
AN INTEGRATION METHODOLOGY
BASED ON THE ENTERPRISE

ARCHITECTURE

Marta Guerra

mncg@netcabo.pt

Miguel Pardal

mflpar@yahoo.co.uk

Miguel Mira da Silva

mms@dei.ist.utl.pt

Instituto Superior Técnico

Departamento de Engenharia Informática
Av. Rovisco Pais
1049-001 Lisboa

Portugal

Abstract
Integration needs are difficult to predict and solve appropriately, and this leads to
multiple partial solutions that lack a broader vision of the problem. The Enterprise
Architecture defines a global view of the business data and processes, and of the
applications that manage and support them.
In this paper, we propose an integration methodology based on the Enterprise
Architecture’s business semantics that reuses and extends data analysis techniques to
specify essential integration details. The methodology proved useful in practical test
cases, achieving immediate integration goals that are sustainable throughout the
Enterprise’s information systems life cycle.

Keywords: Integration methodology, Enterprise Architecture, CRUD Matrix, Entity-
relationship diagram, Data-flow diagram

1. INTRODUCTION
Today’s Organizations use information systems to support their businesses. These
systems were created spontaneously to respond to specific needs within each
organizational unit and usually lack a global Organizational plan. This evolution
produced a situation where multiple existing applications manage replicas of data.
This leads to high costs due to the use of incoherent information and the efforts to
maintain coherence [Inmon93].

Present integration technology allows several systems conceived as “islands” to
become mutually accessible and share data. Integration methodologies currently
specify rules at the application level and do not address the information’s integrity
problems. For instance, if a replication of Client data occurs while planning to
integrate three applications, which one should be ultimately responsible for the
Client’s data? Current integration methodologies are unable to answer this question,
because they ignore crucial items in the information systems development – data
entities and business processes [Laudon02].

The Enterprise Architecture’s (EA) mission is to identify a set of applications,
which are aligned with the data entities and business processes of the Organization.
The EA specifies the mission of each application and its responsibility and rights over
the information entities and business processes [Spewak93].

The Create-Read-Update-Delete (CRUD) Matrix is the graphical representation of
the EA, containing the relationship between data entities, business processes and the
applications. Figure 1 shows an example CRUD Matrix.

Figure 1 – Example of a CRUD Matrix from [Spewak93]. The application areas

result from crossing the data entities with the business processes.

In this paper we propose an integration methodology based on the EA that aims to
provide integration solutions through a specification model which guarantees the
coherence of data entities and business processes. The specification model is based on
standard techniques: Entity-Relationship diagrams and Data-flow diagrams
[BatiniCeriNavathe92].

The methodology was applied to a practical test case achieving the desired results.
This case is referred but not fully described in this paper for briefness reasons.

2. PROBLEM
The integration within an Organization begins with the identification of new
functionalities that require data currently spread across several applications.

Typically, each application uses a unique representation of data. To share that data,
it is not enough to make the means of communication available. It is necessary to
make data transformations among the different representations available.

The following cases describe typical barriers that should be solved by integration:
a) A Windows application cannot communicate with a Mainframe application

because the former uses proprietary network protocols;
b) An application represents the entity Product in a hierarchical XML structure

and the other application uses several tables on a relational database;
c) An application represents the Date-of-Birth attribute of the Client entity in ISO

format (year, month, day) and the other represents it in a national format (day,
month, year);

d) An application of the Accounting department has a Client entity (people who
have had transactions with the enterprise) and an application of the Marketing
department has also a Client entity (prospective customers). Despite having
the same name, they are different because they have different meanings;

e) An application has the Product entity with the attribute Price to represent price
of the product with taxes included, and another application has an attribute
with the same name but containing only the base price with the tax rate in a
separate attribute.

An approach with incremental integration adds even more problems, for instance:
the Billing application is integrated with the Accounting application. Next, it becomes
strategically necessary that the Marketing application should be integrated with the
previous two. Supposing the entity Client is used throughout these three applications,
in the first integration we would have chosen either the Billing or the Accounting
application to manage the Client entity. In the second integration, we would face the
following problem: should the entity still be managed by the previously chosen
application or should it be managed by the Marketing application?

These problems grow significantly with the number of applications involved. It
rapidly becomes very difficult to make decisions on which applications should share,
change and transform data.

3. PROPOSAL
Our proposal starts by classifying the integration barriers in three types:

• Technological barriers – when the different technologies used by applications
require additional components to establish communication or to make
transformations. Example: a).

• Syntactical barriers – when the entity’s or attribute’s internal structure is
different between representations. Examples: b) and c);

• Semantic barriers – when the entity or attribute has different meaning between
representations. Examples: d) and e).

As stated, barriers may appear at the entity or the attribute level.
The integration engines currently available in the market are more oriented to

overcome technological and syntactical barriers and don’t explicitly consider semantic
barriers [Linthicum99].

The proposed methodology uses the Enterprise Architecture (EA) in an approach
to applications integration, so that is possible to:

• Make the best possible use of the features in existing integration engines;
• Place applications in context and their responsibility over the data entities;
• Relate data semantics in production applications with the information in the

EA;
Figure 2 represents the use of the EA-based data model to integrate applications.

Figure 2 – Conceptual model for integration using the Enterprise Architecture

The EA defines the data entities and their attributes. X, Y and Z are different
production applications that use data belonging to the same data entity’s attribute. The
data operations can be Create, Read, Update and Delete. The transformations Tx, Ty
and Tz convert from each application’s data schema to the EA attribute’s data
schema.

Two important disclaimers must be made on the use of the EA for the purpose of
integration, due to the fact that it is model of reality with its own limitations:

• Uses an 80/20 conception logic – the reality is not represented with 100%
accuracy and an 80/20 accuracy is often pursued [Spewak93];

• Becomes outdated – because the Organization must evolve and change to
answer new challenges.

Phases of the Methodology
The integration methodology is structured in four phases:

A. Problem definition;
B. Application analysis;
C. Specification;
D. Implementation.

Figure 3 – Methodology phases

The problem definition (A) identifies the goal of the integration project in business
and technological terms as well as the applications to be integrated. Each production
application is then analysed (B) so that it is matched with the EA reality and the
expected result. This is achieved through requirements analysis of production
applications and semantically linking these applications to the EA applications,
identifying aligned and non-aligned items. After the analysis of the production
applications, the specification (C) is performed through data schemas, data flow
schemas and schema mappings. In this phase, non-functional requirements such as
security and availability are also defined. The implementation (D) includes
development and test of the specified solution.

Phase A – Problem definition
This phase identifies the applications involved and describes the integration goal,
which may be the management of a data entity or the support of a business process.

In this phase it is necessary to understand that the application integration drivers
are people and organizational units within the Organization. The following factors are
critical for success:

• Identify the integration project stakeholders;
• Obtain adequate top management support;
• Guarantee commitment from the people in charge of the production

applications, so that the following means will be available: infrastructure,
documentation, realistic data for tests in conformity with the Organization’s
security policy and personal data privacy laws.

Phase B – Application analysis

Interview

The analysis of each production application begins with interviews with the people in
charge of the business area and the technological staff. The proposed approach for the
interview is:

• Presentation – explain the integration project as a whole, how the production
application is part of the project and define the meetings goals;

• Inception and goals – understand why the application was created and how it
changed under the influence of different stakeholders;

• Main data and functionality – understand what is the core area of the
application, with a brief description of main data and functions;

• Technological platform – identify the technologies and environments used;
• Business/technology vision – listen to the opinions of the interviewee

concerning integrations in the production application;
• Documentation – define with the interviewee the documentation available,

such as the physical data model, functionality and existing integration
interfaces;

• Finishing – explain the next steps in the integration project previewing the
need for further collaborations to access a stable version of the production
application.

The main results of the interview are the physical data model, the functionalities,
the existing integration interfaces and the technological platform.

Semantic linking

After the interview’s results are observed, the semantic linking can start. It consists of
a confrontation of the current production applications with the EA applications. For
each production application:

• Analyse the data model – create data sets that are logically related;
• Analyse the functionalities – create functionality sets that contribute to the

same goal or access the same data;
• Analyse production integration – identify the source and target production

application, involved data and functionalities, direction of the data flow and
operations (read and/or write);

• Link data sets to data entities in the EA – associate each data set identified in
the production application to a data entity in the EA, checking for the data
entity attributes if necessary;

• Link functionality sets to business processes in the EA – associate each
functionality set to a business process in the EA, checking its description and
its goals;

• Identify the production application area – mark the CRUD Matrix columns
with the identified data entities and the rows with the identified business
processes to obtain the production application area;

• Link the production application to the EA – relate the production application
being analysed to the EA application with the greatest resemblance (with goals
and compatible accessed data entities and business processes). This decision
should be made with knowledge of the whole context, considering what is
planned for the future of each production application as discussed in the
interviews;

• Identify the integration bridges in the EA using the CRUD matrix – through
observation of the data entities which are accessed (R) and created (C) in
another EA application;

• Link production integrations to integration bridges in the EA.

The final result of this phase should include:
• Links between the production application and EA applications;
• Aligned items:

o Data entities and linked data sets;
o Business processes and linked functionalities sets;
o EA integration bridges and linked production integrations.

• Non-aligned items:
o Non-linked data sets;
o Non-linked functionalities sets;
o Non-linked integration production sets;

• Graphical representation of the CRUD matrixes used during the semantic
linking to visualize the application areas.

Phase C – Specification
The specification model allows the description of integration solutions with enough
detail to support its development, test and maintenance. The proposal has two
modelling perspectives that are based on entity-relationship diagrams and data-flow
diagrams [BatiniCeriNavathe92], extended with specific integration concepts.

Entity-Relationship for Integration

The ER-I (Entity-Relationship for Integration) diagrams allow building data schemas
like the following example in Figure 4.

Figure 4 – ER-I schema example

The schema’s graphical detail level doesn’t include the simple attributes and the
relationship’s names. The details of the simple attributes of an entity or composed
attribute are specified textually in attribute lists, like the one in Figure 5.

Each entity has also the key definitions (primary and candidates). It is important to
identify all existing keys, because they can be very useful in the transformation of
entities between different data schemas.

Figure 5 – Attribute list example for the Client entity

An ER schema represents a set of entities and relationships and their respective
attributes, which are subsequently translated into a single database. In an ER-I, the
schema defines a part of all the information in the Organization, which can be spread
across several production applications.

The EA data dictionary represented in Figure 6 stores the schemas in the
information architecture tree, formed by the EA data entities and their respective EA
attributes. Each EA attribute can contain ER-I schemas that describe a detailed view
of its content.

Figure 6 – EA Data Dictionary’s tree structure

The EA data dictionary is never completely specified, because it contains only the
schemas that represent information used in integrations and in EA data entity
management.

The standard ER model [BatiniCeriNavathe92] was extended to support these
concepts:

• EA context – EA data entity and EA attribute where the ER-I schema fits in;
• EA attribute borderline – border between different EA attributes (and possibly

between EA data entities).
Each EA context in the dictionary has an owner application that manages the

physical information of the schemas’ instances. A borderline allows the representation
of relationships that cross EA attributes boundaries, and therefore can be managed by
different applications.

The EA data dictionary schemas are used as intermediate data representation in an
integration solution. When data is read from an application, it’s translated into an EA
schema. When data is written to an application, it’s translated from the EA schema.
Before doing the data modelling for a new integration problem, the EA data
dictionary should be queried for existing ER-I schemas that can be reused, even if
they need to be revised to include all necessary data attributes. If such a schema is not
found, then it’s necessary to create a new one.

In order to create a new ER-I schema it is necessary to:
• Choose an EA context (data entity and attribute) where the schema will fit in;
• Choose the owner application for the EA context – it should be the one that

creates the data or performs most of the updates;
• Build the schema’s first version with a top-down approach to define the main

entities and relationships;
• Add detail to the schema with a bottom-up approach to define the entities’ and

relationships’ attributes:
o Start from the owner application’s data representation;
o Decompose the data attributes in its smaller parts;
o Place the simple attributes in the most appropriate entity or

relationship;
• Adjust the abstraction level, composing or decomposing entities and attributes.

Group sets of related attributes in composite attributes;
• Iterate until an adequate representation is reached – one that correctly reflects

the domain and that it is suitable for transformations.
The new schema is not directly influenced by the owner application’s data

representation, although conversion is guaranteed at the simple attribute level.
The heuristic “it’s easier to join than to split data” should be considered during

attribute composition. For example, choosing between having the Name attribute or
having the FirstName and LastName attributes.

Data-flow Diagrams for Integration

The DFD-I (Data-flow diagrams for Integration) allows building functional schemas
of data-flows, like the following example in Figure 7.

Figure 7 – DFD-I example

The data-flows and transformations have labels with sequence number and
description. The sequence number represents the notion of order, while the description
identifies the flowing data.

One of the assumptions in the original data-flow diagrams is that the underlying
data schemas are coherent between themselves and based on the same model. In
integration scenarios this is not true, because each application has its own data
representation. For this reason, the standard DFD model [BatiniCeriNavathe92] was
extended with:

• External interface – interface that belongs to an application with its specific
data representation;

• Transformation – exchange and conversion of data between an external
interface and an activity;

• User – used to represent human intervention when necessary.
The DFD-I core uses data specified in ER-I schemas. Its boundaries have

transformations and external interfaces to applications. An application can have
several external interfaces and each one is a partial view of its data representation.

A good approach to drawing the diagrams is “outside-in”, starting from the
external interfaces towards the core.

The transformation is a functional pattern that can be applied to two situations:

reading data from an external interface to a process or writing data from a process to
an external interface. A read transformation is represented in Figure 8.

The adapter processes (application-side and integration-side) convert any
integration interface – database access, API function calls, user interface – in a data
interface, with queries and results. The adapters output application data instances,
overcoming technological and some syntactic barriers.

The transformer process converts source schema data instances to target schema
data instances, using context information if necessary. This process solves syntactical
and some semantic barriers.

The conversion can generate exceptions that can abort or continue the
transformation, according to the specific needs of the integration problem. Some
exceptions may require human intervention to be properly handled.

The semantic barriers are solved using the ER-I schemas from the EA data
dictionary.

Figure 8 – Reading data from an application with transformation
A write transformation has the same components as a read transformation, but the

data-flows are reversed.

Schema transformation

A schema transformation uses a set of transformation functions T to describe how to
convert an instance of a source schema into an equivalent instance of a target schema.
Each T function receives N source attributes and returns M target attributes.

The key transformation function (TK) maintains an entity’s identity between two
different schemas.

Figure 9 – Example of a transformation from an application schema to an EA

schema
The DFD-I schemas identify which read and write transformations need to be

specified.
A transformation function can execute at the schema level, considering only the

data structure, and at the instance level, using the actual values.

The transformation function can be stateless, if it uses only the values of the source
attributes, or stateful, if it also uses context information. The available context
information can have different scopes:

• Data instance;
o Current;
o History;

• Data schema;
• Flow instance;
• Flow schema;
• Global.

Some examples of context information are:
• Table for code conversion (data schema scope);
• “Key-ring” that holds identifiers for the same entity in different schemas (data

instance scope);
• Access to the transformation exceptions (flow instance scope).

The stateful transformation functions entail more configuration and administration
effort, but they are indispensable to solve some integration problems. For example, to
bind entities of different schemas that do not share key attributes because both use
independent auto-incremented values.

The transformations are stored in the EA data dictionary in the same context as its
source or target EA schema. The application schemas are not explicitly kept, instead
being partially and implicitly defined in the transformations that refer to them. This
decision avoids registering this information initially and then maintaining it up-to-
date.

Phase D – Implementation
The implementation phase includes the development, test and maintenance of the
specified solution.

The development and execution platform enables the creation and use of the
integration solution in an efficient and scalable way. Most of the Enterprise
Application Integration (EAI) products support the main features of an integration
engine: communication capabilities, data transformation services and adapters for
commercial software. However, the choice of an EAI product must be tailored to the
effective needs of the Organization, excluding non-essential features that only
increase its price and complexity. The investment decision must account not only with
the current integration problem but also with the vision of future needs provided by
the EA integration bridges.

An adequate product should combine the schema definition with their execution,
linking the conceptual development to the operational environment. This way it’s
easier to keep the existential and referential integrity between the specification
schemas and the implementation artefacts, promoting their maintenance and reuse.

After choosing the platform, the concepts and specifications will have to be
mapped to the available tools in a standard way.

4. EVALUATION
The methodology was tested in an integration scenario at a Computer Science
Department, for which an EA had already been developed.

The applications involved in the integration scenario were:
• Integrated School Management System (ISMS) – manages the back-office,

teacher and student curricula;
• Student Portfolios – manages data about student extra-curricular activities;
• Teacher portal – displays teachers personal web pages.

The ISMS application belongs to the University, while Portfolios and Teacher
portal belong to the Department.

The integration goals are to assure a coherent view of student data between
Portfolios and ISMS; and to perform login into Teacher portal using each teacher’s
user name and password in ISMS.

The following conclusions were drawn in the methodology’s application analysis
phase:

• The student data should flow from ISMS to Portfolios, because ISMS was
identified as the owner of Student data entity;

• The Portfolios’ updates to student’s personal data were considered non-aligned
functionalities. The student entity is managed by ISMS, so updates in other
applications should be performed by integration instead of requiring users to
manually keep both copies up-to-date;

• The stated goal of login into Teacher portal through ISMS was confirmed to
be an accurate business requirement, because the Teacher entity was owned by
ISMS.

The integration was specified using ER-I and DFD-I. The Portfolios-ISMS was
data modelling oriented (ER-I first) while Teacher portal-ISMS was data-flow
oriented (DFD-I first). Modelling is done through successive refinements of both
schemas so that the data and functionality perspective are coherent.

In this integration scenario, the methodology proved beneficial in the following
aspects:

• Deciding data ownership by applications;
• Detecting non-aligned functionalities that were erroneously supported by

existing applications;
• Helping to choose the best application to support a new functionality;
• Choosing EA dictionary data schemas that avoid many-to-many

transformations, and only contain the detail strictly necessary for integration;
• Verification of mutual completion between data and functionality

perspectives;
• Faster comparison of alternative solutions using graphical schemas that may

also be used as a tool to enhance communication between the project team.
The integration scenario also revealed some limitations of the methodology:
• Prior to using this methodology, the Organization has to do a significant initial

investment to develop an EA;
• Some EA assumptions can be hard to satisfy with reasonable costs;
• Communication with the people in charge of the production applications is a

critical success factor for the integration project. The alignment of goals and
the commitment by each part should be guaranteed – namely, in critical issues
such as availability of source code and realistic data for testing;

• Production applications may need to be modified to achieve better user-
interface results.

Overall, the methodology proved both useful and feasible in this practical
integration scenario. It allows the integration problem scope definition in terms of
business and technology, without resorting to partial visions.

5. RELATED WORK
The traditional integration methodologies do not assure the creation of a conceptual
model of integration that relates data, processes and applications; both at the existing
and future reality.

Britton

In [Britton00] the aspects of data modelling and associated data flows are process
oriented. The business information is sorted into categories according to its use in the
systems. This approach does not delimit the data entities and does not define the
responsibility over its management, which makes it difficult to guarantee coherence.

Modelling is refined through prototyping, which is a pragmatic technique when the
integration goals are poorly defined, and is also realistic since it may find problems,
which are undetected through purely conceptual techniques. However, its cost is
significant and its reuse is very limited.

Linthicum

In [Linthicum99] a semantic data model is proposed for identifying and cataloguing
the Organization’s data. The main difference is that it ignores different perspectives
over the data – namely, which applications should be responsible by the entities
creation and which applications are interested in managing each attribute. Using the
EA allows us to cross the data entities with the business processes and check how the
data entities are used by each process and each production application.

Web Services

Recently, Web Services [WS-I03] have been proposed as a means to integrate
applications, gaining large support in the industry [HailstonePerry02]. However, they
address mainly technical details and don’t propose a methodology to specify the
solution. In other words, they provide a way to surpass technical and syntactical
barriers leaving the semantics undefined.

Service-oriented architecture (SOA) is an attempt to conceptualise the Web
Services framework [Bloomberg03]. The approach is mainly functional (service-call
oriented) and ignores data entity management issues.

Modelling techniques

Software engineering has produced several models and standard techniques for
software development, which may be adapted to integration problems. Currently most
of these proposals are not prepared to deal with detail level required to approach the
entire Organization and, in this sense, are not scalable. An example of models
extension was proposed in this paper, based on the reference [BatiniCeriNavathe92].
For instance, an alternative approach could be based on UML models [Fowler00].

6. CONCLUSION
The main contributions of this paper is a methodology that:

• Meets integration goals in the short-term, maintaining a long-term vision to
ensure future coherence of present decisions;

• Has a work effort proportional to the problem’s dimension – unnecessary
elements are not integrated;

• Presents a semantic framing with the EA that allows the following benefits:
o Avoids wrong integrations (misaligned with data entities, business

processes and applications);
o Checks alignment of existing applications;
o Identifies integration needs not explicitly known during the problem’s

definition;
o Structures a data dictionary containing data schemas and

transformations, promoting maintenance and reuse of data assets;
• Use of widely used modelling techniques (ER and DFD), extended to

represent integration problems in a familiar, concise and sufficiently objective
way.

The methodology proposes solutions for some of the issues of applications
integration. However, there are many subjects to explore in future work, such as:

• Widen the nature of the problem – with more complex data updates, business
process support or more involved applications;

• Assess the need for additional concepts to represent process interaction with
people using workflow systems;

• Define non-functional requirements – security, fault-tolerance, logging, etc.
along with the specification;

• Explore the applicability of the methodology to bring about the convergence
between the production applications and the EA applications;

• Design a set of procedures to validate existing integration solutions on
production applications.

The integration specification model introduces concepts and definitions that could
be improved with more test cases, preferably in different industries.

7. REFERENCES
[BatiniCeriNavathe92] Carlo Batini, Stefano Ceri, Shamkant Navathe (1992)
Conceptual Database Design – An Entity Relationship Approach,
Benjamin/Cummings.

[Bloomberg03] Jason Bloomberg (2003) The role of the service-oriented architect,
ZapThink LLC.
http://www.therationaledge.com/content/may_03/PDF/bloomberg.pdf

[Britton00] Chris Britton (2000) IT Architectures and Middleware: Strategies for
Building Large, Integrated Systems, Addison-Wesley.

[Fowler00] Martin Fowler (2000), UML Distilled – Second Edition, Addison-Wesley.

[HailstonePerry02] Rob Hailstone and Randy Perry (2002) IBM and the Strategic
Potential of Web Services - Assessing the Customer Experience, IDC
http://www-306.ibm.com/software/solutions/webservices/pdf/May13_IBM_WebServices.pdf

[Inmon93] W.H. Inmon (1993) Data Architecture - The Information Paradigm - 2nd
edition, QED Technical Publishing Group.

[Laudon02] Kenneth Laudon, Jane Laudon (2002) Management Information Systems,
Pearson Prentice-Hall.

[Linthicum99] David Linthicum (1999) Enterprise Application Integration, Addison-
Wesley Information technology series.

[MiraSilva03] Miguel Mira da Silva (2003), Integração de Sistemas de Informação,
FCA Portugal.

[Spewak93] Steven Spewak, Steven Hill (1993) Enterprise Architecture Planning,
John Wiley & Sons.

[WS-I03] Web-Services Interoperability organization (2003) Basic Profile 1.0a - Final
Specification
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html

Abbreviations
API Application Programming Interface
CRUD Create Read Update Delete
DE Data Entity
DFD Data-flow Diagram
DFD-I Data-flow Diagram for Integration
EA Enterprise Architecture
EAI Enterprise Applications Integration
ER Entity-Relationship
ER-I Entity-Relationship for Integration
ISO International Standards Organization
SOA Service-Oriented Architecture
XML Extensible Mark-up Language

