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ABSTRACT

Metamodels are used as analysis tools for solving optimiza-
tion problems or as surrogates used as building blocks in
larger scale simulations. The metamodel replaces the sim-
ulation model by a simplified input-output relationship, fre-
quently a mathematical function with customized parame-
ters. The construction of a metamodel is based on the sim-
ulation results for a set of design points. In order to collect
statistical information each design point may be simulated
repeatedly. This paper explores the precision of the result-
ing metamodel based on the tradeoff between higher num-
ber of design points versus a higher number of replications
at a smaller number of design points.

INTRODUCTION

Simulation models are built as replacements of real sys-
tems, and are used to assist in the analysis and optimization
of those systems. The resulting model can be simulated for
new inputs, giving clues about the expected behaviour of
the real system under untested conditions. Furthermore, a
model can be repeatedly simulated for the same inputs us-
ing different random number seeds. These replications pro-
vide valuable information about the expected uncertainties
of the real system.

A simulation metamodel is a model based on a simu-
lation model. The metamodel represents the simulation
model, and thus the real system, through a simplified rep-
resentation of the relationship between the inputs and out-
puts (Davis and Bigelow, 2003). Thus a metamodel pur-
ports only to represent the behaviour of the simulation
model in an input-output sense. A straightforward method
to construct a metamodel is to regress a polynomial func-
tion based on the input-output values collected from a set
of design points (Kleijnen and Sargent, 2000; Santos and
Santos, 2009). This polynomial function is regarded as a
highly abstracted version of the reality. A simplified low-
resolution representation of the system enables the simula-
tion analyst to quickly comprehend the overall behaviour.
More elaborate metamodels use radial basis functions (Jin
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et al., 2000), Bayesian approaches (Chick, 2004) or ra-
tional metamodels (Hendrickx and Dhaene, 2005). For
a more realistic global response fitting, nonlinear meta-
models including nonlinear regression (Santos and Nova,
2006), Kriging (Kleijnen and van Beers, 2004), and neural
networks (Hurrion, 1992) are used for complex behaviours
since they provide more flexible fitting.

The precision of the constructed metamodel relies heav-
ily on the set of design points, or experimental design,
used to exercise the simulation model. If those points are
carefully selected, the collected results from the simula-
tion experiments will expose the true behaviour of the sys-
tem (Santos and Santos, 2008). Since simulation runs are
expensive, it is desirable to infer the system’s behaviour
from a small number of design points. The statistical na-
ture of the underlying model implies that a single run may
not capture the mean expected behaviour of the system in
regard to some entity of interest. In fact, only a number
of experiments under the same input conditions expose the
expected variance of a given entity. An accurate value for
the statistical aspects of some entity must rely on a large
number of experiments. As stated above, simulation runs
are expensive and only a small number of replications can
be performed at each design point.

The construction of a metamodel should require a small
number of simulation runs in order to be an accessible
tool. On the other hand, the information gathered must
be sufficiently precise in order to produce a credible meta-
model. This paper explores the precision of the resulting
metamodel based on the tradeoff between higher number
of design points versus a higher number of replications at
a smaller number of design points. The next Section ex-
plores the construction of metamodels, specifically linear
regression metamodels. The ’experimental design’ Section
discusses the selection of design points for the metamodel’s
construction. The Section entitled *'metamodel validation’
is reserved for techniques to evaluate the fitting of each
metamodel and to enable the comparison of previously es-
timated metamodels. In the ’construction tradeoff” Section
the computational effort necessary to develop a metamodel
is discussed. Two regions, a low variance and a high vari-
ance, of the classical M/M/1 numerical example are used to
collect simulation data and built metamodels based on ex-
perimental designs using different numbers of replications



and design points. In the ’conclusions’ Section the obtained
results are analysed and summarized.

METAMODEL FITTING

The relationship between the output w and an infinite num-
ber of inputs v = vy, va, . .. of the real system, where some
inputs may be stochastic, can be represented by a transfer
function f

w=f(v) ey

A simulation model of a real system can be represented
by

y=g(z,1) @)

where y is the response, z = (z1,...,2)7 is a vector of
input variables and r is a vector of random numbers or ran-
domly selected seeds of the pseudo-random number gener-
ators. This simulation model attempts to describe the rela-
tionship f through a few inputs. The output y of the sim-
ulation model represents the output w of the real system.
The simulation program can be represented by a empirical
function g.

Assume that the simulation model can be represented
by a metamodel. Specifically, the general linear regression
simulation metamodel

q—1
Yij = 0o + Zszu + €45 3)
1=1

Denoting ¢;;, where €;; ~ N(0, 02) with o; > 0, as the ad-
ditive error term correspondent to the j-th replication of the
experimental point ¢ of the response. The unknown ¢ meta-
model parameters §; (I = 0,...,q — 1) must be estimated.
The explanatory variable x;, or input [, may be the same
as the simulation variable z;, or a transformation of one or
more variables z;; for example, in the M /M /1 system, the
utilization factor x1 = z1/29 = p, with z; = A (arrival
rate) and zo = p (service rate) may be a better explanatory
variable than z; and 29 separately (Kleijnen, 2008). When
using polynomial metamodels, the linear regression model
is also applied. For example, if ;1 = z;1 and Z;5 = %21 in
the regression model

Yij = 0o + 01251 + 0223 + € 4)

then we obtain Yij = 0o + 01T;1 + 02240 + €j which is
linear in the parameters 6y, 61, and 65.

Fitting the regression metamodel to the individual re-
sponses ;; is equivalent to fitting the metamodel to the av-
erages ¥J;. = Z;i:l y;5/r: with weights r;; see (Kleijnen,
1987, p. 195). Consequently, instead of problem (3), the
equivalent least squares problem is considered in which the
individual observations, at each design point, are replaced
by their averages across simulation runs

q—1
Ji =00+ > Oa + €. )
=1

with €;. ~ N(O, 0'22/7”1)

In the estimation of the parameter vector 6, we consid-
ered the weighted least squares method that yield the esti-
mator

6= X"V, 'X)'XTV 'Y (6)

where Vy = diag(o?/r1,03/re,...,02/r,) isan xn
diagonal matrix, and n > ¢ = rank(X). X = (z) de-
notes the n x ¢ matrix of explanatory regression variables
with x;; the value of explanatory variable [ (i.e., input [)
in design point i and x;p = 1. If &. ~ N(0,02/r;) with
o > 0, then

6= X"WX)'XT"WY, (7)

with W = diag(rq,ro,...,7,). If the variance of the re-
sponse is approximately constant for all the design points,
the estimator yields

6= (XTX)"'X"Y (8)

In most applications the variances are unknown and Vy
must be estimated using the classical estimators

T4

1
&7 = -1 Z(yij —7i.)° )

for estimating the n different variances o? (Kleijnen and
van Groenendaal, 1992). The predicted response at experi-
mental point ¢ for the resulting metamodel is given by

1
Gi =00+ Oy (10)
=1

2

EXPERIMENTAL DESIGN

The selection of input values, or experimental design, is
critical to provide a good fit. An experimental design D
corresponds to the values of the inputs over an experimen-
tal region R C R? where the metamodel is useful. Each
design point ¢ in this region is designated by a specific input
vector x;. which must be different from every other points.
These points are chosen to efficiently investigate the rela-
tionship between the design factors and the response. As-
suming that the interesting features of the simulation model
may belong to any part of the experimental region, the ex-
perimental design should be based on a selection of evenly
distributed points throughout the region. A careful choice
of an experimental design may better expose the relation
between the input and the response and require less design
points. In order to improve the detail of the response new
points should be added (Santos and Santos, 2008) in sub-
regions where the input-output behaviour has more interest.

Besides the selected input vector values, the response
may be affected by other factors such as bias and random



error (or noise). The estimation of the magnitude and distri-
bution of the random error may be performed using repli-
cation, i.e. observing the response multiple times at the
same inputs. The resulting sample means of the replicated
responses have smaller variances than each individual re-
sponse. To improve the detail of the response more repli-
cations (Kleijnen and Groenendaal, 1995) should be per-
formed in high variance regions.

For each design point, a simulation run must be executed
and the simulation output data collected. However, before
the simulations are executed, a number of issues must be
defined. These issues include the initial and final condi-
tions, whether to perform terminating or steady-state sim-
ulations and the run length. When executing terminating
simulations, that are run a pre-determined amount of time
or until a certain event occurs, it may be necessary to cen-
sor the results if rare events are simulated. Otherwise, all
the simulation output data should be gathered. The results
obtained from steady-state simulations, that have no nat-
ural point of termination, may be biased by the warm-up
period. In such cases, an initial data deletion must be per-
formed to control the bias and reduce the estimation error
in the parameters of the metamodel (Alexopoulos, 2006).
Since a single mean value is gathered from each design
point, simulations should not be longer than a batch or an
independent replication. Then a simple mean value Y;, at
each design point ¢, is determined from gathered simulation
data, fort =1,...,n.

METAMODEL VALIDATION

In the context of validation of simulation models, Kleij-
nen et al. (1998) consider a simulation model valid if the
real system and the simulation model have identical real
and simulated responses; see also Kleijnen et al. (2000).
The validation process addresses the quality assurance of
the metamodel fit. It is responsible for establishing that the
metamodel closely resembles the real system and the sim-
ulation output data on which the metamodel is based. The
comparison could be done using numerical statistics up to
a significance level. Alternatively, the assessment could be
made by using graphical plots.

The comparison can be performed with respect to the
information used to build the metamodel. The available
information can be analysed at three validation levels. A
model adequacy relates the metamodel predicted output g;
in Equation (10) to the simulation data used to fit the meta-
model ;. in Equation (5). A validation with respect to the
simulation model uses additional model data not directly
used in the metamodel estimation, y in Equation (2). Fi-
nally, the validation with respect to the real system com-
pares the output of the metamodel with the real data w in
Equation (1). The real data may have been used to built the
simulation model on which the metamodel is based.

The model adequacy compares the replicated averages
;. at design point ¢ used to built the metamodel with the

respective output values which the metamodel is actually
able to predict. The difference between the two values, at
each design point, represents the error introduced by the
adjustment. To estimate the unknown parameter values of
the metamodel the weighted least squares method may be
used. The method consists on minimizing the error sum of
squares

2
n

. qil
SSE(8,y) = Z % (Z?i- — 0y — Z&m) (11)
=1

i=1 ¢
If the variances o2 /r; are approximately equal, assessed
using a test for homogeneity of variances (Conover, 1971,
page 241), then the ordinary least squares method may be
used. After the parameter estimation, a goodness of fit test
must be evaluated in order to assess the accuracy of the re-
sulting metamodel. The rooted mean square error statistic

RMSE(€) = /SSE(8,€)/(n — ) (12)

where £ = g, also known as the fit standard error, is used as
a fit statistical measure for parametric fit. A RMSE value
closer to 0 indicates a better fit.

The validation with respect to the simulation model uses
data collected from the simulation runs. This data can be
collected at input values not used in the metamodel esti-
mation, called predictive data. The predictive validation
may also use the RMSE statistical measure taken at the
new input values with the metamodel estimated with the
old data, as given in Equation (12) with £ = y. When us-
ing replications, each replication response value y;; can be
independently used as predictive data. In this case, rather
than using the averages ¥;. in Equation (11) the errors are
computed for each individual y;; data not directly used in
the metamodel estimation, y in Equation (2),

SSE(8.y) = > >~ (yiy — 5)° (13)

i=1j=1 ¢

with ¢; given by Equation (10).

When data from the real system is available, the meta-
model can be validated with respect to the actual data on
which the simulation model was based. The RMSE, with
¢ = w, compares the metamodel predictions at the input
values from which the real data was collected, with

> o T A2
SSE(0,w) = — (w; — Y; 14
(6,w) ; o2 (wi =) (14)
where w; is the real value and n,, is the number of obser-
vation available from the real system.

CONSTRUCTION TRADEOFFS

The construction of a metamodel requires a significant
computational effort since a large number of simulations



may be required. In fact, to obtain precise information
about the behaviour of the simulation model a large num-
ber of observations may be required. Additionally, a large
number of replications at each design point may be nec-
essary to quantify the magnitude and distribution of the
random error. Replications are also necessary to estimate
the variance at each experimental point. If the variance is
not approximately constant along the experimental region
we may use estimated weighted least squares or use addi-
tional replications until 63/r; ~ ... ~ 62 /r, (Kleijnen
and Groenendaal, 1995; Kleijnen, 2006; Santos and San-
tos, 2008).

Furthermore, the length of each simulation must be de-
termined when dealing with steady-state simulations. The
length of the collected data, after the initial deletion, de-
termines the precision of the collected data. In order to
collect high precision data, longer simulation runs must be
executed. However, when modeling the average behaviour
of the system we may split the simulation run into batches
or replications and use the observed mean response as the
response value come from a large simulation. This allows
us to obtain, with the same computational effort, additional
statistical information that could not be obtained from one
simulation run only. In short, the problem of computa-
tional effort required in metamodel building may resolve
to a compromise between the number of design points and
the number of replications or batches.

The aim of this paper is to check whether if the meta-
model fitting is improved by an increase of the number of
design points or if, on the contrary, a larger number of repli-
cations with a small number of design points produces bet-
ter results. Henceforth, it is necessary to create identical
conditions with respect to the computational effort used in
metamodel’s construction and compare the precision of the
resulting matamodel. To gather meaningful conclusions it
is necessary to use different experimental designs where
the computational effort is successively transformed from
additional replications into additional design points.

NUMERICAL EXAMPLE: M/M/1

The simple M /M /1 queuing system was simulated using
AweSim version 3.0 and the metamodels built in MATLAB
6.5 using built-in and custom made routines.

We assume that customers arrive according to a Poisson
process with a constant expected arrival rate, A, and that
service times follow an exponential distribution with an ex-
pected service time, 1/u. The performance measure of in-
terest is the expected waiting time in queue. The objective
is to express this response as a function of the mean arrival
rate (decision variable or input). We fix 1/ = 1 resulting
in a single input, the queue utilization factor p = A/ = A.
The experiments were carried out in two different regions:
a low utilization factor region, .1 < p < .2, and a high
utilization factor region, .8 < p < .9. The low utilization
factor experiment assumes a low and constant variance to

construct the metamodel (low metamodel). The high uti-
lization factor experiment is used to built two distinct meta-
models, where the parameters are estimated using the ordi-
nary least squares (high metamodel) and the weighted least
squares methods (weight metamodel).

For each of the three metamodels (low, high and
weight) a number of equally spaced experimental designs
were selected; see Table tab:design.

Table 1: Experimental designs.

design n 7T runs
D, 6 20 120
D, 11 10 110
D, 21 5 105
Dy 51 2 102
D, 101 1 101

For each run j and for each design point ¢, in the low
utilization factor region an initial set of 1500 observations
were removed to mitigate the initial bias. The next 3000
observations were collected and averaged to produce y;;.
For the high utilization factor region an initial set of 6000
observations were deleted due to a longer warm-up period,
and the following 3000 were collected. In fact, there were
executed 20 replications at each of the 101 possible design
points. Then a subset of design points and replications were
selected to fulfill each experimental design requirements.
For instance, the design D, uses all 20 replications but only
at design points 0.1,0.12,0.14,0.16,0.18,0.2, while de-
sign D, uses only one replication at each of the 101 design
points. The weight estimator r; /57 at each design point i
was based on all 20 replications, even when the selected
design did not use all available replications, in order to ob-
tain the best possible estimator with the available data; see
Equation (9).

Figure 1 represents the averaged mean time in queue for
each experimental design in the low experimental region.
As expected, as the number of replications increases, the
resulting mean value gets closer to the exact value but the
design points are further apart. From the figure we can in-
fer that the variance can be assumed constant, since obser-
vations can be represented within a band of almost fixed
width.

Figure 2 represents the averaged mean time in queue for
each experimental design in the high experimental region.
Unlike the low experimental region, the variance increases
as the value of p gets closer to 0.9. Such observation leads
us to introduce an estimated weighted least squares meta-
model (weight) as well as an ordinary least squares meta-
model (high).

The estimated metamodel values, for a second degree
polynomial fitting, are depicted in Table 2. For each of
these 15 fitted metamodels a set of statistical validation



expected waiting time in queue
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expected waiting time in queue

Figure 2: Waiting time in queue for the high and weight
designs.

values were collected. Table 3 displays the adequacy sta-
tistical values of the metamodel with respect to the aver-
aged simulation data used in the fitting process. It can be
observed that, as the number of replications increases, the
RMSE(%y) shows a steady increase as the number of design
points increases and the number of replications decreases at
each design point. This results from fact that the interpola-
tion polynomial yields a null RMSE(%), and as new design
points are added the RMSE(g) value increases as it is the
sum of non-negative error values. On the other hand, as the
number of replications at each design point decreases, thus
the averaged value represents a rougher approximation to
the true value.

A more meaningful RMSE(y) value may be based on
all 20 replications of all 101 design points for any of the
analysed metamodels. This RMSE(y) predictive valida-

Table 2: Estimated values for the metamodels.

design metamodel
D, —0.02324 22 +1.379 x — 0.03117
Dy,  —0.9165 22 + 1.619 2 — 0.04649
low D.  —1.285 22+ 1.751 = — 0.05627
Dy 4.402 22 + 0.05655 = + 0.06582
D, 3.71 2% + 0.3559 = + 0.03824
D, 49.9 2% — 43.56 = + 7.007
Dy 45.93 2 — 38.91 x + 5.688
high D, —35.08 22 4+ 99.14 = — 52.91
Dy 209.1 22 — 306.3 x + 115
D, 248.2 £2 — 379 x + 148.4
D, 43.33 2% —32.94 v +2.713
Dy 182.8 22 — 273.4 x + 105.8

weight D, 93.22 22 — 119.7 = + 40.19
Dy 280.2 22 — 429.7 x + 168.2
D, 191.8 22 — 284.2  + 108.5

Table 3: RMSE(y) adequacy values for the metamodels.

design low high weight
D, 0.0034 0.2928 0.0389
Dy 0.0052 0.4558  0.0942
D, 0.0071 0.5666  0.1031
Dy 0.0114 0.8770  0.1199
D, 0.0170 1.6320  0.2383

tion values are presented in Table 4. The values obtained
are very similar for each case, leading us to conclude that
the number of simulation runs are fundamental to the preci-
sion of a metamodel. The amount of gathered data obtained
is the important factor, whether collected as replications or
as new design points.

Table 4: RMSE(y) predictive validation values for the
metamodels.

design low high weight
D, 0.0171 1.6562 0.2464
D, 0.0172 1.6563 0.2384
D, 0.0170 1.6641 0.2407
Dy 0.0171 1.6320 0.2378
D, 0.0173 1.6341 0.2365

Since the M/M/1 queueing system has well known theo-
retical values, we used those values for the validation with
respect to the real system. The results for RMSE(w) are
depicted in Table 5. The results also lead us to conclude
that there is no significant variation within each scenario.
The concordance of the results between Table 4 and Table 5



strengthen the thesis that there is a simple tradeoff between
the number of replications and the number of design points.

Table 5: RMSE(w) real system validation values for the
metamodels.

design low high weight
D, 0.0030 0.3227  0.0597
Dy 0.0037 0.3517 0.0512
D, 0.0028 0.3777  0.0446
Dy 0.0023 0.1377  0.0460
D, 0.0029 0.1880 0.0318

CONCLUSIONS

Metamodels can be used as replacements for simulation
models. The construction of a metamodel is based on the
number of selected design points. At each design point a
number of replications are executed in order to estimate the
variance and collect other statistical values. The construc-
tion of a metamodel can become an expensive task if the
number of simulation runs is large, as a result of the execu-
tion of many replications at several design points.

The precision of the metamodel is related to the number
of design points and to the accuracy of the observed re-
sponses at each point. In this paper, we analysed the trade-
off between an increase in the number of design points at
the expense of the number of replications at each point.
Thus, by maintaining the simulation effort approximately
constant the resulting precision of the fitted metamodel is
evaluated as replications are replaced by new design points.

An M/M/1 example is used to exercise the proposed
tradeoff since variances differ significantly from low to
high utilization factors. The M/M/1 example is frequently
used as work-bench for queueing systems due to the vari-
ability of expected behaviour, such as variance, as well as
the availability of precise theoretical values. Furthermore,
the M/M/1 theoretical values can be used as a reference for
the validation of the metamodel with respect to the real sys-
tem. Additional validation procedures are used to compare
the metamodel with the simulation model and to check the
accuracy of the metamodel.

The experiments carried out lead us to conclude that
there is no significant increase in precision of the meta-
model as the number of design point increases or decreases,
as long as the total number of simulation runs is kept ap-
proximately constant. However, we conclude that it is
preferable to have more replications and less design points,
since it is possible to collect more meaningful statistical
information without sacrificing the accuracy of the meta-
model. The number of design points should be kept low, as
far as it does not compromise the sampling of the simula-
tion model response detail.
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