
MultiTLS: using multiple and diverse ciphers for

stronger secure channels

Ricardo Mouraa, Ricardo Lopesa, David R. Matosa, Miguel L. Pardala,
Miguel Correiaa

aINESC-ID, Instituto Superior Técnico, Universidade de Lisboa,
Rua Alves Redol, 9, Lisboa, 1000-029, Lisbon, Portugal

Abstract

Computer communication is at the foundation of how the modern world
works, connecting people and machines over public infrastructure. For this
reason, communication is exposed to attacks, either by passive listening, or
by active interference in the communication. Security protocols like TLS
(Transport Layer Security) play a crucial role in ensuring the confidentiality,
integrity, and authenticity of the communication. However, like in all tech-
nologies, there may be flaws in the design, implementation, or cryptography
of TLS that compromise the security of the communication channel. Reme-
diation of such vulnerabilities takes time, leaving valuable services exposed
to potential attacks.

In this article, we present MultiTLS, a middleware based on cipher di-
versity and network tunneling that enables secure communication even when
new vulnerabilities are discovered. MultiTLS creates a secure communi-
cation tunnel through the encapsulation of k TLS channels, where each one
uses a different cipher suite. This approach allows the communication chan-
nel to remain protected, even when k − 1 cipher suites become vulnerable,
because of the remaining cipher suite. The diversity of cipher suites tolerates
cryptography faults. We evaluated the implementation of MultiTLS and
concluded that it is easy to use and to maintain up-to-date, since it does
not require code changes to any of its dependencies. We also evaluated its
performance in practical use cases and proved that it is viable an useful for
various personal and corporate contexts using Internet communications.

Keywords: Secure communication channels, Transport Layer Security,
Vulnerability-tolerance, Security through Diversity, Tunneling, Virtual
Private Network

Preprint submitted to Computers & Security June 15, 2023

Miguel
Note
@Article{Moura_2023_COSE_MultiTLS,

title = {MultiTLS: using multiple and diverse ciphers for stronger secure channels},

journal = {Computers & Security},

volume = {132},

pages = {103342},

year = {2023},

issn = {0167-4048},

doi = {https://doi.org/10.1016/j.cose.2023.103342},

url = {https://www.sciencedirect.com/science/article/pii/S0167404823002523},

author = {Ricardo Moura and Ricardo Lopes and David R. Matos and Miguel L. Pardal and Miguel Correia},

abstract = {Computer communication is at the foundation of how the modern world works, connecting people and machines over public infrastructure. For this reason, communication is exposed to attacks, either by passive listening, or by active interference in the communication. Security protocols like TLS (Transport Layer Security) play a crucial role in ensuring the confidentiality, integrity, and authenticity of the communication. However, like in all technologies, there may be flaws in the design, implementation, or cryptography of TLS that compromise the security of the communication channel. Remediation of such vulnerabilities takes time, leaving valuable services exposed to potential attacks. In this article, we present MultiTLS, a middleware based on cipher diversity and network tunneling that enables secure communication even when new vulnerabilities are discovered. MultiTLS creates a secure communication tunnel through the encapsulation of k TLS channels, where each one uses a different cipher suite. This approach allows the communication channel to remain protected, even when k-1 cipher suites become vulnerable, because of the remaining cipher suite. The diversity of cipher suites tolerates cryptography faults. We evaluated the implementation of MultiTLS and concluded that it is easy to use and to maintain up-to-date, since it does not require code changes to any of its dependencies. We also evaluated its performance in practical use cases and proved that it is viable an useful for various personal and corporate contexts using Internet communications.},

keywords = {Secure communication channels, Transport layer security, Vulnerability-tolerance, Security through diversity, Tunneling, Virtual private network},

}

1. Introduction

We live in an increasingly digital age where a large part of services, such
as banking, shopping, and healthcare are accessed through the public Inter-
net. There have been many cyberattacks that caused increased losses and
damage to businesses and Internet users (Nadeau, 2017). This means that,
nowadays, the use of cryptography-based secure communication protocols
are a fundamental component of distributed systems and digital business.
They allow entities to exchange messages through a trusted communication
channel over the untrusted public Internet. These channels aim to guarantee
the following three properties: confidentiality : ensure that only the intended
receiver is able to read the message; integrity : ensure that messages cannot
be changed without the receiver detecting it; authenticity : ensure that the
identity of the sender and receiver can be verified.

Transport Layer Security (TLS) is one of the most widely used secure
communication protocols. The protocol allows server/client applications to
communicate over a channel that is designed to prevent eavesdropping, tam-
pering, and message forgery. The most recent version is TLS 1.3 (Rescorla,
2018). This protocol first appeared under the name Secure Sockets Layer
(SSL). It is the final ‘S’ in HTTPS that stands for ‘Secure’ and is visually
perceived by end-users as the “padlock” in the web browser that signifies
to them that the communication is secure. In 1994, Netscape Communica-
tions had developed SSL 1.0, that was never publicly released. In 1995, SSL
2.0 was released, becoming the first release. SSL 3.0 was released in 1996,
bringing improvements to its predecessor such as allowing perfect forward
secrecy using the Diffie-Hellman key exchange algorithm. TLS 1.0 was re-
leased in 1999 introducing support for extensions in Client and Server Hello
messages. TLS 1.1 and TLS 1.2 were released, respectively in 2006 and 2008,
bringing improvements such as reducing vulnerability to CBC block chain-
ing attacks and supporting more block encryption modes for use with AES
(Advanced Encryption Standard). In 2018, TLS 1.3 was approved by the
Internet Engineering Task Force (IETF), becoming the current standard for
secure connections, even though version 1.2 is still the most widely used.

2

1.1. Secure Channel Vulnerabilities

Protocols that allow secure communications may contain vulnerabilities
that make them insecure. Over the years, many vulnerabilities have been
discovered and corrected in SSL/TLS. The vulnerabilities with which we are
concerned can be divided into three groups: design vulnerabilities, imple-
mentation vulnerabilities and cryptographic mechanisms vulnerabilities. We
will discuss vulnerabilities at length in Section 2.2.

When a new vulnerability is found, it will take significant time for it
to be fixed (Bilge and Dumitras, 2012). First, the owners of the software
or hardware need to determine at which level is the vulnerability: is it a
design or implementation flaw? Once the diagnosis is complete, remediation
can start. After some time, new versions and patches are available, but
they still need to be provided to third-parties that, in turn, will plan the
most appropriate time for installation. Finally, and over time, the patches
are applied and the vulnerability is fixed in existing deployments. However,
there will be some deployments that are never updated. During this whole
time, communication channels are exposed to attackers.

1.2. Security through Diversity

This work explores diversity in communication protocols by using multi-
ple cipher suites. These suites are used for defining: a key exchange algo-
rithm, an authentication mechanism, an encryption mechanism, and a mes-
sage integrity protection. To implement diversity, we intended to use existing
libraries and tools without modification, to be able to always benefit from
the latest and most secure versions of them.

We developed MultiTLS, a middleware that obtains diversity by lever-
aging tunneling mechanisms. In our implementation, we used socat1, a tun-
neling software, and OpenSSL2, a TLS implementation, to create multiple
TLS channels and encapsulate each one in another. The source code for
MultiTLS is publicly available3 with an open-source license.

MultiTLS can be run as a command in the Linux shell and is configured
with a parameter k, called the diversity factor (k > 1). This parameter
specifies the number of TLS channels to be created and consequently the

1http://www.dest-unreach.org/socat/
2https://www.openssl.org/
3https://github.com/inesc-id/MultiTLS

3

number of cipher suites to be used. k = 1 is equivalent to a single TLS
channel. The cipher suites used for multiple TLS channels are different from
each other to mitigate the vulnerabilities that may be found in each one. This
approach can provide security even in the presence of zero-day vulnerabilities
which can not be prevented as they are unknown (Bilge and Dumitras, 2012).

The communication channel created by MultiTLS has multiple layers
of protection, so that if k − 1 of the used cipher suites are vulnerable, com-
munications will remain secure, since there is at least one cipher suite that
guarantees the security of communications, i.e, the confidentiality, integrity,
and authenticity properties.

MultiTLS is an improvement over a previous work, vtTLS (Joaquim
et al., 2017), a vulnerability-tolerant communication protocol also based on
diversity and redundancy of cryptographic mechanisms to provide a secure
communication channel. However, vtTLS had some problems with soft-
ware maintenance because it modified an existing TLS implementation. On
the other hand, MultiTLS can always incorporate the latest updates and
security fixes because it supports the latest versions of TLS transparently.

1.3. Overview

The remainder of this document is structured as follows. Section 2
presents background and related work. Section 3 presents MultiTLS in
detail. Section 4 presents the experimental evaluation. Finally, Section 5
presents the conclusions.

2. Background and Related Work

In this section, we describe the SSL/TLS protocol and its basic design,
presents some of the most important vulnerabilities in the TLS protocol and
in the cryptographic mechanisms used by it. We also discuss related work
on approaches to achieve security through diversity. Finally, we summarize
existing network tunneling mechanisms.

2.1. The SSL/TLS Protocol

The SSL (Secure Sockets Layer) (Freier et al., 2011) / TLS (Transport
Layer Security)(Rescorla, 2018) is a security protocol that provides secure
communication channels between two entities, server and client. The protocol
is structured in two layers: the TLS Record protocol and the TLS Handshake

4

protocol. The Record protocol is used by the Handshake and the application
data protocols to provide mechanisms for sending and receiving messages.

In regard to sending messages, the Record protocol starts by fragment-
ing the message into blocks called TLSPlaintext. After the fragmenta-
tion step, each TLSPlaintext may be optionally compressed into a new
block called TLSCompressed. Each TLSCompressed block is processed into a
TLSCiphertext block by message authentication code (MAC) and encryp-
tion mechanisms. After all these steps, the message can be sent to the des-
tination. For receiving messages, the process is the inverse of the process
described above. Initially, during the first execution of TLS Handshake pro-
tocol, the TLS Record protocol does not compress, encrypt, and does not use
the MAC, since the server and client have not yet agreed on the algorithms
to be used for these actions.

The TLS Handshake protocol is used to establish or resume a secure
session between server and client. A session is established in several steps,
each corresponding to a different message and with a specific objective: a
session identifier (chosen by the server), the certificates (X509 standard),
the compression algorithm used to originate the TLS Compressed blocks in
the Record Protocol, the specifications cipher (MAC and cipher algorithm
used in the Record Protocol to generate the TLSCiphertext), a master se-
cret (shared between the client and the server) and the “is resumable” flag
that indicates whether the session can be used to initiate new connections.
The Change Cipher Spec Protocol consists of a message encrypted and com-
pressed according to the current state of the connection, to signal a change
in the set of negotiated ciphers. The Alert Protocol sends an alert mes-
sage that, depending on the severity, can be of the warning or fatal type
(warning/fatal). These messages are encrypted and compressed based on
the current connection status. Following a successful handshake, the server
and the client can exchange information through the established secure com-
munication channel.

2.2. TLS Vulnerabilities

Although the goal of the TLS protocol is to establish a secure communica-
tion channel, it may still have unknown vulnerabilities making it insecure and
susceptible to attacks. According to the Internet Security Glossary, Version
2 (Shirey, 2007), vulnerabilities can be classified into three groups: design
vulnerabilities, implementation vulnerabilities, and operation and manage-
ment vulnerabilities. In this work, we focus only on the first two groups

5

of vulnerabilities. The design vulnerabilities refer to protocol specification
failures and releasing a new version or update is the only way to fix this
kind of vulnerability. The implementation vulnerabilities are related to fail-
ures that were created during the implementation phase of the protocol. To
prove the importance of our work in increasing communications security, we
present some vulnerabilities found in the TLS protocol and in some of the
cryptographic algorithms used by it.

2.2.1. Design vulnerabilities

An example of an attack that exploits a design vulnerability is CRIME
(Compression Ratio Info-leak Made Easy) (Rizzo and Duong, 2012). This
vulnerability was found in TLS compression. The main purpose of compres-
sion is to reduce the size of messages to be transmitted, while preserving
their integrity. DEFLATE is the most common compression algorithm used.
One of the techniques used by compression algorithms is to replace repeated
bytes with a pointer to the first instance of that byte. If a victim and server
are using the DEFLATE compression method and if an attacker knows that
for the session the targeted website creates a cookie called “user” then the
attacker can obtain the victim’s cookie through a man-in-the-middle attack
(MITM), so the attacker needs to inject “Cookie: user = 0” into the victim’s
cookie, the server will only append the character “0” to the compressed re-
sponse since “Cookie: user =” is already sent in the victim’s cookie. All the
attacker must do is inject different characters and then monitor the size of
the response. If the response size is smaller than the initial one, it means
that the character they injected is contained in the value of the cookie and
thus has been compressed, which is equivalent to a match. If the character is
not in the cookie value, the response size will be larger. Using this method,
an attacker can brute-force the cookie value by using the responses sent by
the server.

2.2.2. Implementation vulnerabilities

In 2014, an implementation vulnerability was discovered in OpenSSL,
called Heartbleed. The name of the vulnerability is related to a code exten-
sion where the vulnerability was found: the Heartbeat extension (Seggelmann
et al., 2012), which is an extension to the TLS protocol designed to enable
a low-cost, keep-alive mechanism. The extension consists of sending a mes-
sage with an arbitrary payload and the size of that same payload. After the
receiver obtains this message, it returns the received payload.

6

The Heartbleed vulnerability (Carvalho et al., 2014) is a buffer over-read
vulnerability that happens when the sender sends a message that specifies
a payload size bigger than the real size of the payload. The receiver, upon
receiving the message, returns a block of memory where the sent payload
begins plus the specified size of the received message, that is, it returns
the received payload and dataset with size equal to the size specified in the
received message minus the real size of the message. This allows potential
attackers to read memory contents that should have been kept private.

There are also vulnerabilities in the underlying cryptographic mechanisms
used by the TLS protocol. Our solution uses diverse cipher suites as a form
to increase security. For this, it is necessary to study the vulnerabilities in
the cryptographic mechanisms to know which cipher suites are more secure
and which can be used.

2.2.3. Vulnerabilities in asymmetric cipher mechanisms

RSA (Rivest et al., 1978) proposed by Rivest, Shamir and Adleman, in
1978, is an asymmetric cryptographic algorithm used to cipher and sign mes-
sages. The security of RSA is based on two problems: integer factorization
problem and the RSA problem itself (Menezes et al., 1996). The integer fac-
torization problem consists of the decomposition of a number into a product
of smaller integers that must be prime numbers. RSA with key size equal to
768 bits (RSA-768) is unsafe because Kleinjung et al. (2010) have been able
to factor a number with 768 bits, equivalent to a number with 232 digits.
Although the use of RSA-1024 is currently discouraged, no factorization has
yet been published. Shor’s algorithm (Shor, 1996) uses a theoretical quan-
tum computer to factorize integers in polynomial time, making the integer
factorization problem easy to solve. However, this problem will only exist
when quantum computers are practical and available.

2.2.4. Vulnerabilities in symmetric cipher mechanisms

The Advanced Encryption Standard (AES) is an encryption algorithm
created by Rijmen and Daemen, and standardized by the NIST (2001). The
key used in AES can have one of three different sizes: 128, 192, or 256 bits.
The size of the key influences the number of rounds that are, respectively,
10, 12 and 14. Bogdanov et al. (2011) published a biclique attack against
AES, though only with slight advantage over brute force. The computational
complexity of the attack is 2126.1, 2189.7 and 2254.4 for AES128, AES192 and

7

AES256, respectively. Despite this attack and others, AES is still considered
a secure encryption mechanism.

2.2.5. Vulnerabilities in hash functions

A hash function, sometimes also called message digest function, is an
algorithm that transforms variable length data into smaller datasets with a
fixed length called hash values or checksums. A hash function is required to
satisfy the following properties (Menezes et al., 1996):

• Easy to compute the hash value for any given message;

• Preimage resistance: it is infeasible to generate a message that has a
given hash value;

• Second preimage resistance: it is infeasible to modify a message without
changing the hash value;

• Collision resistance: it is infeasible to find two different messages with
the same hash.

Thus, the hash functions can be interpreted as a special compression of the
message that works like a fingerprint of the message, making it useful for
data integrity checks and message authentication. Note that it is impossible
to have a unique identity once the message is compressed, allowing attackers
to break the collision resistance property.

MD5 (Rivest, 1992) is a hash function that produces a 128 bit hash.
MD5 was proved not to be collision resistant by Wang and Yu (2005),
through differential attacks. Differential cryptanalysis, introduced by Biham
and Shamir (1993), analyzes the differences in input pairs on the differences
of the resultant output pairs.

2.3. Achieving security through diversity

In this work we aim to achieve security through diversity. A static system
is characterized by no changes over time and therefore an attacker has time
to discover vulnerabilities in the system. In order to overcome the problems
caused by static defense mechanisms, moving target defense was proposed as
a way to make it more difficult for an attacker to exploit vulnerabilities of a
system, through dynamic defense mechanisms. Moving target defenses can be
classified into two groups: proactive and reactive. Proactive moving target
defenses adapt to a specific schedule, without feedback from the system.

8

Reactive moving target defenses make changes in the protected system when
they receive a notification from a security sensor.

The term diversity describes multi-version software in which redundant
versions are purposely made different between themselves (Littlewood and
Strigini, 2004). With diverse versions, one hopes that any faults they contain
will be different and show different failure behavior.

In MultiTLS we allow diverse ciphers to be combined arbitrarily, be-
cause of the tunnelling approach, enabling moving target defense in the use
of ciphers for secure communication.

2.3.1. Vulnerability-Tolerant TLS

The use of diversity for added security in a communication channel was
previously used by Joaquim et al. (2017) in vtTLS. It also uses the diversity
approach to solve the limitation of TLS having only one cipher suite nego-
tiated between server and client. In these cases, if one of the cryptographic
mechanisms of the cipher suite becomes insecure, the communication chan-
nels using this cipher suite may become vulnerable. It uses the diversity and
redundancy of cryptographic mechanisms, keys and certificates. The com-
munication channels created by vtTLS are characterized by establishment
of k cipher suites, so that if vulnerabilities are found in the k − 1 cipher
suites cryptographic algorithms, the channels will still remain secure due to
the remaining cipher suite. vtTLS was successfully implemented as a fork
of OpenSSL version 1.0.2g, but moving to a newer version of the library re-
quires implementing the diversity features again. And again, for all future
versions. Our solution, MultiTLS, is similar to this approach but it does
not modify implementations of the libraries and tools, and only their public
interfaces are used. Because of this, this solution is able to use the latest and
most secure versions of the software.

2.3.2. Tunneling

The term tunneling describes a process of encapsulating entire data pack-
ets as the payload within other packets, which are handled properly by the
network on both endpoints (Larson and Cockcroft, 2003). This characteristic
in this type of protocol makes it possible to send data between two private
networks, using a public network infrastructure.

A communication tunnel is an essential component of a VPN, short for
Virtual Private Network, a technology to ensure that sensitive data can be
transmitted securely, preventing unauthorized persons from having access

9

to this information. When talking about VPN there are several types to
consider (Khanvilkar and Khokhar, 2004): Machine-to-Machine, Machine-
to-Network, and Network-to-Network.

For the tunnel connection to be successfully established, it is essential that
both parties understand and use the same protocol. The Internet Protocol
(IP) transmits block of data called datagrams from sources to destinations,
which are hosts identified by addresses, as defined by Postel (1981). In the
IP header of the packets there is a field, called Protocol, to identify the next
level protocol (Reynolds and Postel, 1994). In this field we can used the “IP
in IP” Tunneling protocol. In IP Tunneling (Estrin et al., 1995), the original
header is preserved, and simply wrapped in another standard IP header.
An outer IP header is added before the original IP header. Between them
are any other headers for the path, such as security headers specific to the
tunnel configuration. The outer IP header source and destination identify
the endpoints of the tunnel. The inner IP header source and destination
identify the original sender and recipient of the datagram.

IPsec (Kent and Seo, 2005) is a network protocol suite that authenticates
and encrypts the packets sent over a network. IPsec has two encryption
modes: tunnel and transport. Tunnel mode encrypts the header and the
payload of each packet while transport mode encrypts the payload. IPsec
uses the following subprotocols to perform various functions:

• Authentication Headers (AH) provide authentication and data integrity
for IP datagrams;

• Encapsulating Security Payloads (ESP) provide confidentiality, authen-
tication and message integrity.

The Secure Shell Protocol (SSH) is a protocol for secure remote login
and other secure network services over an insecure network (T. Ylonen and
C. Lonvick, 2006). SSH is typically used to log into a remote machine and
execute commands, but it also supports tunneling. SSH is structured in three
layers that provide the mechanisms that make SSH secure for tunneling:

• Transport: provides encryption, server authentication, and integrity
protection (Ylonen and Lonvick, 2006c);

• Authentication: runs on top of the Transport layer and provides ways
to authenticate the client to the server (Ylonen and Lonvick, 2006a);

10

• Connection: also runs on top of the Transport layer and specifies a
mechanism to multiplex multiple channels over the underlying confi-
dentiality and authentication transport (Ylonen and Lonvick, 2006b).

3. MultiTLS

MultiTLS provides secure communication channels with multiple layers
through tunneling of TLS channels within each other. MultiTLS provides
an increase in security since each of these TLS channels uses a different
cipher suite than the others. As mentioned before, TLS channels individually
use only one cipher suite, which consists of a single point of failure if the
cryptographic mechanisms used become vulnerable. MultiTLS solves this
problem by allowing the server and the client to create a communication
channel composed by k TLS channels, with k > 1, and consequently also
allows to use k cipher suites and certificates, in contrast to a communication
that uses only one TLS channel. In practical terms, we expect the value
of k to range from 1 to 3. A value of 1 represents a secure tunnel with
baseline encryption, while adding more different ciphers enhances the ability
to tolerate vulnerabilities. Values beyond 3 are not very likely due to the
limited availability of diverse cipher suites and the accumulated impact on
performance, as discussed in Section 4.2.

The reason MultiTLS contributes to increased security is that even
when k − 1 cipher suites become insecure, that is, even when k − 1 TLS
channels become vulnerable, the communication channel created by Multi-
TLS, which is the combination of the k TLS channels, remains secure since
there is still one TLS channel with secure cipher suite. The mechanisms
used by MultiTLS allow creating k TLS channels and encapsulate one into
another without changing the implementations of the used tools. This ap-
proach is an advantage over vtTLS, since it does not require changes to the
implementation of TLS.

When a vulnerability is discovered, its remediation is not instantaneous,
as it needs to be understood, the software needs to be fixed, and the patches
need to be distributed across many deployments. In the meantime, attackers
can target the valuable services that are exposed. MultiTLS provides en-
hanced flexibility in addressing the issue. Unlike a single TLS channel that
necessitates immediate attention, MultiTLS with a value of k > 1 allows
operations to continue while the vulnerability and its impact are handled.

11

Updates can be scheduled at a later time to minimize disruptions, offering a
more flexible and efficient approach to resolving security problems.

In the following sections, we will discuss use cases, followed by the design
and implementation of MultiTLS.

3.1. Use cases

MultiTLS can be used to add security to a communication channel with-
out protection or to reinforce the security of existing but weak protection. To
contextualize the use of MultiTLS in practical scenarios, four case studies
were defined where the use of the tool can offer security advantages:

1. Secure communication between two organization networks;

2. Secure communication between two cloud solutions;

3. Secure communication between the employee’s device and the organi-
zation’s network;

4. Secure communication between legacy applications.

In the case of secure communication between networks, it will be necessary
to configure the MultiTLS tool in both networks, which will work as a
reverse proxy. It will allow secure connections through multiple encrypted
TLS channels, which reinforce the level of security between two areas of
operation of an organization, e.g. two buildings in different locations.

In the case study of secure communication between two cloud solutions,
MultiTLS reinforces security in the communication between two cloud so-
lutions, whether from the same provider or from different providers. Here
too, it will be necessary to configure a machine in each cloud solution that
will serve as a reverse proxy for the remaining assets.

The case study of secure communication between the employee’s device
and the organization’s network, is intended to represent a scenario when the
employee is outside the organization’s network, for example, working from
home or from an hotel. It will be the responsibility of the organization to
guarantee the availability of the service (MultiTLS as server), accepting
connection requests. On the employee’s side, she must configure the tool in
client mode and establish the connection with the server.

The last case, secure communication between legacy applications, is fo-
cused on existing applications, possibly with obsolete technologies but that
still play a critical business function. They may even have known security
vulnerabilities. It will be necessary to configure the MultiTLS tool on

12

the machines where these applications are located. The use of the tool al-
lows communication to be carried out securely by encapsulating the legacy
application message through recent and secure cryptographic protocols. A
specific example would be the interconnection of an application server with
a database server that does not support a recent TLS protocol version.

The first two case studies correspond to network-to-network VPNs, the
third case study pertains to a host-to-network VPN, and, finally, the fourth
use case corresponds to a machine-to-machine VPN.

3.2. Design

To encapsulate a TLS channel in another TLS channel, we use network
tunnel interfaces (abbreviated as TUN interfaces). This mechanism is a fea-
ture offered by some operating systems, namely, Linux. Unlike common
network interfaces, TUN interfaces do not have physical hardware compo-
nents, that is, they are virtual network interfaces implemented and managed
by the kernel itself. TUN is a virtual point-to-point network device. Its
driver was designed with low-level kernel support for IP tunneling. It works
at the protocol layer of the network stack. TUN interfaces allow user-space
applications to interact with them as if they were a real device, remaining
invisible to the user. These applications pass packets to a TUN device, in
this case, the TUN interface delivers these packets to the network stack of
the operating system. Conversely, the packets sent by an operating system to
a TUN device are delivered to a user-space application that attaches to the
device. Figure 1 shows a practical example in which an application running
on two different network hosts communicate through TUN interfaces.

We create an encapsulation of several tunnels by creating TUN interfaces
through others created previously. For each of these interfaces, we can use
different TLS implementations running in user space that allow creating a
TLS channel that is encapsulated by the tunnel used by the hosts.

Figure 2 presents the architecture of MultiTLS for host communicating
over the network with k = 2. This parameter configuration allows commu-
nication over two tunnels, where the tunnel between the TUN1 interfaces
encapsulates the tunnel between the TUN2 interfaces. In addition, we can
see processes that we designate as “TLS implementation”. These processes
serve the purpose of setting up and overseeing the TLS channel for each
tunnel, operating as client on one side, or as server on the other side.

13

Kernel space

User space

Application
receive message from

10.1.1.1

TUN
interface
10.1.1.2

Ethernet
interface

User space

Application
send message to

10.1.1.2

Kernel space

TUN
interface
10.1.1.1

Ethernet
interface Network

Host A Host B

Figure 1: Example of using TUN interfaces.

3.3. Combining Diverse Cipher Suites

In MultiTLS, we are interested in having the maximum possible di-
versity of cryptographic mechanisms, because we want to avoid common
vulnerabilities. Evaluating the diversity among cryptographic mechanisms
is not trivial. For this purpose, we based our analysis on work by Car-
valho (2014) regarding heuristics to compare diversity among different cryp-
tographic mechanisms. In our work, we focused on searching for the combina-
tion of four cipher suites that guarantee greater diversity and are supported
by TLS 1.2 from the OpenSSL 1.1.0g implementation.

We began by evaluating the diversity of public key mechanisms. In this
case, we observed the various combinations of key exchange and authenti-
cation algorithms in cipher suites. The insecure cryptographic mechanisms
were discarded as well as the ECDH and DH algorithms since there are the
variants of them, ECDHE and DHE, which guarantee perfect forward secrecy.
This analysis resulted in the following combinations:

• ECDHE for key exchange and ECDSA for authentication;

• RSA for key exchange and authentication;

• DHE for key exchange and DSS for authentication;

• ECDHE for key exchange and RSA for authentication;

• DHE for key exchange and RSA for authentication.

14

User space

Host A

User space

Kernel space

5

Host B

TUN 1

Ethernet
interface 6

TLS implementation

TLS implementation

6

1
2

3

Application

Kernel space

TUN 1

Ethernet
interface

TUN 2

TLS implementation

11 10

9 8 7

Network

Application

4

TLS implementation

TUN 2

Figure 2: MultiTLS design with k = 2 and the flow of sending messages from one
application to another on different hosts.

To avoid that the key exchange and authentication algorithms are re-
peated consecutively, we choose the first four combinations of the above list,
keeping the presented order, i.e., the first tunnel will use ECDHE for key
exchange and ECDSA as authentication algorithm, the second RSA for key
exchange and authentication, the third DHE for key exchange and DSS for
authentication and the fourth DHE for key exchange and RSA for authenti-
cation.

Considering the combination of key exchange and authentication algo-
rithms, we group the supported cipher suites according to this combination.
After this step, we chose in each group the cipher suite that maximizes the
diversity of the symmetric key algorithms and the hash function between
each of the four groups. To measure the diversity of the cryptographic mech-
anisms, we have taken into account some characteristics such as the origin,

15

i.e., the author or institution that proposed the algorithm, the year in which
it was designed, the size of the key in the case of the symmetric key algorithms
and the digest size in the case of hash functions and other metrics described
in research by Carvalho (2014). We concluded that the combinations of 4
symmetric key algorithms that maximize the diversity itself are:

• ChaCha20 + Camellia 256 + AES256-GCM + AES128CBC;

• ChaCha20 + Camellia 256 + AES256-CBC + AES128GCM;

• ChaCha20 + Camellia 256 + Camellia128 + AES256-GCM.

Regarding hash functions, the variety is greatly reduced since there is
only SHA-256 and SHA-384. However, some symmetric key algorithms
use operation modes, such as CBC-MAC (CCM mode) and Galois/Counter
Mode (GCM), that provide authenticated encryption with associated data
(AEAD). It is considered an alternative mechanism which can be used re-
dundantly with HMAC to achieve even higher diversity. In addition, the
cipher suites with the ChaCHA20 algorithm use the Poly1305 hash which
is a one-time message authenticator. Poly1305 takes a 32-byte one-time key
and a message and produces a 16-byte message authentication code (MAC).

From these analyses, the cipher suites selected to be used by default in
MultiTLS with k ≤ 4 are:

• TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256;

• TLS RSA WITH AES 128 CCM 8;

• TLS DHE DSS WITH CAMELLIA 256 CBC SHA256;

• TLS ECDHE RSA WITH AES 256 GCM SHA384.

If the MultiTLS user selects only 2 tunnels, i.e., k = 2, the first cipher
suite shown in the above list is used in the first tunnel and the second cipher
suite is used in the second tunnel.

3.4. Interception resistance

A man-in-the-middle (MITM) attack occurs when an attacker intercepts
and potentially manipulates the communication between two parties, allow-
ing the attacker to eavesdrop or alter the messages, or to impersonate one of
the parties. Although TLS is designed to safeguard against MITM attacks,

16

vulnerabilities can still arise in certain implementations or configurations,
making such attacks possible. MultiTLS introduces multiple intermediate
protection levels, and so it increases the difficulty for attackers attempting
to carry out interception attacks.

3.5. Running MultiTLS

MultiTLS was implemented as a script in Bash language and can be run
as a shell command on Linux. Before presenting how MultiTLS creates the
secure tunnels, we will first introduce the commands that allow us to create
them:

• multitls -s port nTunnels [cert cafile cipher]

• multitls -c port nTunnels IPServer [cert cafile cipher]

The flags -s and -c mean that MultiTLS will run as a server or client,
respectively. The port argument specifies the port used to establish the last
tunnel. In the case of the server, MultiTLS will be listening on that port.
In the case of the client, MultiTLS will connect to that port of the machine
that has the IP specified in the IPServer argument. The nTunnels argument
specifies the number of tunnels that MultiTLS will create. In addition, we
must specify: the path to the file with its certificate and private key in the
cert argument and the path to the file that contains the peer certificate in
the cafile argument. The cipher argument lets us specify one or more cipher
suites. If cipher suites are not specified, the default ones will be used. The
arguments between brackets must be specified as many times as the value
of the nTunnels argument because each tunnel will use a set of keys and
ciphers.

3.6. Implementing the tunnels

The execution of commands provided by MultiTLS allows the creation
of TUN interfaces and the creation of the tunnel that encapsulates a TLS
channel, as explained in Section 3.2. Figure 2 shows the scheme resulting
from the execution of the twoMultiTLS commands as shown in Section 3.5.

MultiTLS depends on the socat version 1.7.3.2 and OpenSSL version
1.1.0g. Socat is a command line utility4that establishes two bidirectional byte
streams and transfers data between them. The use of socat can be applied

4http://www.dest-unreach.org/socat

17

to a wide variety of purposes since the streams can be constructed from a
large set of different types of sources and sinks, also designated by address
types, besides the multiple options that may be applied to streams. A so-
cat command has the following structure: socat [options] address1 address2,
where [options] means that there may be zero or more options that modify
the behavior of the program. The specification of the address1 and address2
consists of an address type keyword, for example, TCP4, TCP4-LISTEN,
OPENSSL, OPENSSL-LISTEN, TUN; zero or more required address pa-
rameters separated by ‘:’ from the keyword and each other; and zero or more
address options separated by ‘,’.

The MultiTLS script starts by analyzing the arguments provided by
the user. Afterwards, these arguments are used to execute socat commands.
MultiTLS creates k tunnels running k socat command on the server and k
commands on the client. For the establishment of a tunnel using the socat
commands, MultiTLS executes the following two commands, the first on
the server side and the second on the client side:

• socat openssl-listen:$port,cert=$cert,cafile=$cafile, \
cipher=$cipher TUN:$ipTun/24,tun-name=$nameTun,up

• socat openssl-connect:$ipServer:$port,cert=$cert, \
cafile=$cafile,cipher=$cipher \
TUN:$ipTun/24,tun-name=$nameTun

In the first command, we have the $port argument that represents the
port where the socat will be listening, we have the $cert, $cafile and $ci-
pher arguments that have the same meaning as the MultiTLS command
arguments with the same names. The arguments $ipTun and $nameTun are,
respectively, the IP of the server in the TUN interface and the name of that,
which is created through this command.

In the second command, we have the argument $ipServer that represents
the IP of the server, the argument $port that represents the port of the server
where the socat connects to establish the communication. We have the $cert,
$cafile, and $cipher arguments that have the same meaning as the cert, cafile,
and cipher arguments in the MultiTLS commands. The arguments $ipTun
and $nameTUN are, respectively, the IP of the client in the TUN interface
and its name, which is created through this command.

MultiTLS by default assumes that the IP and names for the TUN in-
terfaces are 10.$k.1.$i and TUN$k, where $k is the tunnel number, 1 ≤ k ≤

18

nTunnels and $i has the value 1 if it is the server and 2 if it is the client.
After the establishment of the first tunnel, MultiTLS can create the

second tunnel which is encapsulated by the first tunnel, using the previous
socat commands in which the value of $ipServer instead of being the real IP
of the server is the IP of the TUN interface created on the server to establish
the first tunnel, which as previously mentioned is 10.1.1.1, by default. To
create more tunnels, the IP of the last TUN interface created on the server
side must be specified in the $ipServer argument.

TUN interfaces allow MultiTLS to create multiple virtual network in-
terfaces. It is through the TUN interfaces that MultiTLS encapsulates the
various tunnels. These interfaces operate at level 3 of the OSI model, and
these devices can be used to establish VPN communications, as they allow
the responsible software to encrypt the information before it is sent. Multi-
TLS uses several TUN interfaces, as each interface will allow establishing a
TLS tunnel that will be encapsulated by the TLS tunnel of the next TUN in-
terface. On the other hand, MultiTLS uses OpenSSL as a dependency, which
allows performing all the cryptographic part, from creating and signing client
and server certificates to the development of message ciphers. Whereas, the
Socat dependency allows MultiTLS to establish multiple tunnels. This tool
allows data transfer between two independent channels, being responsible
for creating the TUN interfaces and using OpenSSL. That is, it is through
Socat that the tunnel is established between the TUN interface on the client
side and the TUN interface on the server side, using the implementation of
OpenSSL in order to protect the connection.

3.7. Configurations

To successfully establish communication through the MultiTLS tool, it
is necessary to ensure some configurations in the machines. In a first phase,
the MultiTLS client uses port 4040 to send information that will be used
to establish encrypted communication. This information includes: the IP
address; the number of tunnels to consider in the MultiTLS communication
to be established; the port on which this communication will be made; and
the client certificate used in the first tunnel. On the server side, the infor-
mation is received on port 4040 and sends its certificate to the first tunnel.
The client receives the server’s certificate on port 4040. Due to these ini-
tial negotiations, it is necessary to configure any firewalls that may interfere
with the communication, to accept inbound and outbound data flow to port
4040. Once the initial negotiations are finished, the tool can now establish

19

k tunnels (defined by the user and less than or equal to four). The first
tunnel is established through the port indicated by the user when starting
the client-side program. For the remaining tunnels, the port number used
will be incremented from the port initially indicated by the user.

If it is necessary to communicate between different networks, it is neces-
sary to configure port forwarding to traverse a network gateway, such as a
router. After this configuration, MultiTLS will operate transparently.

4. Evaluation

The experimental evaluation aims to answer questions about the per-
formance and cost of MultiTLS. We have the following experiment sets:
performance, file transfers, comparison with other approaches, and a use
case.

4.1. Setup

For all the experiments, two virtual machines were used, one as a server
and the other as a client, running on separate physical hosts.

Each presented measurement was repeated 100 times, with the computed
average presented as the result. We assume a normal distribution, treating
each run as a sample.

4.2. Performance

In this Section we assess the performance of MultiTLS. We want to
answer two specific questions: What is the cost of adding more tunnels?
What is the cost of encrypting messages?

In the following experiments, each virtual machine had 2 VCPUs, 8 GB
RAM, and Ubuntu Linux 16.

In the first experiment, we used the iperf3 tool, version 3.0.11. Iperf3 is a
tool used to measure network performance. It has server and client function-
ality and can create data streams to measure the throughput between the
two ends. It supports the adjustment of several parameters related to timing
and protocols. The iperf3 output presents the bandwidth, transmission time,
and other parameters.

To answer the first question, the experiment consisted of using the iperf3
tool to measure the transmission time of 1 MB, 100 MB and 1 GB for each
k, considering k ≤ 4. The cipher suites used in this evaluation are the same
ones that are defined by default inMultiTLS. The average and the standard

20

deviation of transmission time of 1 MB, 100 MB and 1 GB for each value
of k can be seen in Figure 3. We start with k = 1 so as to have as baseline
a single encryption, i.e., we are not comparing against a scenario without
security.

0.17 5.06

48.10

0.25
8.27

87.90

0.41

14.53

146.22

1.05

24.66

210.74

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Figure 3: Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages
in relation to the number of tunnels created.

Figure 4 shows for each message size the overhead of the transmission
time for k = 2, k = 3 and k = 4 in relation to k = 1. Therefore, we can see
that for k = 2 and k = 3 the cost of having added more tunnels increases
as the size of the message to be transmitted also increases. For k = 4 the
cost of having added more channels decreased as the size of the message to
be transmitted increased. We can also observe that the transmission time
for k tunnels is less than k times the value of k = 1 for each message size,
except for k = 4, where the overhead exceeds 4 times the value of k = 1 and
for k = 3 in the 1GB transmission where the time is 3.04 times greater than
for k = 1.

We can answer the first question that for k = 2 the performance of
MultiTLS is acceptable, since the time of sending messages with k = 2
is less than the double of the time of sending messages with k = 1. With
3 tunnels, i.e., k = 3, for the transfer of 1 GB, the performance of the
MultiTLS is poor because the sending time is more than three times the

21

47%
63%

83%

141%

187%
204%

518%

387%

338%

0%

100%

200%

300%

400%

500%

600%

1 MB 100 MB 1 GB

O
ve

rh
ea

d

Message Size

2 Tunnels 3 Tunnels 4 Tunnels

Figure 4: The overhead of adding more tunnels in relation to k = 1.

time of k = 1, in contrast, to transfer 1 MB and 100 MB the performance is
good since the sending time is less than three times the time of k = 1.

The use of tunneling with multiple encapsulation layers can significantly
impact network performance, a phenomenon known as “TCP meltdown” or
“TCP-over-TCP collapse”. TCP congestion control algorithms struggle to
handle the complex feedback loops from multiple layers of tunneling, resulting
in higher latency and degraded throughput (Harkanson et al., 2019).

The second experiment aims to evaluate the cost of encrypting the com-
munication messages. To do this, using the same virtual machines, we per-
formed the same tests we did in the first experiment, however changing the
cipher suites by default from MultiTLS to TLS ECDHE ECDSA WITH NULL SHA,
TLS RSA WITH NULL SHA256, TLS RSA WITH NULL SHA and TLS ECDHE RSA WITH NULL

SHA. Therefore, the messages exchanged by the client and the server were not
encrypted. This experiment helps us realize the influence of encrypting the
data in the total transmission time of messages with different sizes. Figure 5
shows the average and standard deviation of transmission time of 1 MB, 100
MB, and 1 GB for each value of k.

As with the first experiment, for each message size, the transmission time
increases as the number of tunnels increases. However, we verified that the
transmission time of 1 MB for all values of k is greater than k times the

22

0.10 5.40

54.14

0.21
8.93

91.84

0.45
11.76

118.87

1.34

17.40

162.25

0

50

100

150

200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Figure 5: Comparison between the time it takes to send 1 MB, 100 MB and 1 GB messages
in relation to the number of unencrypted tunnels.

time of k = 1. In the transfer of 100 MB and 1 GB with k tunnels, the
transmission time does not exceed k times the value of k = 1.

Figure 6 shows the percentual difference between the first and second
experiment, for each message size and k. We can see that, for certain mes-
sage sizes and k, messages sent on the first experiment took less time than
messages sent without encryption. However, we can observe that in these
cases the average overhead is about −10%, whereas in cases where encrypted
communications take longer than unencrypted communications, the average
overhead is 35%. Overall, the overhead of encrypting the messages is 13%.

For all this, we can answer the second question: the time to encrypt the
messages has a considerable low impact given that it takes 13% more time.

4.3. File transfers

For this set of experiments, we used machines 4 VCPUs, still 8 GB RAM,
and Ubuntu Linux 20.04 LTS.

This scenario is based on the machine-to-machine for secure communica-
tion between legacy applications, described in Section 3.1. More specifically,
FTP (File Transfer Protocol) was used. Through its client/server architec-
ture, FTP is able to establish a connection between two points, which can
be used to transfer files and perform other operations. The tests carried out

23

0.70

-0.06
-0.11

0.22

-0.07
-0.04

-0.10

0.24 0.23

-0.22

0.42

0.30

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1 MB 100 MB 1 GB

O
ve

rh
ea

d
 %

Message Size

1 Tunnel 2 Tunnels 3 Tunnels 4 Tunnels

Figure 6: Difference between first and second evaluation results.

consisted of transferring different files (25MB, 50MB, 75MB and 100MB)
and measuring the transfer time for different numbers of tunnels. Initially, as
a reference, a test was performed for k = 0, that is, the measurements were
made without using any tunnel, just a normal FTP communication. Then
the same procedure was performed for k = 1, k = 2, k = 3 and k = 4, where
k represents the number of tunnels used by the tool. In order to minimize
the impact of possible disturbances on the network, all the results obtained
were collected at the same time of day, under similar conditions. Another
aspect that was taken into account was the representativeness of the data.
In order to guarantee that the collected data sample was representative, the
arithmetic mean and standard deviation of the obtained data was calculated.
After collecting the samples, it was found that the standard deviation for all
cases considered was less than one second.

The results obtained are show in tables related to the number of tunnels
(k = 0, k = 1, k = 2, k = 3 and k = 4). Each table also has five columns,
the first indicating the order in which the data were inserted, and the re-
maining four indicating the value of the measurements for the different files
considered. Finally, each table also indicates the mean transfer time for each
file.

The data referring to the transfer of files using FTP only (k = 0) is shown

24

in Table 1. Using only FTP (k = 0), it was possible to verify that the sending

k = 0
25MB File 50MB File 75MB File 100MB File

1st 0.08 s 0.20 s 0.24 s 0.31 s
2nd 0.08 s 0.18 s 0.24 s 0.33 s
3rd 0.07 s 0.15 s 0.24 s 0.26 s
4th 0.08 s 0.14 s 0.23 s 0.44 s

...

Mean 0.08 s 0.17 s 0.22 s 0.33 s

Table 1: Results for file transfer with k = 0.

of files was practically instantaneous. Then, the same test was performed for
k = 1, that is, using the tool with only one configured tunnel. The results
obtained can be observed in Table 2.

k = 1
25MB File 50MB File 75MB File 100MB File

1st 2.90 s 3.78 s 6.93 s 9.86 s
2nd 2.25 s 3.63 s 6.63 s 9.81 s
3rd 3.25 s 2.86 s 7.50 s 11.90 s
4th 2.58 s 2.87 s 8.77 s 8.77 s

...

Mean 2.87 s 3.30 s 7.39 s 9.54 s

Table 2: Results for file transfer with k = 1.

Through the observed data, it was possible to verify that when config-
uring a connection with only one tunnel, an increase in the average time is
already noticeable. The remaining data, configured with two, three and four
encapsulated tunnels, can be seen in the Tables 3, 4, and 5, respectively.

Figure 7 summarizes the data collected in the experiments, when using
files of different sizes and different numbers of tunnels. The larger the file
size and the number of tunnels used, the greater the transfer time. This
result was expected, taking into account that not only was the size of the file
itself increased, but also the overhead caused by the addition of tunnels to

25

k = 2
25MB File 50MB File 75MB File 100MB File

1st 3.00 s 8.38 s 14.41 s 19.16 s
2nd 4.14 s 7.28 s 16.09 s 20.38 s
3rd 2.07 s 7.63 s 13.92 s 21.38 s
4th 5.81 s 7.04 s 15.78 s 19.98 s

...

Mean 3.41 s 7.70 s 14.46 s 20.26 s

Table 3: Test table for k = 2.

k = 3
25MB File 50MB File 75MB File 100MB File

1st 7.61 s 16.95 s 19.42 s 30.48 s
2nd 6.81 s 14.89 s 20.39 s 29.51 s
3rd 5.93 s 15.27 s 20.05 s 28.43 s
4th 5.48 s 15.54 s 19.51 s 30.76 s

...

Mean 7.20 s 16.00 s 20.28 s 30.17 s

Table 4: Results for file transfer with k = 3.

k = 4
25MB File 50MB File 75MB File 100MB File

1st 10.95 s 19.91 s 26.68 s 39.35 s
2nd 10.44 s 18.54 s 27.11 s 38.83 s
3rd 9.07 s 19.66 s 26.31 s 40.08 s
4th 10.13 s 18.91 s 26.54 s 41.02 s

... s

Mean 9.39 s 19.37 s 27.13 s 39.66 s

Table 5: Results for file transfer with k = 4.

the communication. The number of tunnels chosen for the communication
has a more significant impact on the transfer time.

26

Figure 7: File transfer rate results (MB/s).

4.4. Comparison with vtTLS and DTLS

The purpose of this section is to compare the performance of MultiTLS
with other tools and to know which of these approaches performs better.
For this purpose, we use the same virtual machines as the experiment in
Section 4.2. vtTLS is used to transfer three files each with the size of 1
MB, 100 MB and 1 GB. We ran vtTLS 100 times for each of these files.
In addition to this experience, we also run a file transfer using a Datagram
Transport Layer Security (DTLS) (Rescorla and Modadugu, 2012) channel
implemented through the GnuTLS library. This channel used the cipher
suite TLS RSA AES 128 GCM SHA256. This application ran over one tunnel
created by MultiTLS. DTLS is a communication protocol that provides
security, such as TLS, but for datagram-based applications. The purpose
of using DTLS is to measure the performance of a channel that uses UDP
over TCP, since with MultiTLS communication we have tunnels of several
tunnels, that is, TCP over TCP. Besides the diversity of cipher suites used,
this experience also shows that it is possible to have a diversity of TLS
implementations if the application using MultiTLS uses a library other
than OpenSSL.

Figure 8 allows us to compare the average of the results obtained from the
two previous experiences with the averages of the results obtained in the first
experiment with k = 2 once the two previous experiments use approaches
in which the messages are encrypted twice such as MultiTLS with two

27

tunnels. In addition, we can also observe the standard deviation in each
column. Figure 8 also shows that, of the three approaches, vtTLS is the
fastest and the DTLS channel approach is the slowest. The values of the
MultiTLS results are closer to the results of the vtTLS than to the DTLS
channel approach. However, the transfer time overhead of 1MB, 100MB and
1GB between vtTLS and MultiTLS are, respectively, 525%, 164% and
173%. The DTLS channel approach does not have an expected performance
because the server only sends the next fragment after receiving the size of
the last fragment sent by it.

0.04 3.13 32.14
0.25 8.27

87.90

1.35

117.44

1154.44

0

200

400

600

800

1000

1200

1 MB 100 MB 1 GB

Ti
m

e
(s

ec
o

n
d

s)

Message Size

vtTLS 2 Tunnels 1 Tunnel + DTLS

Figure 8: Time for sending messages with 1MB, 100MB and 1GB in size via vtTLS, 2
MultiTLS tunnels and 1 DTLS communication over 1 MultiTLS tunnel.

4.5. Browser to Web Proxy Performance

Although the use of MultiTLS presents a transfer time overhead in
relation to vtTLS, we wanted to know what is the performance of Multi-
TLS applied in a use case. We use MultiTLS to establish communication
between a browser and a proxy, based on the scheme shown in Figure 2.

To do these experiments, one machine ran the Squid proxy, version 3.5.12,
and the other ran the Google Chrome browser, version 66.0.3359.117.

In this evaluation we tested four approaches: no proxy, use only the proxy,
use the proxy using one and two MultiTLS tunnels. These four approaches

28

allow us to evaluate the cost of using MultiTLS. The evaluation consisted of
using the browser to request 30 times certain URLs from Amazon1, Google2,
Safecloud3, Técnico4 and Youtube5 websites for each approach and registered
the value of the load event that appears on the network tab in the developer
tools of the browser. The load event is fired when a resource and its depen-
dent resources have finished loading. We collect the data with the browser
development tools with the cache disabled.

0.73

3.72

5.40

7.61

9.78

0.74

3.77

5.66

7.67

9.97

0.75

3.83

6.21

7.78

10.14

0.78

4.01

6.31

7.97

11.65

0

2

4

6

8

10

12

14

Google Técnico Youtube Safecloud Amazon

Ti
m

e
 (

se
co

n
d

s)

Websites

without proxy with proxy proxy + 1 tunnel proxy + 2 tunnels

Figure 9: Time to load sites with: no proxy, with proxy, with proxy using MultiTLS
with 1 tunnel and with 2 tunnels.

Figure 9 presents the average of the results obtained with the different ap-
proaches for each requested URL. We can observe that the use of MultiTLS
in the communication between the browser and the proxy was insignificant.
We can conclude that MultiTLS is a tool with good performance in tasks
common to the day-to-day of many Internet users.

1https://www.amazon.com/
2https://www.google.com/
3http://www.safecloud-project.eu/
4https://tecnico.ulisboa.pt/pt/
5https://www.youtube.com/watch?v=oToaJE4s4z0

29

5. Conclusion

We presented MultiTLS, a middleware that allows the creation of a
channel of communication through the encapsulation of several secure tunnels
in others. It increases security by using the diversity of cipher suites of the
tunnels so that if k−1 cipher suites become insecure, there still remains cipher
suite that protects the communication. MultiTLS has the advantage of not
modifying any TLS implementation or any of its dependencies.

To evaluate MultiTLS, several tests were executed with the intention
of measuring its performance and cost. The performance of file transfer was
tested with different file sizes and different numbers of tunnels, confirming
that these two variables have significant influence. The larger the file size,
the greater the impact of the number of tunnels chosen on the transfer time.
We also compared MultiTLS with the protocol vtTLS and we conclude
that, although it performs less favorably in comparison, it has the advantage
of not modifying any TLS implementation or any of its dependencies. In
addition, MultiTLS can be used in a simple way by an application, such as
communication between a browser and a proxy running on different hosts or
by an application that allows us to create a TLS or DTLS channels. If these
applications use a TLS library other than OpenSSL then diversity in TLS
implementation is achieved, which makes communication even more secure,
since the damage caused by vulnerabilities in one of these implementations
does not endanger communication.

In our future work, we will focus on the following areas. Firstly, our
research will concentrate on improving network tunnel performance, specifi-
cally addressing latency and bandwidth usage.

Next, we plan to port MultiTLS to other operating systems like Win-
dows and Android/iOS to cater to an even broader range of use cases. Addi-
tionally, we will conduct testing on resource-constrained devices to validate
the practical applicability of MultiTLS in securing Internet of Things ap-
plications. This presents a challenge due to the limitations of these devices,
such as low-power processors, limited memory, and constrained communica-
tion protocols.

Another focus of our work is updating the diversity mechanisms for
TLS version 1.3, that brings significant enhancements, including: resistance
against downgrade attacks, simplified cipher suite negotiation, as well as
support for the latest cryptographic algorithms.

30

Finally, we will build upon the groundwork laid by Carvalho (2014) on
diversity measurements in cipher-suite selection. Our goal is to update the
study and introduce diversity scoring for each cryptographic mechanism.
This will deepen our understanding of diversity in cryptographic systems
and pave the way for future solutions that will provide even greater security
through diversity.

Acknowledgments

This work was supported by the European Commission project H2020-
653884 (SafeCloud) and by Fundação para a Ciência e a Tecnologia (FCT)
with reference UIDB/50021/2020 (INESC-ID).

References

Biham, E., Shamir, A., 1993. Differential cryptanalysis of the data encryption
standard.

Bilge, L., Dumitras, T., 2012. Before we knew it: an empirical study of
zero-day attacks in the real world. In Proceedings of the ACM Conference
on Computer and Communications Security , 833–844.

Bogdanov, A., Khovratovich, D., Rechberger, C., 2011. Biclique
cryptanalysis of the full aes. Cryptology ePrint Archive, Pa-
per 2011/449. URL: https://eprint.iacr.org/2011/449. https://

eprint.iacr.org/2011/449.

Carvalho, M., Demott, J., Ford, R., Wheeler, D.A., 2014. Heartbleed 101.
IEEE Security and Privacy 12, 63–67.

Carvalho, R.J., 2014. Authentication Security through Diversity and Re-
dundancy for Cloud Computing. Ph.D. thesis. Instituto Superior Técnico,
Universidade de Lisboa.

Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., 1995. IP in
IP Tunneling. RFC 1853. Internet Engineering Task Force. URL: https:
//tools.ietf.org/html/rfc1853.

Freier, A., Karlton, P., Kocher, P., 2011. The Secure Sockets Layer (SSL)
Protocol Version 3.0. RFC 6101. RFC Editor.

31

Harkanson, R., Kim, Y., Jo, J.Y., Pham, K., 2019. Effects of tcp transfer
buffers and congestion avoidance algorithms on the end-to-end throughput
of tcp-over-tcp tunnels, in: Latifi, S. (Ed.), 16th International Conference
on Information Technology-New Generations (ITNG 2019), Springer In-
ternational Publishing, Cham. pp. 401–408.

Joaquim, A., L. Pardal, M., Correia, M., 2017. Vulnerability-Tolerant Trans-
port Layer Security. 21st International Conference on Principles of Dis-
tributed Systems (OPODIS) .

Kent, S., Seo, K., 2005. Security Architecture for the Internet Protocol. RFC
4301. Internet Engineering Task Force. URL: https://tools.ietf.org/
html/rfc4301.

Khanvilkar, S., Khokhar, A.A., 2004. Virtual private networks: an overview
with performance evaluation. IEEE Communications Magazine 42, 146–
154.

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W.,
Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., Te Riele, H., Tim-
ofeev, A., Zimmermann, P., 2010. Factorization of a 768-bit rsa modulus,
in: Advances in Cryptology – CRYPTO 2010, Springer Berlin Heidelberg.
pp. 333–350.

Larson, R., Cockcroft, L., 2003. CCSP : Cisco Certified Security Professional
Certification. McGraw-Hill/Osborne.

Littlewood, B., Strigini, L., 2004. Redundancy and Diversity in Security.
Computer Security ESORICS 2004 , 227–246.

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A., 1996. Introduction to
public-key cryptography, in: Handbook of Applied Cryptography. CRC
Press. chapter 8, pp. 355–422.

Nadeau, M., 2017. State of Cybercrime 2017: Security events decline, but
not the impact.

NIST, 2001. Announcing the Advanced Encryption Standard (AES).
Announcement. National Institute of Standards and Technology
(NIST). URL: https://csrc.nist.gov/publications/detail/fips/

197/final.

32

Postel, J., 1981. Internet Protocol. RFC 791. Internet Engineering Task
Force. URL: https://tools.ietf.org/html/rfc791.

Rescorla, E., 2018. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. RFC Editor.

Rescorla, E., Modadugu, N., 2012. Datagram Transport Layer Security Ver-
sion 1.2. RFC 6347. RFC Editor.

Reynolds, J., Postel, J., 1994. Assigned Numbers. RFC 1700. Internet Engi-
neering Task Force. URL: https://tools.ietf.org/html/rfc1700.

Rivest, R., 1992. The MD5 Message-Digest Algorithm (RFC 1321).

Rivest, R.L., Shamir, A., Adleman, L., 1978. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM .

Rizzo, J., Duong, T., 2012. Crime: Compression ratio info-leak made easy,
in: ekoparty Security Conference.

Seggelmann, R., Tuexen, M., Williams, M., 2012. Transport Layer Security
(TLS) and Datagram Transport Layer Security (DTLS) Heartbeat Exten-
sion. RFC 6520. RFC Editor.

Shirey, R., 2007. Internet Security Glossary, Version 2. RFC 4949. RFC
Editor.

Shor, P., 1996. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Journal on Com-
puting 26, 1484–1509.

T. Ylonen, C. Lonvick, 2006. The Secure Shell (SSH) Protocol Architecture
(RFC 4251).

Wang, X., Yu, H., 2005. How to Break MD5 and Other Hash Functions.
Advances in Cryptology – EUROCRYPT .

Ylonen, T., Lonvick, C., 2006a. The Secure Shell (SSH) Authentication
Protocol. RFC 4252. Internet Engineering Task Force. URL: https://
tools.ietf.org/html/rfc4252.

33

Ylonen, T., Lonvick, C., 2006b. The Secure Shell (SSH) Connection Protocol.
RFC 4254. Internet Engineering Task Force. URL: https://tools.ietf.
org/html/rfc4254.

Ylonen, T., Lonvick, C., 2006c. The Secure Shell (SSH) Transport Layer
Protocol. RFC 4253. RFC Editor.

34

