Yij dependent on the input Xi�, correspond with all possible pseu-
do-random number seeds. The classical assumption is that this population is Gaussian: �ij � NIDð0;r2

i Þ. Under the hypothesis
that the �ij are independent and normally distributed, and some further regularity conditions, it is shown that the nonlinear
weighted least squares estimator of h is asymptotically normally distributed as N !1 (see the following Proposition).

Proposition 1. Given appropriate regularity conditions [43], which ensures the asymptotic normality of the weighted least
squares estimator in the nonlinear case, and for large N, the weighted least squares estimator of h, ĥ, in (1) satisfies, approximately:
ĥ � hþ ½FTR�1F��1FTR�1½�Y � f�; ð3Þ

ĥ � Nm h; ½FTR�1F��1
� �

; ð4Þ
where f = fðhÞ = ½f ðX1�; hÞ � � � f ðXn�; hÞ�T, F = FðhÞ is the Jacobian matrix of f, evaluated at h; R is the diagonal matrix
R ¼ diagðr2

1=r1; . . . ;r2
n=rnÞ.

The verification of these results is shown in the Appendix and are an extension of Santos and Nova [34], with different
number of replications at each design point. In order to simplify the notation, we omit that f and F are evaluated at h. In
general, we do not know R, and so it must be replaced by R̂ ¼ diagðr̂2

1=r1; . . . ; r̂2
n=rnÞ; as a result, we have the estimated

weighted nonlinear least squares estimator.
In our sequential experimental design, we may consider additional replications at experimental points with larger vari-

ances. The selection of the number of replications per experimental point may improve the robustness of the ordinary tests
[17, p. 167]. We apply the least squares method to the problem
Yi: ¼ fðXi:; hÞ þ ��i:; ð5Þ
with ��i: � Nð0;r2
i =riÞ, so Var ½Yi:� ¼ r2

i =ri tends to be more constant; in the verification of (3) in the Appendix it is shown that
the problems (1) and (5) are equivalent. Whenever possible, we realize the hypothesis of, approximately, constant variances:
r2
1

r1
� � � � � r2

n

rn
� r2:
se cite this article in press as: M. Isabel Reis dos Santos, P.M. Reis dos Santos, Sequential experimental designs for non-
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Proposition 2. Let r2
i � rir2 in (1). Then, given appropriate regularity conditions [43] and for large N, the ordinary least squares

estimator of h, ĥ, in (1) satisfies, approximately:
Plea
linea
ĥ � hþ ½FTF��1FT½�Y � f�; ð6Þ
ĥ � Nmðh;r2½FTF��1Þ; ð7Þ

ðN �mÞ r̂
2

r2 � v2
N�m with r̂2 ¼ 1

N �m

Xn

i¼1

½Yi: � f ðXi:; ĥÞ�2; ð8Þ
where f and F represent the same as in Proposition 1.

The verification of (6)–(8) is shown in the Appendix, where (6) and (7) are an extension of Santos and Nova [33], with
different number of replications at each design point.

The variance heterogeneity may be checked using a distribution-free test based on ranks described in Conover [9]; if pop-
ulations are assumed to be normal (therefore, the assumptions of the usual parametric test are met), the loss of efficiency
applying this method is surprisingly small [9, p. 213]. The application of this test to problem (1) consists of assessing if
r2

i =ri ¼ Var ½Yij=
ffiffiffiffi
ri
p � can be accepted as homogeneous. First, converting each Yij=

ffiffiffiffi
ri
p

to its absolute deviation from the mean
using
Uij ¼
jYij � Yi:jffiffiffiffi

ri
p ; i ¼ 1; . . . ;n; j ¼ 1; . . . ; ri;
using Yi: as an approximation of the mean in experimental point i, the test is still approximately valid. Then, assign the ranks
1 to N to the combined absolute differences U’s in the usual way, that is, rank the combined sample of U’s from the smallest
to the largest, assigning average ranks when several Uij values are equal to each other. Let Tij be the rank and the average
ranks thus assigned. The test statistic is
v ¼ 1
D2

Xn

i¼1

1
ri

Xri

j¼1

T2
ij � N�T2

::

 !
;

where
�T2
:: ¼

1
N

Xn

i¼1

Xri

j¼1

T2
ij
is the average of all the squared ranks, and
D2 ¼ 1
N � 1

Xn

i¼1

Xri

j¼1

T4
ij � N�T2

::

 !
:

Finally, the hypothesis of equal variances is rejected if v > v2ðn� 1; 1� aÞ, where v2ðn� 1; 1� aÞ is the ð1� aÞ100 percentile
of the chi-square distribution with ðn� 1Þ degrees of freedom. If all U’s values are different from each other, then D2 and �T2

::

simplify to D2 ¼ NðN þ 1Þð2N þ 1Þð8N þ 11Þ=180 and �T2
:: ¼ ðN þ 1Þð2N þ 1Þ=6, respectively.

2.3. Assessing accuracy and adequacy

Once the metamodel parameters have been estimated, it is necessary to investigate if the metamodel is valid, that is, if the
metamodel is a representation of the simulation model up to an acceptable degree of accuracy. Furthermore, when compar-
ing metamodels constructed from different experimental designs, it is necessary to evaluate how accurate the resulting rep-
resentations are. Several possible measures and techniques can be used in validation [23].

For validating the metamodel, we apply the bootstrap technique, based on quantiles, described in [12, Chapter 13]. For
each experimental point i, resample with replacement the ri output values, resulting in the bootstrap data
ðXi:;Y

�
i1; . . . ;Y�iri

Þ of the original data. Obtain the nonlinear least squares estimator ĥ� based on the bootstrap data. Repeat this
bootstrapping B times. So, the method will produce B vector values ĥ�1; . . . ; ĥ�B.

Based on these B vector values, we follow Kleijnen and Deflandre [20] for computing the corresponding coefficients of
determination R2�

1 ; . . . ;R2�
B obtaining a bootstrapped one-sided confidence interval for R2�: ½R2�

ðBaÞ; 1�, where R2�
ðBaÞ is the

ð1� aÞ bootstrapped quantile of the empirical distribution function of R2�. The metamodel is not rejected if R2 2 ½R2�
ðBaÞ; 1�,

where R2 is calculated with the original data. Like in Kleijnen and Deflandre [20], R2 is calculated as a function of Yi: instead
of the individual Yij:
R2 ¼ 1�

Pn
i¼1
ðŶ i � Yi:Þ2 ri=r̂2

iPn
i¼1
ðYi: � Y ::Þ2 ri=r̂2

i

;

with r̂2
i given by (2) and Y :: ¼

Pn
i¼1Yi:=n.
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3. Experimental design

The experimental region of an experimental design corresponds to the values of the inputs for which the metamodel is
useful. The experimental design must choose a set of n pilot design points, i.e., combinations of input variables and param-
eters of the simulation model. These points must be different from each other and must belong to a pre-defined region to
explore. The points are chosen to efficiently investigate the relationship between the design factors and the response.
Assuming that the interesting features of the metamodel can occur in any part of the experimental region, the design should
be based on a selection of evenly distributed points throughout the region.

A uniform design allocates experimental points which are uniformly scattered over the region of interest. A good space-
filling design is one in which the design points are scattered throughout the experimental region with minimal unsampled
regions; that is, the ‘‘empty” regions are relatively small. This means that the design points are not concentrated in clusters
or solely at corner points of the region, as can happen with two-level factorial designs. Space-filling designs provide coverage
of the entire experimental region, providing a broad exploration of the model and a valuable overview of what the response
surface might look like. Space-filling designs are desirable for data analysis methods such as residual plots in regression diag-
nostics and nonparametric surface fitting [44]. Space-filling designs also provide the best way of exploring surfaces where
we do not expect to have smooth metamodels [19].

Whenever some parts of the experimental region exhibit more interesting characteristics, the design should include more
points to explore these parts. These hybrid variations of evenly distributed and space-filling designs may provide a better
metamodel fit since more detailed information on the relation between the inputs and the response becomes available. In
some special cases, where the metamodel belongs to a previously known input–output class, it is possible to achieve an opti-
mal design based on a specific criteria formulation [31]. Anyhow, an experimental design should be easily and quickly gen-
erated, if it is to be used in practice.

3.1. Sequential designs

The experimental design should effectively explore an experimental region of a multi-dimensional input space through a
small number of design points. Analysts need experimental designs capable of efficiently searching an intricate simulation
model characterized by a complex response surface, possibly containing some nonlinearities. To be general, the experimental
design should require minimal a priori assumptions on the system’s response. Experiments run sequentially save experimen-
tal cost, since they can be stopped whenever a criterion is met. Several sequential experimental design strategies have been
proposed for finding inputs that optimize the output of a computer code [31].

The idea is to start with a small pilot sample within the design space in order to obtain initial information about the entire
response surface and fit a metamodel. Based on this metamodel, a set of additional points – the so called infill samples – are
selected to be evaluated by the full simulation. Each additional stage takes account of all previous information to obtain an
experimental design consistent with the pre-defined experimental goal. The sample set is then updated, and the model refit.
A quantitative criterion is implemented for the purpose of deriving the experimental design in each stage. The process of choos-
ing new points continues until the improvement expected from sampling additional points has become sufficiently small [6].

A sequential experimental design should be conducted as follows:

� Postulate an approximating metamodel for the data generating process. Nonlinear functions are good candidates since
they are more flexible and explicitly account for nonlinearities in the input–output function and complex interactions.

� Design an initial experiment and collect the required data through simulation. The initial design should provide a good
coverage of the entire response surface; Jones et al. [15] recommends at least 10 observations per input variable.

� Estimate the metamodel parameters and calculate the response predictor.
� Compute the termination rule and plot the fitted metamodel. The sequential design is complete whenever a pre-defined

accuracy is met or a maximum number of design points is reached. The degree of accuracy of the metamodel is judged by
computing a statistical measure:
– If the accuracy is sufficient, the process is concluded. Then, if the goal is optimization, predict the global optimizer.
– Otherwise, choose a sub-region for the next experiment and collect more data. Sensitivity analysis, based on output

variation, is used as mechanism for quantifying the importance of input variables. Output variation provides guidance
for supplying reasonable input variable values to the next stage of the sequential design.
3.2. Experimental design selection

A careful choice of an experimental design may better expose the relation between the inputs and the response. For in-
stance, a bad experimental design may suggest a linear relation between the inputs and the response while the response is in
fact nonlinear. The detection of such nonlinearities is important and can be achieved with a larger number of input values or,
better still, a careful selection of input values. Also, designs should be easy to construct if they are to be used in practice [22].

Many popular classical designs used in response surface methodology, such as central composite designs and factorial
designs, do not spread points out evenly over the experimental region, denoted by X. Instead they tend to place points at
Please cite this article in press as: M. Isabel Reis dos Santos, P.M. Reis dos Santos, Sequential experimental designs for non-
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the boundary of X: corners and midpoints. The most basic experimental design is a full factorial design. The number of de-
sign points dictated by a full factorial design is the product of the number of levels for each factor [41]. Most common are 2k

designs for evaluating main effects and interactions for k factors each at two levels. Often two level fractional factorial de-
signs are used to screen factors to identify those with greatest effects [39]. A Central Composite Design is a two level factorial
design, augmented by n0 central points and two star points positioned at 	a for each factor. For two factors, setting a ¼ 1
locates the star points at one coded unit from the center [39].

More demanding experimental designs include the mesh and Latin Hypercube. In a mesh the design points are placed at a
grid formed by dividing each axis into intervals of equal length. Latin Hypercube designs are generated by Latin Hypercube
sampling, where to produce a design of n points each axis is divided into n equally spaced intervals producing nd cells of
equal size [31], where d is the number of factors. Each cell is given a number from 1 to n, unique in each dimension, or Latin
square, i.e., each number appears exactly once in each row and each column of this mesh of cells. Each of the possible designs
corresponds to the selection of a middle point from each cell, based on the P ¼ ðPjkÞ n
 d matrix having columns which are
different randomly selected permutations of f1; . . . ;ng; the jth row of the P identifies the cell with Xj� ¼ ½Xj1 . . . Xjd� as the
middle point.

3.3. Selecting the design points

An experimental design, X ¼ fX1�;X2�; . . . ;Xn�g, is a set of multi-dimensional input training sites over an experimental re-
gion, R � ½a1; b1� 
 ½a2; b2� 
 � � � 
 ½ad; bd� � Rd, to be evaluated and producing a single-valued output Y. Then a criterion for
judging the predictor Ŷ ¼ f ðX; ĥÞ is used to measure the quality of the prediction in an overall sense. The goal, or global objec-
tive, is the determination of ĥ up to a level set by some pre-defined target accuracy value: LðnÞ ¼ fX � R : Mðf ðX; ĥÞÞ 6 ng.
The problem is to obtain an experimental design X 2LðnÞ where the accuracy value of the metamodel, Mðf ðX; ĥÞÞ, is deter-
mined using the statistical measure MSEðĥÞ ¼ SSEðĥÞ=ðn�mÞ, where SSEðĥÞ ¼

Pn
i¼1ðbY i � Yi:Þ2ri=r̂2

i ; in our case
Mðf ðX; ĥÞÞ ¼MSEðĥÞ. To determine an experimental design X where MSEðĥÞ achieves the target value n, new data points
must be sequentially added.

Consider an initial set of design points Xð0Þ ¼ fX1�; . . . ;Xn0 �g from the experimental region R � Rd, denoted in matrix nota-
tion by
Plea
linea
Xð0Þ ¼

X1�

..

.

Xn0 �

2664
3775 ¼

X1;1 � � � X1;d

..

. ..
.

Xn0 ;1 � � � Xn0 ;d

2664
3775:
These design points can be chosen from well known experimental designs that acceptably screen the experimental region;
for example, the initial set in Hendrickx and Dhaene [14] is just a full-factorial design. Jones et al. [15]’s rule of thumb is to
take at least 10 experimental points per dimension ðn0 � 10dÞ. Then new points are added until the stop criteria is met.

Suppose that the response and each input variable have been scaled to have domain [0;1], i.e., consider the scaled points
Zi ¼
Xi1 � a1

b1 � a1
; . . . ;

Xid � ad

bd � ad
;

Yi: � adþ1

bdþ1 � adþ1

 !
¼ ðzi;1; . . . ; zi;d; zi;dþ1Þ; ð9Þ
where Yi: 2 ½adþ1; bdþ1�. Our strategy for selecting the values of the inputs at which to observe the response, during the
sequential design, is to choose these values so that the corresponding scaled mean responses, zi;dþ1, are spread evenly
throughout the scaled response surface; therefore, the sequential design successively fills the scaled response surface. Intu-
itively, the resulting design ensures that no two response values in the scaled response surface are ‘‘too close”, and hence the
scaled response values are spread over the scaled response surface. This means that in a region where the output function
varies significantly, the inputs may be clustered; i.e. the values of the j component of the design points ðXi;j; i ¼ 1; . . . nÞ are
not evenly spaced.

In order to determine the location of a new data point, to be added to the sequential design, we construct a wire-frame
using a mesh of triangles. The use of triangles, instead of squares, ensures that only one data point is added on each iteration
and that at most two new triangles are formed. The initial wire-frame can be build from an arbitrary set of design points
using a Delaunay or convex hull algorithm [4]. A Delaunay triangulation in Rd can be computed from a convex hull in
Rdþ1. Alternatively, the initial triangle wire-frame can be built from a small set of design points where the initial wire-frame
is known in advance. For example, in R2, a simple 2d factorial design, where for d ¼ 2 only two triangles are initially built; see
Figs. 1a and 2 (lines 1–3).

The sequential procedure, depicted in Fig. 2, that successively adds new data points to the experimental design, selects
the triangle with the largest facet area (line 5). The triangle with the largest area represents the region where the data points
are more spread out in the response surface. A new data point is inserted in the middle of the widest side of the selected
triangle (lines 6 and 8), Mkl ¼ ðXk� þ Xl�Þ=2, where Xk� and Xl� are the side vertexes. The selected triangle is then split into
two new triangles, using the new data point; see Figs. 1b and 2 (line 11). If that side of the triangle connects with another
adjacent triangle, the other triangle is also split in two, using the same new data point, to ensure a coherent mesh represen-
tation (lines 12–14). In order to determine the area of the new triangles, the response of the simulation model must be eval-
uated at the new point (line 9).
se cite this article in press as: M. Isabel Reis dos Santos, P.M. Reis dos Santos, Sequential experimental designs for non-
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Fig. 1. (a) Initial experimental design; (b) R3 triangle splitting procedure.

d

Fig. 2. The proposed sequential experimental design procedure.

M. Isabel Reis dos Santos, P.M. Reis dos Santos / Simulation Modelling Practice and Theory xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
The new experimental design is XðpÞ ¼ Xðp�1Þ [ fMk0 l0 g, or
Plea
linea
XðpÞ ¼ ½XT
1� . . . XT

n0 �X
T
n0þ1� . . . XT

n0þp�1�X
T
n0þp��

T

in matrix notation, where p ¼ 1;2; . . . represents the pth step in the sequential design strategy.
Now execute ri replications of the new design point, obtain the corresponding Y ðpÞ ¼ ½Y1� . . . Yn0þp��T. Fit the metamodel

with this data, obtaining ĥðpÞ. To compute the termination rule we check whether the metamodel accuracy fitted with a new-
ly added design point has been achieved, or if the maximum number of design points is reached (lines 15 and 16). The degree
of accuracy is judged by computing the statistical diagnostic MSEðĥðpÞÞ and comparing this value with a pre-defined target
precision value n. The experimental design is complete if MSEðĥðpÞÞ 6 n or a maximum number of points is reached. Other-
wise, a new design point must be added.

The procedure defined in Fig. 2 uses a set of triangles, or a triangle-mesh, where each vertex refers to an experimental
design point. Although not depicted, the triangle areas are associated with each triangle and computed once, for efficiency,
and the triangle-mesh is, in fact, a list ordered by areas.

If the design is unidimensional ðd ¼ 1Þ no triangles are needed; it suffices to evaluate the distances between consecutive
points. This distance is equivalent to the largest area of the triangle (line 5). A new point Xn0þp is inserted in the middle of the
largest distance between two consecutive points (line 8).

3.4. Collect the simulation data

The collection of simulation data requires some tactical decisions: perform a terminating or a steady-state simulation;
determine the initial conditions; choose the final conditions such as run time or number of events completed; and decide
on an appropriate balance between run length and number of replications.
se cite this article in press as: M. Isabel Reis dos Santos, P.M. Reis dos Santos, Sequential experimental designs for non-
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Terminating simulations are those that run until a specific event has occurred (including the event of simulating a fixed
amount of time). For terminating simulations, it may be necessary to censor results if we are simulating rare events. Steady-
state simulations have no natural termination point, and can keep generating data for their analysis. For steady-state
simulations, the warm-up period must be chosen carefully, and the length of the warm-up period affects the total experi-
mentation time.

In steady-state simulations, the initial conditions may generate rare sequences of events, that introduce a warm-up per-
iod, until the system achieves statistical equilibrium. This warm-up creates bias in the simulation output values. For exam-
ple, when all queues are empty, the simulation program begins with a sequence of events that may have a low probability of
occurring. So, the simulation output can be contaminated with an initial bias [26, Section 9.5]. To control the initial bias, that
can be the greatest source of error in the estimation of the metamodel parameters, an initial data deletion is performed.
However, the initial data deletion selection involves a compromise, since in a small deletion the bias can still affect the result,
while a large one may produce a large variance and it is not efficient. A good bias detection is important in the context of the
independent replications method, because usually many runs are needed.

In this paper, we use Welch’s procedure to detect the initial bias [26]. For each replication of the ith experimental point,
we ignore the observations until the corresponding truncation point and collect the remaining simulation results; it turns
out that approximately 85% of the observations are collected.

The selection of the number of replications in each design point is important since the response may be affected by other
factors, besides the selected input values. These factors introduce effects that can be referred to as unsystematic (random
error or noise) and as systematic (bias). Replication allows the estimation of the magnitude and distribution of random error,
and the sample means of the replicated responses have smaller variances than the individual responses.

The number of replications can be selected such that the variances of the average response become approximately equal;
see Kleijnen and van Groenendaal [21]. As in [18], we perform a pilot sample of r0 P 2 replications for each design point and
estimate the variances r2

i through (2) with ri ¼ r0 and compute r̂min ¼mini¼1;...;nr̂2
i . Then we use the two-stage procedure to

determine an approximate number of additional replications, based on r̂i ¼ brir̂2
i =r̂minc, and perform the additional r̂i � ri

replications, where bxc denotes the largest integer not bigger than x. The sequential sampling procedure is, in our case, per-
formed independently on each data point. The procedure adds one replication at a time and determines the resulting value of
r̂2

i until a value smaller than r̂min is achieved. If additional replications are needed, a new value for r̂i is determined, using the
new ri and the initial r̂min computed with r0. When, finally, the number of replications produces a value of r̂2

i smaller than
the threshold limit r̂min, the final number of replications for data point i is ri if jr̂2

i � r̂minj < jr̂2
i�1 � r̂minj, or ri�1 otherwise.

However, if the number of replications is too large or each run takes a long time, this procedure may become unrealistic and
prohibitive. As a consequence, an estimated weighted least squares method must be used, with the largest number of rep-
lications available.

4. Application examples

All the models presented in this section were simulated using AweSim version 3.0 Pritsker et al. [29], and the metamodel
was built in MATLAB 6.5 using some custom made routines. We obtained the least squares estimators ĥ using the Levenberg–
Marquart method, implemented in MATLAB 6.5, with a termination tolerance of 10�6 and a maximum number of function
evaluations equal to 600.

An automobile parts factory model, depicted in Fig. 3, is used to illustrate the proposed sequential experimental design
procedure. First, a unidimensional design is compared with a classical equally spaced design. Then, a two-dimensional
experimental design is presented. The factory contains two drills and a finishing area, and processes two types of parts. Type
I and type II parts arrive according to a gammað2; k1Þ and a gammað2; k2Þ distributions, respectively. After arriving, types I
and II parts take 2 and 5 min to be routed to the drill area, respectively. Both parts require drilling and finishing operations
and assume no time delays between these two operations. We assume that operators are always available if a machine is
available. Drilling time is triangularly distributed between 10 and 30 min, with a mode of 15 min. The time to perform
the finishing operations has a uniform distribution on the interval [2,5] minutes and only one part can be finished at a time.
On the average, finishing operations have to be repeated 20% of the time. If a part has been routed through finishing twice
but still needs to be refinished, it must be drilled again.
DRILL FINISH

triag(10,15,30) U(2,5)
2min

5min

gamma(2,     )

2

1

gamma(2,     )

Fig. 3. The automobile parts factory diagram.
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The purpose of the simulation experiment is to express the average time in the system (response), Y, as a function of the
mean time between arrivals of the parts of types I and II, corresponding to X1 ¼ 2k1 and X2 ¼ 2k2 (decision variables). The
unidimensional experimental designs consider k2 ¼ 20 and use an equal number of design points (19) to provide comparable
values.

The evenly spaced experimental design, denoted by fixed, uses X
ð0Þ
fixed ¼ f0:5;5;10;15;20;25;30;35;40;45;50;55;

60;65;70;75;80;85;90g. This fixed experimental design is used as a reference to measure the relative improvement of
the proposed procedure. At each design point, we run Welch’s procedure in order to determine the length of each simulation
and the initial-data deletion. Welch’s moving average is based on ri ¼ 10 replications of the simulation model, where each
replication contains 2000 observations. For example, at the design point X8;1 ¼ 35 of the fixed experimental design, we delete
200 observations from the beginning of the run and we use only the next 1134 observations to estimate the response Y (the
remaining 666 observations are ignored). In order to reduce the variation of the variances, we carry out a different number of
replications of each of the n ¼ 19 design points. An initial 10 replications are performed at each design point and, based on
the procedure describe in Section 3.4, additional replications were performed. While data point X14;1 ¼ 65 has the smallest
variance, and no additional replications are performed, the data point X8;1 ¼ 35 requires a total of 13583 replications, cor-
responding to the highest number required.

The proposed sequential experimental design, denoted by fill, starts with two points Xð0Þfill ¼ f0:5;90g, corresponding to the
experimental region boundary or a 21 factorial design. Additional design points are inserted, one by one, in the middle of the
largest gap between existing consecutive points, up to a total of 19 data points. As in the fixed experimental design, an initial
set of 10 replications are performed at each design and then additional replications are performed using the procedure de-
scribe in Section 3.4. Since the fill experimental design searches for nonlinearities, many of the additional design points re-
side in the nonlinear region of the example that correspond to higher variances. Therefore, the highest number of
replications (55937) is obtained for X17;1 ¼ 33:7129 ðr̂2

17=r17 ¼ 0:00659717Þ and the lowest (10) at X2;1 ¼ 90
ðr̂2

2=r2 ¼ 0:00707208Þ and X15;1 ¼ 56:4375 ðr̂2
15=r15 ¼ 0:00659716Þ, in a total of 298218 replications for all 19 design points.

The resulting variances are approximately constant, so the null-hypothesis of equal variances is not rejected by test de-
scribed in Section 2.2 ð28:8693 ¼ v < v2ð18; 0:95Þ ¼ 201:2721Þ, with a maximum of r̂2

7=r7 ¼ 0:00653807 and a minimum
of r̂2

2=r2 ¼ 0:00707208, corresponding to ðr̂2
7=r7Þ=ðr̂2

2=r2Þ ¼ 1:082, As a result, the method of nonlinear ordinary least squares
is used.

To identify a curve that might fit the input–output relationship of the simulation model (computer program), we per-
formed a visual check, observing the simulation results plots of each experimental design, in Fig. 4. Comparing the plots with
graphical representations of known functional relationships, a good candidate seams to be the arc-tangent function
2
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Plea
linea
y ¼ h1 þ h2 arctg ðh3 þ h4xÞ:
The final metamodel’s estimated parameters obtained for the two experimental designs are presented in Table 1. To check
the accuracy of the resulting metamodels, we observe that, with a bootstrap sample of size B ¼ 200 gives R2 ¼ 0:999476
which falls into the acceptance interval [0.999421,1]. So, the metamodel is not rejected.

In Table 2 the MSE and MSPE values for both designs are displayed, where MSE is defined in Section 3.3. The MSPE’s fixed
value is given by
MSPE ¼ ri

n�r̂2
i

Xn�
i¼1

½Yi� � f ðXi�; ĥÞ�2;
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Fig. 4. Fixed and fill experimental designs, with 19 design points.
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Table 1
Metamodel’s estimated parameters for the experimental designs

Designs ĥ1 ĥ2 ĥ3 ĥ4

Fixed 116.557 �57.0318 �23.0443 0.686365
Fill 116.854 �56.8379 �24.8619 0.736861

Table 2
Metamodel’s MSE and MSPE

Design MSE MSPE MSEþMSPE

Fixed 211.456 1556.70 1768.16
Fill 474.400 204.147 678.548
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where ĥ is obtained using the fixed experimental design and Yi� is the response value at Xi� of the fill experimental design;
and, vice-versa, the MSPE’s fill value is determined using ĥ from the fill design and Xi� of the fixed design. It can be observed
that the fixed design presents a lower MSE value than the fill design since it ignores most of the nonlinear behaviour. How-
ever, if we use the data available from the other experimental design as predictive data we conclude that the fill design per-
forms much better in terms of MSPE. Even if we add both measures, corresponding to the use of all available data, the fill
design still provides a significantly better adjustment.
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Fig. 5. The evolution of MSE as new points are added.
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Fig. 6. The adjusted metamodel with 19 data points from the fill experimental design.
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The use of a statistical diagnostic as a termination criterion implies a refinement of the fitted metamodel and, as a result,
an increasingly smaller value of MSE as new design points are added to the fill experimental design; see Fig. 5. Fig. 6 depicts
the resulting adjusted metamodel with superimposed design points.
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Fig. 7. 20, 50 and 248 data points experimental designs.

Table 3
Metamodel’s estimated parameters and diagnostics

Design 20 50 112 248

ĥ1 117.720 117.022 116.900 116.635
ĥ2 �57.9560 �57.5629 �57.4514 �58.3365
ĥ3 �0.322912 �0.400339 �0.439303 �0.448109
ĥ4 0.0215550 0.0240407 0.0260403 0.0261604
ĥ5 �11.2109 �6.28069 �4.96593 �5.11790
ĥ6 �0.0122992 �0.251322 �0.348255 �0.331101
ĥ7 �0.00280678 �0.00114813 �0.000605079 �0.00106710

MSE 112.729 115.128 82.3239 100.539

max ri 70140 70140 535320 535320
Total ri 89900 374500 4075560 7643840
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Fig. 8. Final experimental design with 112 data points and evolution of MSE.
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The two-dimensional experimental designs use the same X1 interval and X2 values between 20 and 80. The experimental
designs start with a 22 factorial design, corresponding to the region boundary points Xð0Þ ¼ fð0:5;20Þ; ð0:5;80Þ; ð90;20Þ;
ð90;80Þg. All subsequent design points are determined by the proposed sequential design procedure. The proposed proce-
dure was executed upto 248 data points and partial data was collected for 20, 50 and 112 experimental points; see Fig. 7.

After performing an initial r ¼ 20 replications for each design point, we concluded that the number of additional replica-
tions, requested by the two-stage procedure, for the worst case (max ri, in Table 3) as well as the total number of additional
replications for all design points (total ri, in Table 3), were too expensive to perform. Therefore, the estimated weighted least
squares method is used, since the variances of the various data points can not be considered constant, after the 20 replica-
tions. To relate the average time in system with the arrival of both types of parts we used the unidimensional metamodel
expression combined with a polynomial component for X2, resulting in
Plea
linea
Y ¼ h1 þ h2 arctg ðh3X1 þ h4X1X2 þ h5 þ h6X2 þ h7X2
2Þ:
The adjusted resulting values for the unknown h parameters are presented in Table 3, as well as the degree of accuracy deter-
mined by the statistical measure MSE. Based on these results and the evolution of MSE as new data points are added, the
experimental design with 112 data points proved to be the best choice (see Fig. 8). The resulting metamodel is not rejected
by the bootstrapped R2 accuracy test since 0:999566 ¼ R2 2 ½0:999521; 1�, with B ¼ 200.

5. Conclusions

Metamodels can be used, as simulation model surrogates, to expose the fundamental nature of the input–output relation-
ships. Represented as a simple mathematical function, the metamodel can also be used for verifying and validating the ori-
ginal simulation model. Queuing systems, as many other real-life systems, exhibit nonlinear behavior. Nonlinear regression
metamodels provide a better and more realistic global fit than polynomials since they are able to fit curves of arbitrary shape.

In order to provide a good fit, the sample design points must be chosen to efficiently investigate the input–output rela-
tionship of the simulation model. A careful choice of an experimental design may better expose the relation between the
input and the response, such as subtle nonlinearities of the simulation model. This choice should be complemented with
an accurate and statistically sound estimation of the metamodel parameters using a small set of design points. In order
to reduce the number of design points, without compromising its accuracy, an experimental design strategy is proposed.

The design should be generic, in spite of the fact that the paper concentrates on nonlinear regression metamodels, and should
be easy to construct if they are to be commonly used in practice. The proposed approach is a sequential design where an initial
set of design points, possibly from a well known classical experimental design, is augmented by a surface filling approach. The
surface filling process considers both the inputs and the output, and is based on a wire-frame of using a mesh of triangles built on
a scaled response surface. A new point is added in the triangle with the largest area, splitting it into two equally sized triangles.
The number of steps in the sequential design depends on the interesting features of the metamodel. The main objective of the
proposed design strategy is to provide a better fit of the metamodel through a careful choice of design points.

A statistical diagnostic, MSE, is employed to ensure a sufficient number of design points, working as an indicator of the
metamodel’s accuracy. The investigation of the improved experimental design included a comparative study between an
equally spaced classical design and the proposed design, using the same number of design points. The same example is ex-
tended to two inputs and the number of design points is successively increased. The accuracy of each design is then evalu-
ated and a metamodel is built and validated.

This paper stresses that a careful choice of an experimental design can lead to better metamodels, with the same simula-
tion effort, and proposes a sequential design that improves the accuracy of the constructed nonlinear simulation metamodels.

The construction of multivariate metamodels presents new challenges that includes the use of already existing Delaunay
tesselations algorithms from N-dimensional convex hulls. For the specific case of two responses and a single input, the adap-
tation of the proposed algorithm is not complex. Additionally, a new estimation procedure must be addressed using, for
example, the application of multivariate nonlinear regression statistical techniques.

Future tunning of nonlinear experimental designs should include, for instance, screening techniques when the number of
factors is high. The presented designs may require very large initial simulations before the sequential approach can be ap-
plied. Screening techniques should be applied to detect the few really important factors.

Appendix

(i) Verification of (3). The least squares estimate of h of the problem (1), denoted by ĥ, minimizes the error sum of squares
SSEðhÞ ¼
Xn

i¼1

Xri

j¼1

1
r2

i

½Yij � f ðXi:; hÞ�2

over h 2 H � R. Since we have the usual decompositionXn

i¼1

Xri

j¼1

1
r2

i

½Yij � f ðXi:; hÞ�2 ¼
Xn

i¼1

Xri

j¼1

1
r2

i

ðYij � Yi:Þ2 þ
Xn

i¼1

ri

r2
i

½Yi: � f ðXi:; hÞ�2;
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Plea
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to find the least squares estimate ĥ of h is equivalent to minimizingXn

i¼1

ri

r2
i

½Yi: � f ðXi:; hÞ�2; ð10Þ

i.e., a weighted least squares analysis weights ri=r2
i correspondent to the problem (5); consequently the problem (1)

and (5) are equivalent. Consequently, the normal equations for ĥ are

�2
Xn

i¼1

ri

r2
i

½Yi: � f ðXi:; hÞ�
of ðXi:; hÞ

ohk

����
h¼ĥ

¼ 0; k ¼ 1;2; . . . ;m:

These equations correspond to the problem

W ¼ gðX; hÞ þ g; ð11Þ

where W ¼ RY, gðX; hÞ ¼ RfðX; hÞ and g ¼ R�, with R ¼ ðUTÞ�1 where U is obtained from the decomposition R ¼ UTU
and � ¼ ð��1:; . . . ; ��n:ÞT; we consider the assumption that R is a symmetric positive definite matrix, that accepts the
Cholesky decomposition, R ¼ UTU.Therefore, we have E½g� ¼ 0 and Var ½g� ¼ R Var ½��RT = RRRT= RUTURT=In, where In

is the identity matrix of order n.Applying Eq. (2.15) of Seber and Wild [37] to the ordinary least squares problem
(11) we find that, for large n and certain regularity conditions, the least squares estimator of h satisfies
ĥ � hþ ½GTG��1GT½W� g�, where G is the Jacobian matrix of g both evaluated at h. Therefore, using gðX; hÞ ¼ RfðX; hÞ
(and so, GðhÞ ¼ RFðhÞ), W ¼ R�Y and RTR ¼ R�1, we obtain

ĥ � hþ ½FTR�1F��1FTR�1½Y � fðX; hÞ�:
(ii) Verification of (4). The application of Seber and Wild [37, Theorem 2.1(i)] to the problem (11) results on
ĥ � Np½h; ðGTGÞ�1�. Using G ¼ RF and RTR ¼ R�1, we obtain
ĥ � Np½h; ðFTR�1FÞ�1�:
(iii) Verification of (6). The result (6) is obtained applying (7) of Santos and Nova [33] to the problem (5), with the approx-
imation Var ½Yi�� ¼ ri=ri ¼ r2 ¼constant.

(iv) Verification of (7). The result (7) is obtained applying (12.23) of Seber and Wild [37] to the problem (5), using the
approximation Var ½Yi�� ¼ ri=ri ¼ r2 ¼constant.

(v) Verification of (8). The estimator r̂2 in (8) can be written in the form
r̂2 ¼ SSEðĥÞ
N �m

ð12Þ

with N ¼
Pn

i¼1ri, SSEðĥÞ ¼ kY � ~fðĥÞk2
2, and where Y ¼ ðY11; . . . ;Y1r1 ; . . . ;Yn1; . . . ;Ynrn Þ

T and
~fðĥÞ ¼ ðf ðX1:; ĥÞ; . . . ; f ðX1:; ĥÞ; . . . ; f ðXn: ; ĥÞ; . . . ; f ðXn:; ĥÞÞT. Using (2.18) of Seber and Wild [37], we obtain

SSEðĥÞ ¼ �TðIN � PeF Þ�; ð13Þ

where � ¼ ð�11; . . . ; �1r1 ; . . . ; �n1; . . . ; �nrn Þ
T and PeF is a projection matrix PeF ¼ eFðeFTeFÞ�1eFT, with eF the Jacobian matrix of ~f

calculated in ĥ.Since IN � PeF is a symmetric and idempotent matrix (that is, IN � PeF ¼ ðIN � PeF ÞT and ðIN � PeF Þ2 ¼
IN � PeF ) and �ij � Nð0;r2Þ, i ¼ 1; . . . ;n, j ¼ 1; . . . ; ri, we apply the Theorem B.4 of [38] to (13) and conclude that
r�2SSEðĥÞ has a chi-square distribution with tr ðIN � PeF Þ degrees of freedom (‘tr’ represents the trace of a matrix).
But tr ðIN � PeF Þ ¼ tr ðINÞ � tr ðPeF Þ ¼ N � tr ½eFðeFTeFÞ�1eFT� ¼ N � tr ½eFTeFðeFTeFÞ�1� ¼ N � tr ðImÞ ¼ N �m, that is, r�2SSEðĥÞ �
v2

N�m. Moreover, SSEðĥÞ ¼ ðN �mÞr̂2 (see (12)), so the result (8) is verified.
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