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ABSTRACT
In this paper we propose a method to select an experimen-
tal design for estimating nonlinear simulation metamodels.
Through a careful selection of design points, the method
provides better fitting results than equally spaced point
selection, with the same simulation effort. This method
accounts for the input/output function of the simulation
model, possibly a mathematical function nonlinear in the
parameters. In spite of the fact that the paper concentrates
on nonlinear regression metamodels, the method may be
applied to other type of metamodels. The procedure is easy
to construct (so, it is attractive to be used in practice) and
focus on simulations scenarios in sub-regions where the in-
put/output behavior has more interest. This procedure is il-
lustrated with an application to a automobile parts factory.
Finally, we draw some conclusions.area.
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1 Introduction

Although the simulation model is simpler than the real sys-
tem, the interpretation of the large amounts of data pro-
duced by the simulation model can become quite difficult.
The construction of a simple mathematical function can
expose, more clearly than the simulation model, the fun-
damental nature of the system input-output relationships.
A metamodel [1], a model of the simulation model, can
be very useful in answering ‘what if’ questions. It uses
fewer computer resources, when compared with the com-
puter simulation model itself, and it can be used for verify-
ing and validating of the simulation model as well.

The general linear model has had a preferential treat-
ment by some simulation researchers [2, 3]. However, the
intensively studied polynomial form of the general linear
regression model is unable to make a global fit to curves
of arbitrary shape. Moreover, in real-life systems the non-
linearity is common [4] and the approximation using poly-
nomials becomes unrealistic, for instance, in problems in-
volving queuing systems [5]. An alternative way of pro-
viding a better and more realistic global fit may be the use

of nonlinear metamodels; for example, nonlinear regres-
sion metamodels [6, 7], Kriging metamodels [8], and neu-
ral nets [9]. Even when a linear metamodel works well, a
nonlinear metamodel may be useful, in order to clarify the
meaning of the model parameters.

Nonlinear metamodels frequently fit their data well
and often with a fewer metamodel parameters. However,
selecting an efficient design, selecting the type of the meta-
model, fitting the metamodel, and interpreting the resulting
nonlinear metamodel may be an important challenge.

One of the main difficulties associated with optimal
experimental designs for nonlinear models is its depen-
dency on the true values of the underlying unknown pa-
rameters of the model [10, 11]. This type of experimental
designs require strong a priori assumptions on the selection
of the metamodel’s type and on the nature of the response
(for example, white noise) [12]. As a result, when the in-
put/output relation is seriously in doubt, this type of designs
may be completely inappropriate. Khuri and Cornell [13],
section 8.5.4, introduce a criterion for the choice of a de-
sign for nonlinear models that does not depend on the initial
values of the parameters. This approach is based on the La-
grange interpolation, by a polynomial of a certain degree,
combined with the D-optimality and, as we referred above,
the approximation using polynomials may be unrealistic.

However, simulation experiments are implemented
sequentially; except possibly when parallel computers are
used, but this kind of procedure is not typical [12]. In addi-
tion, sequential designs require fewer runs than fixed sam-
ple designs (i.e. they are more efficients). This characteris-
tic is most critical when we are deal with expensive simula-
tions. Recently, in the Kriging metamodeling context, both
Kleijnen and van Beers [8] and Sasena et al. [14] developed
sequential designs. Our method is sequential and the design
points are chosen so as to ensure an approximate uniform
response behavior. As a result, it concentrates on inputs
in sub-regions where the input/output behavior has more
interest. In our example, we select a larger number of de-
signs points where the arc-tangent metamodel varies more
rapidly. Also, we select a few number of design points on
the relatively flat parts of the metamodel.

This paper is organized as follows. Section 2 intro-
duces nonlinear regression metamodels and some notation.
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Section 3 explains our sequential method. Section 4 de-
scribes an example concerning a automobile parts factory.
which is studied using the proposed method. Finally, Sec-
tion 5 stated conclusions.

2 The Nonlinear Regression Metamodel

To represent the simulation model, the following nonlin-
ear regression model in the unknown parameters
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(1)� �!�
represents the inaccuracy of the model and

�
is an un-

known function simpler than . (
� �!�

includes both the ef-
fects of the inadequacy of

�
as a representation of . , and

the intrinsic effects encountered in any stochastic simula-
tion model). We assume that /10 � �!�2 �43 and 576�890 � ���2 �4:<;� ,: �>= 3

. The simulation model defines a statistical popula-
tion of observations. The elements of the population cor-
respond to all possible random number streams that drive
the simulation at ? . That is, in theory the population has an
infinite dimension and, hence, we can assume the classical
hypothesis

� ���A@CB4D 3 � : ;�	E
. The variable

� �
may be the

same as the simulation variable FHG , or a transformation of
one or more variables FHI .

The factor settings for the
"
-th simulation configura-

tion (
" �#$ ��
�
�
���&

), named scenario, are specified by the
design point

� �
, where the set of such points constitutes

the experimental design. For each scenario,
,

indepen-
dent replications of the simulation model are carried out
and the simulation experiment yields

,
observations
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Under the hypothesis that the
� �!�

are independent and
normally distributed,

� ���Y@ZB D 3 � :<;� E
, and some further

regularity conditions, it is shown that the nonlinear least
squares estimator of

�
(
K�
) satisfiesK�\[]�<^ � 0 _ �a`cb � _ 2 b � _ �(`db � 0 Pe Ogf�2 � (3)

and is asymptotically normally distributed as h � &<,jik , that is K� @]B �mlonH� $, 0 _ �p`cb � _ 2 b �rq 
 (4)

where
�<^

is the exact value of
�

,
f

=
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� � �V�vuJ� �<^ �����
, _ = _ � ��^ � is the Jacobian

matrix of
f
, evaluated at
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.
`

is the diagonal matrix
`

= wSxy6�z � :�;� ��
�
�
� :<;u � . In order to
simplify the notation, we omit in our notation that

f
and _

are evaluated at
� ^

.
In general, we do not know

`
and so, it must be

replaced by
K` � wSx{6	z�0 K:<;� ��
�
�
�� K:<;u 2 ; as a result, we have

the estimated generalized nonlinear least squares estimator.
The verification of these results is shown in [15].

3 Sequential Design Strategy

The metamodel described in 2 describes the relation be-
tween the input and the response. In order to obtain a
good metamodel fit the data collected from the simulation
executions should provide a good description of that rela-
tion. The selection of the input values, or experimental de-
sign, used to construct the metamodel is very important. A
good choice of input values is critical in providing a good
fit, since a poor choice may require many additional in-
puts [11].

The selection of a good experimental design must ad-
dress a number of issues, since the response may be af-
fected by other factors, besides the selected input values.
These factors introduce effects that can be referred as un-
systematic (random error or noise) and as systematic (bias).
Observing the response multiples times at the same inputs,
or replication, allows the estimation of the magnitude and
distribution of random error, and the sample means of the
replicated responses have smaller variances than the indi-
vidual responses. The bias originates from a rare sequence
of events, introduced by initial conditions, until the system
achieves statistical equilibrium and can be managed by ig-
noring the response during this warm up period.

A careful choice of an experimental design may bet-
ter expose the relation between the input and the response.
For instance, a bad experimental design may suggest a lin-
ear relation between the input and the response while the
response is in fact nonlinear. The detection of such non-
linearities is important and can be achieved with a larger
number of input values or, better still, a careful selection of
input values. Also, designs should be easy to construct if
they are to be used in practice [12].

3.1 Choosing an experimental design

The experimental region of an experimental design corre-
sponds to the values of the inputs to wish the metamodel
is useful. A point in this region of interest is a specific in-
put value. The experimental design must choose a set of&

pilot design points, i.e., combinations of input variables
and parameters of the simulation model. These points must
be different from each other and must belong to a prede-
fined domain region to explore. The points are chosen to
efficiently investigate the relationship between the design
factors and the responses. Assuming that the interesting
features of the metamodel can belong any part of the ex-
perimental region then the design should be based on a se-
lection of evenly distributed points throughout the region.
Whenever some parts of experimental region exhibit more
interesting characteristics, the design should include more
points to explore these parts. These space-filling designs,
or hybrid variations of evenly distributed and space-filling
designs, may provide a better metamodel fit since a more
detailed information of the relation between the input and
the response. Some special cases, where the metamodel
belongs to a previously known input/output class, it is pos-
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sible to achieve an optimal design based on specific criteria
formulation [11].

The proposed approach is a sequential hybrid design
where a set evenly distributed points throughout the experi-
mental region is complemented with a space-filling criteria
based on a measure of distance between the response of
two consecutive points.

3.2 Executing the simulation runs

In a stochastic simulation, for each execution of the sim-
ulation program, the initial conditions must be specified.
In general, these conditions represent very uncommon sys-
tem states as, for example, all queues being empty. As
a consequence, the simulation program begins with a se-
quence of events that may have a low probability of occur-
ring. So, the simulation output can be contaminated with
an initial bias (see [16, Section 9.5]). To control the initial
bias, that can be the greatest source of error in the estima-
tion of the metamodel parameters, an initial data deletion
is performed. This is equivalent to forget a portion of the
initial results while the system is not in statistical equilib-
rium (warm up period). However, the initial data deletion
selection involves a compromise, since in a small deletion
the bias can still affect the result, while a large one may
produce a large variance and it is not efficient. A good
bias detection is important in the context of the indepen-
dent replications method, because usually many runs are
needed.

The sequential method proposed to collect the simu-
lation results consists of four steps and uses Welch’s proce-
dure to eliminate the initial bias [16].

For each of these design points, execute
,

long pi-
lot replications, each replication with � observations ( �
should be large when compared with the roughly guessed
truncation point). It is convenient to choose

, =��
to ob-

tain acceptable estimates of the variance (2) in each design
point [17].

3.3 Determine Welch’s window for each point

For each design point
"
, calculate and graphically represent

the sequence of means P� � ���J���%� such that

P� � ���<���%� � ��,S��	
��� $ �'�rb ���M
I N b � LM

 N � �(�  ��� ���9��
if
�����Z� $

, and

P� � ���J���%� � �V, ��	�) O $ �'�tb � � b �M
I N b�� � b ��� L

M
 N � �(�  ��� �����t�

if
����� � $

, for different values of Welch’s window,
�

,
with

������� R 	! 
. If the response is the average time in the

system, then
�7�  ��� � represents the time in the system for

the
�

-th customer in replication " of the design point
"
. Se-

lect the smallest value
�

that corresponds to a sufficiently

regular graphical representation and choose the
�

value,�$#
, from the moment that the sequence % P� � ���J���%�'&(� �$ ��
�
�
� � O ��)

seems to have converged, that is, choose the
truncation point

� #
.

If there exists some design point for which it is not
possible to find a satisfactory

�
, then we consider

, �, � $93
replications and repeat the process. Otherwise, for

each replication of the
"
th experimental point, ignore the

observations until the corresponding truncation point and
collect the remaining simulation results % ��� ��Q � ����� � K: � �*&" �%$ ��
�
�
��'&(� ) �%$ ��
�
�
��,
)

, where

�U��� � $
+ O �,# -M

I N�.�/10 � �(��� ������ + �32�$�3�3 � # R $54!6 � �87
(5)

approximately 9 4
: of the observations are collected.

3.4 Selecting the design points

Consider an initial set of design points ;
#

from the ex-
perimental region < , ;

# � % � � ��
�
�
��'� u )>= < , evenly
spaced such that

� � � � � � "t��� u O � � � R ��& O $ �
, with" � $ ��	S��
�
�
��& O $

. For each design point
� �VQ

execute,
independent replications of the simulation model. From

each simulation run, remove the initial bias, and evaluate
the mean response value

� �!�
. Compute the set of sample

means of the replicated responses ?
# � % P� � Q ��
�
�
� P� u Q ) .

Calculate the distances between consecutive pointsP����Q
, that is, @ � ��A P�U�B0 � Q O P����Q A

, where
" �+$

,

�
�


,
& O $

. Find� � $
,

�
�


,
& O $

such that @ . � @ � for all
" � $

,

�
�


,
& O $

.
The @ . represents the largest gap in the response in the
experimental region and a new design point should be
inserted to access the behavior of the input/output rela-
tion. If no information is previously available on the in-
put/output relation, it is recommended to choose the mid-
dle point of the input values in the interval between

� �
and
� �B0 �

. The new ordered set of design points is now;DC � ;DC b �FE % ��� .G0 �7� � . � R 	H) where I �T$ ��	S��
�
�
 rep-
resents the I -th step in the sequential space-filling design
strategy.

The number of steps in the space-filling design de-
pends on the interesting features of the metamodel. The
main objective of the proposed design strategy is to pro-
vide a better choice of design points. Therefor, the num-
ber of points is assumed to be previously determined. The
past experience suggests that a balanced choice is to in-
clude half the points in the initial set, of evenly spaced de-
sign points, and determine the remaining points with the
proposed space-filling design strategy. However, if the pre-
defined number of points does not expose, with sufficient
granularity, the interesting features of the metamodel, ad-
ditional design points are to be chosen so as to ensure an
uniform response behavior, in order to provide a more ac-
curate fit of the metamodel.
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4 Application to a Automobile Parts Factory

In this paper, a automobile parts factory is depicted. The
factory contains two drills and a finishing area. Drilling
time is triangularly distributed between

$93
and � 3 minutes,

with a mode of
$54

minutes. The time to perform the fin-
ishing operations has a uniform distribution on the interval0 	S� 4 2 minutes and only one part can be finished at a time.
The factory processes two types of parts. Type I and type II
parts arrive according to a gamma

��	S�����
and gamma

��	 ��	 3 �
distributions, respectively; following the notation of Law
and Kelton [16], gamma

��� ���a�
represents the gamma dis-

tribution with shape parameter
� = 3

and scale parameter� = 3
(the mean is given by

���
). After arriving, type I and

type II parts take two and five minutes to be routed to the
drill area, respectively. Both parts require the drilling and
finishing operations and assume no time delays between
these two operations. We assume that operators are always
available if a machine is available. On the average, finish-
ing operations have to be repeated

	 3
percent of the time.

If a part has been routed through finishing twice but still
needs to be refinished, it must be drilled again. The pur-
pose of the simulation experiment is to express the average
time in the system (response),

�
, as a function of the mean

time between arrivals of parts of type I (decision variable),� � 	��
.

Based on the proposed procedure described in the
Section 3, we consider three distinct experimental designs
with

$ �
design points each. The

� "
	�� @ experimental de-
sign, uses only evenly spaced design points, ;

# ������� �
% 3 
 4 � 4 � $�3 � $54 �(	 3 �(	 4 � � 3 � � 4 ��� 3 ��� 4 � 4	3 � 4$4 ��� 3 ��� 4 �� 3 � � 4 � 9 3 � 9 4 � � 3 ) . The

� " "�" experimental design, starts
only with two points ;

# �   � % 3 
 4 � � 3 ) (corresponding to
the experimental region limits) and determines all other de-
sign points with the space-filling proposed procedure. TheI�� ,�� " � " experimental design, starts with

$93
evenly spaced

design points ;
#
C�� L�� � �  � % 3 
 4 � $93 �
	 3 � � 3 ��� 3 � 4	3 ��� 3 � � 3 �9 3 � � 3 ) (approximately half the points in the experimen-

tal design) and uses the proposed space-filling procedure to
determine the remaining design points. The

� "
	�� @ as well
as the

� " "�" experimental designs are extreme situations of
the proposed procedure, where the number of design points
left to the space-filling procedure is minimum and max-
imum, respectively. The

� "
	�� @ experimental design can
also be used as a reference to measure the relative improve-
ment of the proposed procedure when compared with the
routinely used experimental designs.

At each design point, we run Welch’s procedure in
order to determine the length of each simulation and the
initial-data deletion. Welch’s moving average is based on, � 	 3

replications of the simulation metamodel, where
each replication contain

	 3�3�3
observations. For example,

at the design point
�! � 	��" � � 4 of the

� "
	�� @ experi-
mental design, we delete

	 3�3
observations from the begin-

ning of the run and we use only the next
$ $ � � observations

to estimate the response
�

(the remaining
���#�

observations
are ignored). We carry out

, � 	 3
replications of each of

the
& � $ �

design points; since
, =*�

we obtain an appro-
priate estimate for

K: �
,
" �%$ ��
�
�
�'&

[7].
To identify a curve that might fit the input/output re-

lationship of the simulation model (computer program), we
performed a visual check, observing the simulation results
plots of each experimental design, in the Figure 1. Compar-
ing the plots with graphical representations of known func-
tional relationships, for example [18, pages 329, 338 and
340], a good candidate seams to be the arc-tangent func-
tion $ � ���7� � ; 6	8&%('�z ���*)+	 � ��,��

Since the number of replications is equal for all de-
sign points and the populations are assumed to be normal,
the variance heterogeneity is checked using the Hartley
test [19, page 764]. We obtained

- �/. 6*0 K:<;�
. x21 K: ;� � � 3
4 
 � =3- � $ � � $ � 7 3 
 � 4 � [ 4 
 3 �

so we assume that the errors have unequal variances.
Thus we will use the method of nonlinear weighted
least squares. The estimators were obtained using the
Levenberg-Marquardt method implemented in MATLAB.
This method is robust and works well when solving this
type of problem. However, on large residual problems its
linear convergence can be very slow and it may even not
converge. When this happens we must choose a method
that is adequate for large residual problems.

Design 45�6 45�7 4598 45�:;�<>=�?9@ A(A�B�C D�EGF H�B(B�C F(I(J&E K�C J�A9D(D&J(J H�I(K�C L�AMEGN
O�PGQ&R < P�S A(A�N�C K(B(L H�B(N�CTA�N(J(N K�C FGD&L(J(K(L H�L(J�C L(J(NGD;�< S2S A(A�N�CTA�I(J H�B(N�C K(I&EGN K�C F(B&E(EGL�A H�L(F�C NGD&K(B

To check the validity of the remaining hypothesized
metamodels, we observe a fairly close agreement between
the UWV /YXZX and X"XS/ values (see Table 2), so [\X / is a rea-
sonably valid indicator of the predictive capability of the
model [19, page 345]. As a consequence, we conclude that
the metamodel built with the I�� ,�� " � " experimental design
achieves the best predictive validity when compared with
the metamodels based on the other experimental designs.
In fact, a careful observation of the plots of the Figure 1 ev-
idences large gaps in the representation of the input/output
relation. While the

� "
	�� @ experimental design originates a
large output gap between the design points � 3 and � 4 , the� " " " experimental design exhibits large input gaps between
points

3 
 4
and

	$	S
 9 � 4 , and also between
� 4 
 	 4

and
� 3

.
The elected experimental design produces a meta-

model described by the arc-tangent function is depicted in
Figure 2, with parameters described in Table1.

To gain more insight into the predictive validity of theI�� ,�� " � " arc-tangent metamodel, we analyzed the results of

Table 1. Metamodel’s estimated parameters for the experi-
mental designs.
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Figure 1.
� "
	�� @ , I�� ,�� " � " and

� " "�" experimental designs, with
$ �

design points.

Table 2. Metamodel’s diagnostics.

Design ����� ����� �	�
����� ��������	�
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double cross-validation [19, page 439]. We observe in Ta-
ble 3 a good agreement between the estimated coefficients
for both subsets. Also, the coefficients of determination are
quite similar.

Table 3. Double cross-validation test.

45 6 45 7 45 8 45 : �
7
����� �

7
�����A(A�N�C K&E H�B(N�CTA(A9D K�C FGD&L&E H�L(J�C L(B(N K�C J(J(J(K K�C J(J(F(FA(A�B�C J(F H�B(N�C L&EGN K�C F(J�A�J H�L(J�C J(F�A K�C J(J(F(F K�C J(J(F(J

5 Conclusion

Metamodels can be used, as simulation model surrogates,
to expose the fundamental nature of input/output relation-
ships. Represented as a simple mathematical function, the
metamodel can also be used for verifying and validating
the original simulation model. Queuing systems, as many
other real-life systems, exhibit a nonlinear behavior. Non-
linear regression metamodels provide a better and more re-
alistic global fit than polynomials since they are able to fit
curves of arbitrary shape.

In order to provide a good fit, the sample design points
must be chosen to efficiently investigate the input/output
relationship of the simulation model. A careful choice of
an experimental design may better expose the relation be-
tween the input and the response, such as subtle nonlineari-
ties of the simulation model. The design should be generic,
in spite of the fact that the paper concentrates on nonlinear
regression metamodels, and should be easy to construct if
they are to be commonly used in practice.

The proposed approach is a sequential hybrid design
where a set evenly distributed points throughout the exper-
imental region is complemented with a space-filling crite-
ria based on a measure of distance between the response
of two consecutive points. The number of steps in the
space-filling design depends on the interesting features of
the metamodel. The main objective of the proposed design
strategy is to provide a better choice of design points.

Figure 2. Plot of the elected metamodel and the
points.
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The application example is investigated using three
distinct experimental designs that represent two extreme
uses of the proposed procedure and a balanced approach.
Using MSE as an indicator of the metamodel’s predic-
tive capability, as illustrated by the application example,
we compare the three experimental designs, with the same
number of design points. The balanced approach exhibit
a better predictive capability, when compared with the ex-
treme designs, one of which coincides with the ordinary
evenly spaced design.

This paper exposes the fact that a careful choice of an
experimental design can lead to better metamodels, with
the same simulation effort, and proposes a sequential hy-
brid design that improves the predictive capability of the
constructed nonlinear simulation metamodels.
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