Assisted Selection of Components using Classified Identifiers

Pedro Reis dos Santos
Technical University of Lisbon
prs@digitais.ist.utl.pt

Abstract

Developing complex software systems is a de-
manding task for software engineers even with
the most update frameworks and tools. Since,
for complex systems, automatic generation of
the final product is not achievable an assisted
selection of alternatives and highlighting of
possible inconsistencies is needed. We pro-
pose a representation model that classifies
identifiers extracted from the various software
development stages. A set of tools and mech-
anisms assists the developer to keep track of
relevant information for each stage of the soft-
ware process. Possible reuse candidates can,
therefor, be rejected by detecting misplaced
identifiers in the representation model.

1 Introduction

Reuse of software components has been around for
many years. Operating systems are one of the first
examples of widespread reuse of software components.
Since Fortran, languages offer input/output constructs
to access storage and user in a, more or less operating
system, independent form. Reuse can improve signi-
ficantly the quality and productivity of software devel-
opment in software projects. With the increasing size
of software projects, reusable components will play a
growing role in software production. Studies [11] found
that the ”in-house syndrome”, as well as other feared
factors, did not affect reuse. The programming lan-
guage being used, the software engineer experience,
the use of case tools or legal problems are factors that
hold little influence on software reuse.

Important factors influencing reuse includes the avail-
ability of trustable and high quality assets, the exist-
ence of common software process and a reuse educa-
tion. These three factors are interconnected and should
be better addressed. A reuse education can be seen as

Rui Gustavo Crespo

Technical University of Lisbon

rgc@digitais.ist.utl.pt

driving factor, but can not on its own produce signific-
ant results if no support for reuse is given. Such sup-
port should be built around a common software pro-
cess in order to guide the educated software developer.
The availability of high quality assets does not depend
neither on the software developer nor on the software
process. However, the software process should assist
the software developer in the task of identifying such
high quality assets. In this perspective, the major ef-
fort should be placed on making available a common
software process that allows the educated software de-
veloper to improve reuse by identifying good reusable
assets [9].

The specification and representation of reusable soft-
ware components requires classification techniques
that allow automatic or assisted selection of such com-
ponents. The selection can be automatic only if there
exists an exact match between the requirements and
the identified component properties. If not, we must
collect the best matches and modify them or code con-
verters in order to meet the requirements. Sometimes,
if characteristics were not completely or correctly iden-
tified, matches that were less attractive, in a first ap-
proach, can prove to be the best solution. There is a
need for a search engine that returns possible solution
to our needs. It is not expected to provide the perfect,
or even the best, match of the available alternatives. If
alternative options exist, it should be possible to choose
from a set of matches based on component parameters
that were not a part of requirements query.

The medical equivalent is to provide a set of symp-
toms and get an ordered group of possible illnesses.
Perhaps, the most probable answer, of the possible
solutions presented, is not the solution. Some of the
symptoms may not yet have been identified, and there-
for omitted, leading to less accurate answers. Then,
human intervention is needed actually check if the pa-
tient has the missing symptoms. Although, some of
these symptoms may not allays be present. The final
choice of treatment relies on the ability to select among

possible candidate treatments, the best the doctor sees

fit.

Our aim is to describe software components in a form
that users can browse components in order to find out
if they are a good match. Since these components may
become very large and complex, we must provide a set
of mechanisms and tools to help extracting relevant in-
formation. The user should be able to gather structural
information, as well as associations and dependencies
between components. In order to achieve a compre-
hensive description of each component, we use identifi-
ers extracted from each stage of software development.
Identifiers offer a very high level of abstraction, since
they are used to materialize the idea of the developer
through out the development process. By grouping
related identifiers we achieve a compact description of
each component. However, such a description might be
too extensive for the software developer to cope with.
Therefor, a set of filtering mechanisms must be avail-
able so the software developer can obtain only the data
corresponding to the view that better answers its cur-
rent query. The information provided by an identifier
can be ambiguous in some views, so a set of attributes
for each identifier may be introduced. Such attributes
should help to clarify the context in which the iden-
tifier is used. Since the identifiers and attributes on
their own may not be enough, and inspection of the
actual data may be necessary. Each identifier or at-
tribute may have a link to the actual data from where
it was extracted.

The resulting system can be viewed as specialized nam-
ing service whose data is made of sets of identifiers
extracted from the software process data.

2 Related Work

Software components can comprise information that
ranges from requirements to code. The most simple
way to describe a software component is textually, in
English, usually through its reference manual. This
may be good approach for high quality assets. These
result, generally, from commercial libraries or frame-
works. However, frequent inconsistency problems
arise, even with high quality software, when document-
ation 1s out of synchronization with the software it de-
scribes. This may result from features or caveats ad-
ded to new version of software and not reflected in the
documentation. Sometimes, the documentation reflects
what it was intended to do and not what 1s really does.
But even when documentation is updated with the soft-
ware, problems can arise from wrong interpretation
of the text leading to incorrect usage of the software.
Documentation problems have been around for a long
time and a large effort has been made to make a steep

learning curve [7]. Solutions to keep documentation
updated exist, but the most reliable solutions require
large human resources and reduce the final product
market penetration due to the resulting high prices and
time delays.

Documentation information is frequently long and dif-
ficult to browse in order to extract specific compon-
ent characteristics. Classification techniques provide a
simple and useful way to catalogue software compon-
ents.

Simple classification schemes use enumerative tech-
niques such as Dewey Decimal System but are, gener-
ally, too vague for efficient application because of their
inability to record growing details. However, they can
be useful as a first approach.

Other descriptive and reuse centered approaches have
been available. Faceted classification schemes [15] uses
several facets, or views, where each facet can have sev-
eral terms. In order to classify an item, a term that
best describes the item is chosen from each facet. Fa-
ceted classification schemes provide a better classific-
ation than enumerative schemes, since a component is
no longer described by one term but many, one from
each facet. More elaborate classification schemes re-

quire the use of properties or attributes.

Approaches based on software models and metrics [8]
provide a much better base, since they are based on
information extracted from the software process itself.
This approach gives quantitative results from analysis
process offering very valuable data. However, many of
those quantitative values result from measures that can
only be taken by what they are and do not reflect any
measure of reusefulness. Since they are only hints, al-
though very valuable, simpler and less expensive forms
of achieving similar results we should investigate.

Cognition models offer a reverse engineering approach
to program understanding [20]. All models use existing
knowledge to build new knowledge about the model of
the software that is under consideration. While cog-
nition strategies vary, they all formulate hypotheses
and them resolve, revise, or abandon them. Many of
these models are based on exploratory experiments,
and some of those models have been validated. While
a lot of important work exists, most of 1t is centered
around general understanding and small-scale code.

Most these methods lack high abstraction capabilities
or rely on complex, non-uniform and difficult tasks to
manage information. It should be possible to obtain
different levels of abstraction in a uniform representa-
tion. The same representation model should be generic
enough in order to cope with different types of inform-
ation available in different software stages. A simple

search mechanism can browse this uniform structure
and highlight matches to simple queries. A further
analysis of some components may use any of the above
models, depending on the absence of specific informa-
tion.

3 Description of components

In a first contact with a software component we must
determine what is to be considered the relevant inform-
ation and how to extract it. This information, should
also be compact, so the effort analyzing it should be
significantly smaller than analyzing the component it-
self. In this paper we exercise the proposed solution
with a simple home finance accounting system. Cur-
rent and savings accounts are available. In the cur-
rents accounts we register all transactions and savings
accounts reward an interest rate.

3.1 Abstraction

Abstraction is a fundamental technique for understand-
ing and solving problems [21, 13]. Abstracting raises
the problems of software engineers being unable to de-
termine how realistic is the abstraction and what level
of detail can be considered unnecessary. Furthermore,
the degree of realism or detail necessary can vary from
one application to another, for the same entity. In this
perspective, an abstraction can be considered good in
some context and poor in another. Our solution to
cope with such dependency is to record all information
up to a configurable level of detail. Since this level is
application dependent the degree of realism in the ob-
tained abstraction is highly dependent on the selection
process. Although abstractions to some well known
applications can be easily tuned, due to previous ex-
perience, we can not foreseen other applications for
the same entity. So, to describe an entity using a set
of predefined identifiers [8] can be a limitation.

Our approach uses, in principle, no predefined identi-
fiers or views. In fact, some predefined identifiers exist
as entry points. The identifiers used to describe some
entity are not the best identifiers from a set but, are
instead the best description that could be found. The
absence of stereotyped identifiers will provide greater
expressiveness and realism to the abstraction but will
make the selection process more difficult. Since com-
paring can not be performed on equal terms, is to de-
termine the best available entity for some concrete case.
The decision can no longer be based on the existence,
or not, of some identifier, nor on its value. The solu-
tion found uses a classification process to store identi-
fiers. As will be explained, identifiers performing sim-
ilar tasks are supposed to be classified in a similar
way. Therefor, it is expected that similar identifiers

will show up in the same area. Due to their proximity
a better judgment can be performed while retaining all
the expressiveness of each identifier.

In our home finance accounting system it is expec-
ted that keywords like account, current, savings or in-
terest will be major entry points into our model. Typ-
ical entry points include data types, functions or vari-
ables, since they provide the first level of abstraction.
However, these entry points must be treated uniformly,
since different approaches might model each concept
by a different resource. In our example, the interest
rate can be fixed for all savings account (constant),
can be fixed for some groups of savings accounts (func-
tion), or can have different values from one account to
another (variable).

3.2 Classification

The first stage, in order to solve our problem, consists
of determining what is to be considered the relevant
information and how to extract it.

By looking closely into the way we represent inform-
ation we find out that at the higher abstraction level
resort to names [6]. These name are used to describe
views, objects, variables, functions, types, and so forth.
More important is the fact that they retain their name
from the requirement stage, down to the code being
executed. The fact that new names came up or disap-
pear as the development process is carried out can give
useful information about deviations from the original
requirements or analysis stage. These can be seen as
the signature of the entity being focused.

Our objective is to concentrate on names bound to
some piece of information, called identifiers, to rep-
resent a system. If we extract all useful and mean-
ingful identifiers from objects to the model we end up
with raw data, called entities. By extracting we do
not mean to remove identifiers from wherever they are
but to retain a reference in model pointing to what the
identifier refers to. In this process we end-up with two
separate domains: an identifier domain and an entity
domain (figure 1). The identifier domain should cap-
ture the essential information about the object, allow-
ing most subsequent operations to be perform without
the need to access the object itself. The entity domain
will retain the object in the previous form, although
the identifiers that might exist are ignored, since a du-
plicate exists in the identifier domain.

The identifier, no matter how meaningful its name can
be, may not be enough to provide an immediate dis-
tinction of the entities it refers to. This does not mean
that it can be used to refer two entities or that an entity
may be referred by other identifiers, it simply means
that the name used may not be enough to identify the

identifiers

entities Al

Figure 1: Extracted identifiers reference their entities.

entity. The solution is the use of attributes to qual-
ify the entity making the distinction clearer. However
attributes should be treated as a name decomposition
mechanism, not as different kind of object in the model.
Attributes can be manipulated as identifiers although
they might not point to some object in the entity do-
main.

Our model relies on uniformity and economy of con-
cepts for its expressiveness. The first makes life easier
by giving less to remember, no special cases. The later
aims to get the greatest power with the smallest num-
ber of concepts [18, 17].

4 Representation of components

Abstraction is the most effective way to manage com-
plexity. A hierarchy is a structured organization where
different abstractions can be handled at different levels.
The problem is divided into ordered levels or increas-
ing detail [1]. The detail does not go away, it just
gets pushed it into a lower level. Most important is
the fact that hierarchies come natural to most people.
So, when describing a problem whether in top-down
or bottom-up approach, the solution comes up at the
root of the hierarchy and set of simple problems at
every leaf. Functional languages claim must of their
expressiveness by exploring this concept as opposed to
languages based on side effects of sequences of inde-
pendent instructions. However, each intermediate level
has a role to play in the process and, in many cases,
refers to important milestones. So, when describing
a problem there is a need to associate data with each
node and each leaf. The root node will start to con-
tain the core of the problem and finish up with the
final solution, while each leaf will start from a simple
and atomic problem that is added with one or more
solutions (figure 2).

The characterization of each node or leaf will start from
the name and be enriched with a series of properties
that represent their values. The properties will also
have a name describing their function that will be in-
serted as sub-names of the node being characterized.

The objects being modeled will be broken down into
values and their names, and these names will be re-
grouped as a hierarchical tree and pointing to the re-
spective values. These object nodes [3], after being
characterized, must relate to other objects in the sys-
tem. The links [10] are, in a second stage, a way to
express weaker connections between objects in the sys-
tem. They form the basis for sharing among objects
and definition of objects as extension of others [16].
Links allow the designation of other identifiers while
identifiers refer to entities. The way a link operates is
given by the name of the link. Because, there are no
predefined names a dictionary must be supplied, if the
behavior can not be unambiguously extracted from the
name of the link. This dictionary is a set of identifier to
entity associations and can also be a part of the global
hierarchy.

Reference

/R Identifiers

Figure 2: A naming tree links project documents.

In our accounting example, we expect nterest to be a
qualifier of savings. The classification savings/interest
will represent interest as a component of savings, in
all development stages, no matter how the system 1s
modeled (constant, function or data variable). Other
classification may include inheritance relations, such
as account/savings, or composition descriptions, like
banking/account.

4.1 Locating and Browsing

From the previous section we obtain a description of a
system by representing all named entities in an hier-
archical naming tree. Very large systems, when de-
scribed in a detail, generate large name trees. Since the
objective was to break down the complexity, powerful

mechanisms are needed to extract information.

As the system is described in very simple and repetit-
ive way the mechanisms necessary will be fairly simple.
The tools that implement them, however, will time con-
suming since they must iterate through thousands of
equal structures differing only the names and values of
each entry.

To keep track of the relevant information in a certain

stage of the development process, two operations are
fundamental in helping the user to locate and relate
relevant information: locating and browsing.

The browsing operation on trees is performed in two
different ways: breadth and depth [22]. In this model,
however, both breadth and depth algorithms can be
large enough, if many details are added. To make
browsing lighter, we extract a subset of tree nodes that
match a certain criteria using a find operation and then
browse the result.

Finding is necessary to test the existance and location
of some name or entity on the system. If a graphical
representation is used,the problem is even more ser-
ious. Highlighting relevant information in large rep-
resentation might be difficult for user’s naked eye. A
better approach is to generate an auxiliary model con-
taining only relevant information, more or less the same
way select operations are performed on tables of a rela-
tional database and end up with new table containing
the results. In this case, a smaller naming tree con-
taining only the nodes leading to the selected leafs is
obtained. Then, browsing operations can be performed
on this subset tree as in the original one but without
being distracted by lots of data irrelevant for this stage
of development.

In our example, the location of some identifiers
provides important contextual information. The pre-
cise location of some identifier is not important
at this example and is represented by In
an object-oriented perspective, locations like .../ac-
count/transactions or .../account/interest suggests
that the base class account will play some roles reserved
for its derived classes current and savings. On the
other hand, the same identifiers can appear in different
locations, such as .../current/transactions and ... /sav-
ings/interest, suggesting a more specialized approach.
These identifiers’ locations can be reached by browsing
directly the actual code or browsing the design descrip-
tion. However, if many modules and different descrip-
tion languages are available, it might require special-
ized knowledge and additional time to hop from one
place to another.

4.2 Hierarchical Modularity

The hierarchical naming tree can be broken into small
hierarchies interconnected, but independent from each
other, the named spaces (figure 3). These name spaces
form the basis to express the necessary change in the
support characteristics as we deeper into the hier-
archy. Different name spaces can reside on distant geo-
graphical locations or hold different access protections.
Name spaces can also perform different types of per-
sistence or even, during a test and try phase, provide

no persistence.

Figure 3: Connecting project name spaces.

Since we have dissociated identifiers from entities, we
need to have different operations to operate on both. If
an identifier is moved only its name moves, the entity
will remain where it is. On the other hand, when an
entity moves, the identifier or identifiers that refer to
it will remain where they were. The usual operation
of moving an identifier and carrying the associated en-
tity can also be done by a composition of the previous
operations.

The capacity to interconnect independent naming hier-
archies allows the composition of multiple views.
These views can represent different stages of devel-
opment and different alternatives from the same stage
of development. It can also be used to ensure a uni-
form naming space when data is gathered from dif-
ferent sources. This uniformity makes a comparison
between code and design stages easier, since the same
form of presentation is used, although information is
collected into independent hierarchies.

5 Framework Environment

We began by determining what is to be considered the
relevant information and how to extract it. Then a
model to represent it was presented and operations to
operate on it defined. Now we must explore ways to ob-
tain conclusive results that can significantly contribute
to improve the quality of the final product. It would be
expected that a better rejection of entities, poor can-
didates in the selection of reusable components, as well
as better choice when alternatives are available.

Many models give large set of constructs to built the
solution for a problem. These models ready to use but,
generally limited to a certain area of problem solving
where those constructs apply better [2]. By giving no
specific constructs, we enable each project member to
establish particular constructs or restrictions to each

particular area. This approach separates the model
and its set of base operations from the high level op-
erations needed by the software developer. The major
advantage is not to restrict the software developer to
fixed set of choices, making exploratory queries pos-
sible and the definition of new procedures easy to in-
tegrate.

However, the complete absence of operating procedures
may inhibit the software developer of using all the ca-
pacities available. As a starting point three operations
are available: location, selection and extraction. A
location operation will return the context where on or
more identifier are used. Since the same identifier may
be present in different contexts many location can be
returned. The set of location will generate a new hier-
archical tree where the identifier being located is the
same for all leaf nodes. The branches of this new tree
will represent different views where the same identi-
fier is being used. These views can represent different
stages of development and different alternatives from
the same stage of development.

Since the identifiers used do not come from a fixed set
the search may have to based on their attributes. Tt
is expected that some of its attributes will be same
if two different identifiers perform similar tasks. The
returned context consists on hierarchical positioning of
the identifier in the tree. An analogy with the UNIX
find command is possible since it may search name or
attributes, although the attributes are limited to the
file i-node description.

The selection operation will return the list of attributes
of an identifier, while the extraction operation return
the subtree starting at an identifier. These operations
would return, for a complex system, too much inform-
ation and require a location operation to follow. An
extraction operation is used to limit the analysis to a
limited set of views, by eliminating all others. A selec-
tion operation reduces the search to a certain level of
detail, limiting subsequent searches to a certain gran-
ularity.

5.1 The Selection Process

The system we described so far must now be used to
provide some useful results. We do not hope to make
available all the information available in the software
process documents in the identifier domain. The iden-
tifier domain can only be interpreted as a signature of
the software component being described. However it is
expected that it will reflect many of the characteristics,
static and dynamic, of the system 1t models.

The first result can be interpreted as a more or less
accurate measure of the complexity of the system. A
very complex software component should need a large

naming tree to describe it. So it can be used a simple
metric that, nevertheless, can be reliable and portable
between different stages of development; unlike lines of
code that can only be used in the final stages and can
give misleading results.

Simple context analysis can be done by extracting the
context of a given identifier from a specific view. If
the identifier is not previously known, the search must
based one of its well known attributes. Context in-
formation will show the surrounding identifiers and give
a glance of the environment where it is being used.
Hopefully, this identifier information will be complete
enough in order not to be necessary to look at the ac-
tual code or describing document.

If we extend the previous search to several views, a set
of contexts, one for each view, will be gathered. The
comparison of such contexts will highlight important
information from these views. The views can represent
different alternatives for the same stage of development
or a development case. Deviations from initial require-
ments can be identified as different context paths or
even the absence from some views. Very long paths
relate, usually, to the add of excessive detail can result
from very general components; while short paths can
be associated with specialized software components.

When context information is insufficient to get precise
conclusions, a select operation can provide additional
data. This data can include other attributes or related
identifiers that will enhance the function and environ-
ment where a given identifier is being used. Larger
amounts of data can be obtained through an extrac-
tion operation. However, such extraction will provide,
generally, too much information and it must be then
be treated by a select operation.

This system provide no quantitative results and it re-
quires a good understanding of the major software en-
gineering concepts. The approach is, therefor, human-
centered [14] since it relies entirely on the experience
and interpretation capacity of the software developer.
On the other hand, it provides lots of useful informa-
tion in a compact form that otherwise can only be ob-
tained through direct inspection of the code or higher
level description.

5.2 Validation and Evaluation

A simple validation test was carried out using stu-
dent projects. The same specification was given to
all student groups. Each group delivered an UML [4,
5] graphical presentation of the analysis and design
stages, and a C++ [12, 19] implementation. The
test consisted of two part: a consistency checking
and an interoperation test. The consistency checking
should highlight inconsistencies with the given specific-

ation while the interoperation test should detect parts
that could easily interchanged between different ap-
proaches. From the students perspective would meas-
ure the abstractions and their modularity. In the test
case we used a complex version of the UNIX grep
command that gave the context where an identifier
was found. A simple example could include a struc-
tural search: class/instance/method/variable. The ex-
traction of information from the analysis and design
stages was performed manually into the hierarchical
naming tree. The C++ extraction used some rudi-
mentary tools and extracted only a limited set of iden-
tifiers.

The first result was given by direct analysis of the res-
ulting tree. Missing information was evident on size of
the resulting tree as well as some case of over-coding,
by the huge tree size. Location of specific identifiers,
representing what were expected to be key evaluation
points, was a bit difficult. Although most groups used
meaningful names, some others used difficult to track
names. The major resulted in the fact that the soft-
ware process and the resulting application was correct,
the chosen names were just awkward. This made de-
tection of inconsistencies error prone, since many false
errors where found. Only later discussion with group
members clarified the situation.

The approach proved very useful for well behaved
cases, but misleading in some others. The existence
of at least some predefined identifiers proved essential
in order to keep references. This can, however, be dif-
ficult to achieve with outsourced components, unless
manual classification is performed.

6 Conclusion

The use of identifiers proved to be is a good choice, it
gives a good overview of the system. Some time there is
the need to look at the actual data but it was expected
that no abstraction can replace completely the object.

Hierarchy is good because is keep good notion of where
we are. It must be specially attractive for software
developer that are familiar with large hierarchical filing
systems with deep nesting of directories, as The need to
keep reference, absolute or relative, is specially useful

in our approach.

The use of non-standard identifiers may be a draw-
back in location operations. The use of synonymous
and different naming schemes make the search process
difficult and error prone. Therefor, a set of base iden-
tifiers is need to catalogue key information within the
system. However, the ability to add non predefined
identifiers is an important feature in improving the ex-
pressiveness and enriching the descriptive power of the

model.

The proposed operation allowed the extraction of con-
clusive results quickly. However, the amount of in-
formation based on which decisions had to be made
We hope that

as we gain experience more targeted operations can

may be excessive for larger projects.

be designed. Nevertheless, we fear that very targeted
searched might exclude important information, leading
to incorrect decisions.

References

[1] Thomas Ball and Stephen G. Eick. Software visu-
alization in the large. IEEFE Computer, 29(4):33~
43, April 1996.

[2] Sergio C. Bandinelli, Alfonso Fuggetta, and Carlo
Ghezzi. Software process model evolution in the
spade envrionment. IEEFE Transactions on Soft-
ware Engineering, 19(12):1128-1144, December
1993.

[3] Daniel Bardou and Christophe Dony. Split ob-
jects: a disciplined use of delegation within ob-
jects. In Object-Oriented Programming Systems
and Applications, 1996.

[4] G. Booch, I. Jacobson, and J. Rumbaugh. The
Unified Modeling Language for Object-Oriented
Development. Rational Software Coporation, 0.91
edition, September 1996.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. Unified
Modeling Language Sematics. Rational Software
Coporation, 1.0 edition, January 1997.

[6] David Boundy. A taxonomy of programmers.
Software Engineering Notes, 16(4):23-30, Octo-
ber 1991.

[7] Greg Butler and Pierr Denommée. Documenting
frameworks. In 8th Annual Workshop on Software
Reuse, March 1997.

[8] Gianluigi Caldiera and Victor R. Basili. Tdentify-
ing and qualifying reusable software components.
IEEE Computer, 24(2):61-70, February 1991.

[9] Pedro Reis dos Santos. Tdentifier based represent-
ation and management of software components. In
ECOOP’97 workshop on Modeling Software Pro-
cesses and Artifacts, pages 33-36, 1997.

[10] Link Architecture for a Global Information Infra-
structure. Jeffrey R. Van Dyke. PhD thesis, Mas-
sachusetts Institute of Technology, June 1995.

[11]

[19]

[20]

William B. Frakes and Christopher J. Fox. Sixteen
questions about software reuse. Communications

of the ACM, 38(6):75-87, June 1995.

Stanley B. Lippman. C++ Primer. Addison-Wes-
ley, Reading, MA, USA, second edition, 1991.

Steve McConnell. Keep it simple. IEEE Software,
13(11), November 1996.

Michael C. McFarland. The social implications
of computarization: Making the technology more
humane. In 26th ACM/IEEE Design Automation
Conference, pages 129-134, 1989.

Rubén Prieto-Diaz. Implementing faceted classi-
fication for software reuse. Communications of

the ACM, 34(5):89-97, May 1991.

Hernan Astudillo R. Reorganizing split objects. In
Object-Oriented Programming Systems and Ap-
plications, 1996.

Jerzy W. Rozenblit and Sanjaya Kumar. To-
ward synergistic engineering of computer systems.

IEEE Computer, 30(2):126-127, February 1997.

Antédnio Rito Silva, Pedro Sousa, and José Alves
Marques. Development of distributed applications
with separation of concerns. In Asia-Pacific Soft-
ware Engineering Conference, Digital Equipment
Corporation 1995.

Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, Reading, MA, USA,
second edition, 1991.

Anneliese von Mayrhauser and A. Marie Vans.
Program comprehension during software mainten-
ance and evolution. IEEE Computer, 28(8):44-55,
August 1995.

Anthony 1. Wasserman. Toward a discipline of
software engineering. IEEE Software, 13(11),
November 1996.

M. Wein, Wm Cowan, and W. M. Gentleman.
Visual support for version management. In Sym-
positum on Applied Computing ACM/SIGAPP,
pages 1217-1233, March 1992.

