Zbornik konference

Razvoj in prenovitev IS

Cetrta mednarodna multi-konferenca

Informacijska druzba — IS2001

Proceedings of the Conference

Development and
reingeneering of IS

Fourth International Multi-Conference

Information Society — 1S2001

Uredil / Edited by

Ivan Rozman

25. oktober 2001 / 25" October 2001
Ljubljana, Slovenija

329

ABSTRACT

- The number and complexity of components available for
reuse is becoming very large requiring more accurate
. classification methods. Object-oriented languages produce,
-~ due to extensive use of inheritance and overloading, a large
number of components with small differences that are
* difficult to cope with existing classification and selection
- methods. To provide better accuracy, the selection method
- needs to exploit those differences in a user controlled
manner. UML structural information provides significant
. detail enabling a distinctive classification of similar
. components. A selection process retrieves a first set of
. components that match the developer requirements criteria
and, a set of mechanisms is then used to increase precision.

1 INTRODUCTION

The advances in computer technology and software
development methods allow the construction of larger and
more complex applications. The reuse of software
~ components permits the development of such applications in
a reasonable time with limited resources [7].

A high quality component may be reused over and over,
- reducing significantly the application's development cost,
since it provides at almost no cost a documented, well
designed, efficient, thoroughly tested and easy to adapt
software block. These components can be available in library
- packages for a specific application domain distributed
commercially at high cost, be freely available, or have not
been specifically designed for reuse and still provide
considerable benefits when compared to development from
. scratch. During the last decade, a large number of
components and decomposable applications have been
tested, improved, documented and regularly used by many
developers, making such components valuable for reuse.
These component may be freely available, or at low cost,
from private developers, universities and commercial
companies.

391

CLASSIFICATION AND SELECTION OF SOFTWARE
COMPONENTS USING UML DESCRIPTIONS

Pedro Reis dos Santos
Department of Electrical Engineering and Computation
Instituto Superior Técnico
Av. Rovisco Pais,1 1049-001 Lisboa, Portugal
Tel: +351 21 8419340; fax: +351 21 8417499
e-mail: prs@digitais.ist.utl.pt

_ component. These characteristics are included in a

In order to reuse a component, the developer must know of
its existence and recognise the application context.
However, as the number of available components increases,
the developer requires tools to assist him in the retrieval of
the component that better matches the requirements. The
retrieval process is based on a selection process that
chooses, from a set previously classified component
characteristics, a component from the reuse library that
requires the smallest amount of adaptation effort in order to
be reused in the new context.

The work described in this article uses UML structural
description information to record the characteristics of each

hierarchical description of identifiers that is more complete
than signatures and can be complemented with information
obtained from other sources such as metrics or facet
classification methods. The selection process uses a set of
operations on hierarchies to select the parts of the hierarchy
that contain information related to the query performed.
Then a weighted fussy comparisons of the identifiers in the
sub-hierarchy is performed in order to evaluate the degree
of similarity between the query and the retrieved
components.

2 RELATED WORK

The reuse of a software component requires methods to
retrieve useful components from a very large universe of
available components. The search of a components through
the exhaustive iteration through all components is only
possible when the number of available components is small
[7]. An enumerative classification mechanism, that groups
components in related areas of application, is possible when
dealing with comprehensive libraries covering a complete
taxonomy of concepts in a given domain, since the
characteristic of each component in the library do not
overlap significantly with the others [5]. In order to make
the classification process more precise hierarchical and
faceted methods were developed [14,13]. Faceted
classification methods allow one facet to be changed
without affecting others and can create complex

relationships by combining facets and terms from a fixed
vocabulary.

The increasing number of components available for selection
and the overlapping of many of their characteristics
discourages the use of fixed vocabulary methods. Structural
classification methods gather large quantities of
unadulterated information from the original component
allowing for more precise selection methods. In pair
attribute-value methods, the component is classified using a
set of predefined attributes. Every component must find a
suitable value for each attribute [1]. While faceted based
classification methods must choose a value that best matches
the component behaviour from a small number of previously
defined choices, in pair attribute-value methods the matching
is done in the selection process and can be controlled from
query to query. Furthermore, the name of many of the
attributes are not predefined but rather extracted from the
component allowing comparisons between components and
against the keywords in the query. Methods of classification
and selection of components based on signatures extend the
principles of binding and linking of the programming
languages and compilers to fussy cases [15, 9]. Other
methods of structural classification include the use of source
code identifiers and data structures [3, 2] and pattern based
methods [4, 11]. The first are similar to signature matching
but use data structures and other information instead of just
using functions.

Finally, formal methods use mathematical descriptions of
components and theorem proving to determine similarity
between component descriptions and queries [12,16]. Some
of the drawbacks of formal based methods include the need
for a formal description of the component which is not
common, the difficulty to compute and control similarity and
huge computation effort required even for a small number of
components.

3 COMPONENT CLASSIFICATION

The purpose of the classification process is to gather
information relevant to the selection process. The proposed
system builds an hierarchical data structure of attributes from
UML structural information that can be used in the selection
process. An Unified Modeling Language -- UML --
description is a precise notation and well defined semantics
of a design level component representation excluding
language dependencies and implementation details [6]. An
important aspect of UML is its ability to interface with
programming languages. The UML is capable of producing
code scheletons in many programming languages and
capturing the design information present in the source code.
In this way, instead of dealing with the peculiarities of each
programming language. a single uniform, concise and
compact description of the component is obtained.

The representation model maps almost all of the information
contained in a UML class diagram into an hierarchy of
attribute-value pairs. Since UML class diagrams are
collection of classes, the first level of the hierarchy is

represented by the names of each class. In the second leve],
each class is described in three branches representing gy,
operations, attributes and associations of the class. Ty,
operations of a class are essentially signatures of procedures
with a name, a return type and a set of named and typed
arguments. The attributes of a class are typed data structypeg
and are treated the same way as operations withgy
arguments except that are placed on a different brangp
Finally, a branch of associations includes inheritance,
aggregation and composition associations. lnheman:e
associations are described by the name of the super class,
while aggregations and compositions are modeled by a
association name, a class name and cardinality information,
An hierarchical description of a class includes the names of
each element and the associated type in the respective
branch. The separation by branches is very important since
each branch has a very different implication on adaptation
cost of a selected component. For instance, a missing
operation is not important since it can be seamlessly added,
while adding an attribute might force the change of the
constructors and implies changes on many function to keep
the attribute consistent with the other internal state of the
class. On the other hand changes on inheritance
dependencies might be almost impossible to perform, and
changes on some compositions and aggregations propagate
changes to other classes.

The hierarchical model described tries to capture the
compartments types of UML descriptions and explore the
importance of their role in the component. The identifiers
used to describe attributes, operations, arguments or data
types are retained since the name of the identifier will be
used to characterize its semantics. Therefore, a good choice
of names can influence the selection or rejection of a
component, even when using a thesaurus as a basis for
weighted fussy comparisons.

4 COMPONENT SELECTION

The selection process should retrieve a small number of
candidate components that match the query criteria imposed
by the selection requirements, in a small amount of time. A
good selection process should not ignore components that
match the requirements -- recall -- and should not retrieve
components that do not match the requirements — precision
[8, 9]. In order to achieve high recall and high precision
rates the selection process must create a query that
rigorously formulates the requirements. Then the query
must be able to produce an ordered list of matches that
reflects the degree of similarity between the elements in the
query and every component. The degree of similarity should
reflect the adaptation effort needed to transforn the
retrieved component into an usable component for the target
application [10].

4.1 Degree of similarity

. computation of the degree of similarity is the evaluation
5 similarity function that returns a number representing
sroximity between the query and a particular component.
» of a thesaurus allows the matching of synonymous
enabling the use of the same fixed vocabulary
ques by performing the stereotyping in every query
e main advantage of retaining the original identifier
in the classification process is the possibility of
1ating the similarity in case by case basis. The similarity
tion must evaluate the weighted similarity between the
v name and the names describing the component. The
med value is the summation of the similarities of every
e in the query.

Manipulation operations

component is represented by a single hierarchy
ontaining all the information extracted from the UML class
sram. For many large components the generated
chies can be quite large increasing significantly the
time. The user can confine the search to certain areas
the hierarchy by slicing it with six manipulation
rations. These operations can be combined by the query
guage to produce complex restrictions. The manipulation
rations are:
Granulation: limits the depth of the hierarchy. It allows
generic search and ignoring details, being useful in the
stages of the selection process to ensure a good recall.
.~ Specialization: limits the hierarchy to a single branch. It
ows the search in specific contexts, being useful in the
er stages of the selection process to ensure 2 good
precision.
Locate: limits the hierarchy to the branches that contain
specific name. It is able to characterize the use of a
particular by providing the number of occurrences and the
depth at which they occur.
Qualification: limits the hierarchy to the branches with
| the same ancestor as a given name. It is useful to determine
the presence of other identifiers in the same context.

Union: groups two hierarchies in a single one. It is useful
to determine, in the later stage of selection, if two or more
components can be grouped in order to provide the
requirements in the query.

Differentiation: limits the branches of the hierarchy to

 those branches that are not present in another hierarchy. It is

' useful to evaluate what characteristics are absent from the

. selected component, or vice-versa, what characteristics does

~ the component have that were not required. It is also very

'~ useful for comparing two selected components for a final
choice. :

4.3 Selection analysis

The selection process consists of series of queries that are
expected to retrieve a smaller number of components on
each query, since the number of restrictions can be tuned
from the previous query. A restriction, or query element, is

built by associating names and their associated factors to a
subtree obtained by manipulating the component hierarchy
with the operations above. The query consists in the
evaluation of each query element and adding the resulting
values, for every component in the catalog. The query
elements can be named and used repeatedly, allowing a
successive refinement of the selection process combining
different query elements in each query.

. The refinement process uses the components retrieved from

=393

the first selection and through a series of more specific
queries is, hopefully, able to elect the best candidate
component for reuse. The refinement process is based on an
analysis along three axis, in order to highlight small
differences between the components and supply clues for
the next query. The functionality of each of the three axis is:

Descriptive: controls the amount of information
supplied by the description of a component to the query. It
relates to the depth of tree and the number of branches used
when performing element queries. In some queries,
excessive detail may produce erroneous results by focusing
on too much detail, while other queries may require more
information to find a proper match [8].

Comparative: relates two or more queries and evaluates
the comparative results of adding or removing query
clements, or changing name factors. The use of an
uncontrolled vocabulary is particularly important in this
type of analysis since a different choice of names may
produce divergent results.

Development: addresses very similar and related
components such as different production versions, and
inherited or specialized versions of the same component.
The development analysis studies more than one component
by comparing the individual results of each one. This type
of analysis is based on evaluating the cross differences
produced by the differentiation operation, and is able to
highlight small differences.

5 CONCLUSION

The method proposed in this article addresses the
abundance of components where classical selection methods
are unable to distinguish from similar components. The
classification process uses UML class diagram descriptions
to extract the classification information. The precision of
the process- is limited, essentially by the amount of
information available on UML structural descriptions. Since
detail is added at a deeper level in the hierarchy it does not
lead to misinterpretation whenever the additional
information is not needed.

The use of identifiers produces richer representations that
can be used when necessary and ignored by the use of
thesaurus. The control over the detail involved in the
queries makes the method attractive to explore small
differences between similar components. The system is not
as automatic as other methods but is still much better than
manual inspection where other algorithms return dozens of
components classified in the same category. It is targeted

for situations where the number of available components is
very high, which is generally the case if the required
component cannot be found in the local catalog and wider
search must be performed. Most WWW search engines
perform searches by filename or a small
keywords, making millions of components freely available.
If the component proves to be worthwhile, then it can be
manually classified and integrated in the local catalog. even
if an equivalent component exists in the home catalog.

References

[1] Emesto Damiani, Maria Grazia Fugini, and Enrico
Fusaschi. A description-based approach to OQ code
reuse. IEEE computer, 30(19):73-80, October 1997.
Pedro Reis dos Santos and Rui Gustavo Crespo.
Assisted selection of components using classified
identifiers. In 7" IPMU, pages 740-747, Paris, France.
Letha H. Etzkorn and Carl G. Davis. Automatically
identifying reusable OO legacy code. IEEE Computer,
30(10):66--71, October 1997.

Koen De Hondt, Carine Lucas, and Patrick Steyaert.
Reuse contracts as component interface descriptions. In
ECCOP, 2™ International Workshop on Component-
Oriented Programming, pages 43—49, 1997.

Mehdi Jazayeri. Component programming — a fresh look
at software components. In FEuropean Software
Engineering Conf., September 1995.

Philippe Kruchten. Modeling component systems with
the unified modeling language. In [nternational

Workshop on Component-Based Software Engineering,
Software Engineering Institute, 1998.

Hafedh Mili, Fatma Mili, and Ali Mili. Reusing

software: Issues and research directions, [EEE
Transactions on Software Engineering, 21(6):528—
561, June 1995,
Rym Mili, Ali Mili, and Roland T. Mittermeir. Storing
and retrieving software components: A refinement based
system, [EEE Transactions on Software Engineering,
23(7):445—460, July 1997.

Roland T. Mittermeir, H, Pozewaunig, Ali Mili, and
Rym Mili. Uncertainty aspects in component retrieval,
In 7" IPMU, pages S64—S571, Paris, France, July 1998.
[10] Eduardo Ostertag, James Hendler, Rubén Prieto-Diaz,
and Christine Braun. Computing similarity in a reusc
library system: An Al-based approach, ACM
Transactions on Software Engineering and
Methodology, 1(3):205—228, July 1992,

Santanu Paul and Awl Prakash. A framework for
source code search using program patterns. [EEE
Transactions on Software Engineering, 20(0):463
474, June 1994
[12] John Penix and Perry Alexander. Component reuse and

adaplation at the specification level. [n 8" Annual
Workshop on Software Reuse, March 1997.

(3]

[4]

[51

(6]

(7]

(8]

(9]

[11]

number of

394

——

|13] Rubén Prieto-Diaz, Implementing - faceteq

classification for software reuse. Communicagjoy, of th

ACM, 34(5):89—97, May 1991. il

|14]Rubén Prieto-Diaz and Peter Frecman, Classifyip,
software for reusability, /EEE Software, 4(1):6““16g
January 1987. :

[15]Amy Moormann Zaremski and Jeannette M. Win
Signature matching: A tool for using software libraries.
ACM Transactions on Software Engineering gy
Methodology, 4(2):146--170, April 1995,

[16] Amy~Moormann Zaremski and Jeannette~M. Wing
Specification matching of software components, 4@,',
Transactions — on Software Engineering
Methodology, 6(4):333--369, October 1997,

and

